Latest Posts:

Mostrando las entradas con la etiqueta celulas. Mostrar todas las entradas
Mostrando las entradas con la etiqueta celulas. Mostrar todas las entradas

12 de enero de 2015

Las células "teledirigidas" podrían ser el futuro para tratar las diabetes




¿Y si pudiéramos controlar el comportamiento de nuestras células a distancia de la misma forma que controlamos, por ejemplo, un coche teledirigido utilizando radiocontrol? Aunque suene a ciencia ficción, esto es algo que ya está probando un grupo de científicos del Rensselaer Polytechnic Institute en ratones, con el fin de llegar a un resultado aplicable a humanos para el tratamiento de la diabetes.


El proceso es relativamente simple de entender: basta con inyectar un gen con nanopartículas magnéticas cerca de los que se encargan de gestionar la insulina. La idea es que una señal electromagnética excite dicho gen y, con él, incitar a que se comience la producción de la insulina de los cercanos. Por ahora, como decimos, están en fase de pruebas con ratones pero aseguran haber conseguido resultados esperanzadores.

En el futuro, los investigadores esperan que estos métodos puedan aplicarse a otras enfermedades (como el Parkinson, ayudando a liberar la dopamina) y, quién sabe, puede que llegue un día en el que un enfermo de diabetes tan sólo tenga que activar un botón en una app de su móvil para hacer que la insulina comience a fluir por su cuerpo.

Fuente:

Xakata Ciencia

26 de octubre de 2014

Trasplantes para volver a andar, un arma de doble filo

Un parapléjico ha logrado caminar de nuevo tras un trasplante de células olfatorias de su cerebro. Los expertos resaltan la validez científica del hallazgo, pero alertan ante un posible 'boom' de terapias sin fundamento en Europa y Asia.

Darek Fidyka camina con su andador en el Centro de Neurorehabilitación AKSON, en Wroclaw (Polonia). / AFP

En 2010, a Darek Fidyka le asestaron una puñalada que le dejó paralizado de pecho para abajo. La hoja le había cortado parte de la médula espinal. Cuatro años después, Fidyka ha logrado volver a caminar con ayuda de un andador tras recibir un trasplante con células olfativas extraídas de su propio cerebro.

El logro, publicado hoy en la revista científica Cell Transplantation, supone un hito médico que se llevaba persiguiendo durante años y que nadie había conseguido confirmar. Estos trasplantes han estado rodeados de polémica, pues la falta de pruebas sobre su efectividad no evitó la aparición del llamado turismo de células madre en el que pacientes desesperados acuden a supuestas clínicas para recibir tratamientos que no tienen ninguna validez clínica. La publicación del caso de Fidyka aporta fiabilidad científica y esperanza hacia la posibilidad de que estos trasplantes puedan usarse en un futuro como terapia, pero también podría originar un nuevo boom de falsas terapias sin pruebas en países como China, Rusia, Portugal o Alemania, advierten los expertos.

“Cuando no puedes sentir casi la mitad de tu cuerpo, te desesperas, pero cuando empiezas a sentirlo de nuevo es como si volvieses a nacer”, ha dicho Fidyka al programa de televisión Panorama de la BBC, que ha seguido su caso. El paciente, tratado en Polonia, también ha comenzado a sentir parte de sus sistema digestivo y su aparato sexual. Antes del trasplante, Fidyka no tenía movilidad ni sensibilidad por debajo del punto donde recibió la puñalada.

La operación a la que se sometió Fidyka no es sencilla. Se basa en el uso de células extraídas de la glía envolvente del bulbo olfativo, las que nos ayudan a tener sentido del olfato y que se encuentran en dos bulbos del cerebro situados encima de la nariz. A finales de los años noventa se comenzaron a publicar los primeros estudios en animales que apuntaban a que un autotrasplante con estas células podía reparar lesiones medulares. Científicos españoles fueron pioneros en algunos de estos estudios. Pero replicar el hallazgo en humanos no fue tarea fácil y hasta ahora ha llevado al descrédito a más de uno, pues no lograban demostrar que funcionasen. En este sentido, el caso de Fidyka es un hito por su validez científica, según los expertos.

El artículo completo en:

12 de octubre de 2014

Se atrasa el origen de la vida compleja

Uno de los grandes retos de la paleontología es saber de qué manera pudo brotar la vida multicelular a partir de los sencillos seres unicelulares, como las bacterias.

El hallazgo de un geobiólogo de la Universidad Virginia Tech, en colaboración con científicos de la Academia China de Ciencias, sugiere que esa revolución tuvo lugar bastante antes de lo que se pensaba.

Se trata de un fósil datado hace 600 millones de años, una época en que la comunidad paleontológica creía que la Tierra solo estaba habitada por criaturas extremadamente simples.

“Fósiles similares habían sido interpretados erróneamente como bacterias, eucariotas unicelulares, algas y formas de transición relacionadas con esponjas, anémonas y animales de simetría bilateral”, ha explicado Shunai Xiao, profesor de Virginia Tech y principal autor del descubrimiento.


Tras desenterrar el nuevo vestigio en la región china de Guizhou, Xiao y sus colaboradores han comprobado que mostraba signos de adhesión entre células, especialización y muerte celular programada, como los animales y plantas actuales. Hasta ahora solo se habían encontrado ejemplos de tal complejidad biológica en la fauna del Cámbrico, periodo que empezó hace 540 millones de años.

Fuente:

Muy

31 de mayo de 2014

El hombre que quiere curar el cáncer imprimiendo virus



Se podría decir que Andrew Hessel cultiva la apariencia de un visionario. Expone sus ideas con una voz sugerente, viste de negro de pies a cabeza y luce una barba salpicada de canas que le da un cierto aire a Steve Jobs. Pero no es su perfil sino su ambición lo que le distingue de los demás ponentes en la reunión de innovadores que se celebra esta mañana en los salones de la Sociedad Histórica de Nueva York.


Hessel está aquí para explicar cómo se propone curar el cáncer antes que las grandes empresas farmacéuticas: detectando primero virus capaces de matar sólo las células tumorales y fabricarlos después artificialmente en un laboratorio con la ayuda de una impresora 3D. «Se llaman virus oncolíticos y los científicos experimentan con ellos desde hace décadas», explica a EL MUNDO unos minutos después de su conferencia. 

«Son patógenos muy débiles que infectan las células cancerosas y dejan intactas las células sanas. Algunas empresas empiezan a aprovecharlos con éxito en algunos ensayos clínicos. Lo que nadie ha logrado es diseñar esos virus en un ordenador y fabricarlos a la medida de cada paciente». 

Hessel no tiene familiares directos que hayan muerto de cáncer. Pero es consciente de la naturaleza de la quimioterapia, que mata por igual a las células sanas y a las cancerosas y provoca en el enfermo un sinfín de efectos secundarios. «Es como arrojar una bomba nuclear sobre Nueva York para acabar con una banda de delincuentes», dice sonriente. «Estoy seguro de que podemos dar con un método mejor». 

Lanzar al mercado nuevos fármacos es un proceso tortuoso que requiere décadas de ensayos clínicos y el visto bueno de las autoridades. Por eso Hessel no aspira a comercializar medicinas, sino a diseñar soluciones concebidas a la medida de cada paciente con la ayuda de los avances de la ingeniería genética y del poder creciente de la computación. 


Virus fabricados por Andrew Hessel en su laboratorio.
 
Virus fabricados por Andrew Hessel en su laboratorio. AUTODESK

«Primero extraeríamos una muestra de las células tumorales de una persona y después adaptaríamos los virus hasta desarrollar una terapia capaz de eliminarlas de un modo seguro», explica. «Sólo entonces inocularíamos los virus en esa persona. Al principio el tratamiento será gratuito para aquellos enfermos que quieran someterse a él. Pero mi objetivo es crear un modelo de suscripción similar al de Spotify en el que el cliente pague una pequeña cuota anual a cambio de tener acceso a la terapia cuando le detecten un tumor».

El artículo completo en:

El Mundo Ciencia

23 de mayo de 2014

Crean un nuevo tipo de ADN sin base en la naturaleza

Un equipo de investigadores del Instituto de Investigación Scripps de California (EEUU) ha logrado incorporar nuevas letras al alfabeto genético tras desarrollar una bacteria cuyo ADN incluye dos bases artificiales que no existen de forma natural, creando así el primer organismo vivo semisintético.

El estudio, publicado en la revista Nature, explica que han conseguido que el organismo utilizado para las pruebas, la bacteria “Escherichia coli” replicara sus células con relativa normalidad tras la modificación genética. Para conseguir la replicación de ADN, los investigadores tuvieron que proporcionar el par de bases (d5SICS y dNaM) a la bacteria, de forma artificial, así como las moléculas que las transportan. Afortunadamente, el material genético de las células del nuevo organismo semisintético replicaba las células con cierta velocidad y precisión, sin dificultar su crecimiento ni mostrar signos de perder sus pares de bases no naturales.

Los científicos esperan seguir creando moléculas artificiales que permitan el desarrollo de aminoácidos (componentes de las proteínas) no naturales que permitan la creación proteínas para funciones terapéuticas o de diagnóstico.

La idea de mejorar la estructura de doble hélice del ADN no es nueva; no en vano, el equipo de investigación del Instituto Scripps lleva trabajando en ello desde los años 90, logrando al fin, este hito en biología sintética con la creación del primer organismo semisintético capaz de albergar en su ADN un par de bases artificiales.

Fuente:

Muy Interesante

15 de abril de 2014

El MIT logra desarrollar los primeros "materiales vivos"

Un grupo de investigadores del MIT han desarrollado una forma de crear materiales vivos que pueden combinar materiales convencionales con una “biopelícula” de células bacterianas que confiere a esa combinación propiedades interesantes.



Esos materiales son por ejemplo capaces de responder a su medioambiente, producir moléculas biológicas complejas y dar a los objetos construidos con esos materiales capacidades como las de “conducir la electricidad o emitir luz“.

Timothy Lu, un profesor de Ingeniería Eléctrica y Ingeniería Biológica, explicaba cómo este tipo de materiales podrían ser utilizados en el futuro para desarrollar sensores de diagnóstico, materiales autorreparables o células solares.

La base del trabajo de Lu y sus colegas es el uso de la bacteria E. coli ya que ésta produce biopelículas que contienen las llamadas “fibras curli”, que permiten a las bacterias “acoplarse” a todo tipo de superficies. 

Programando esas células para producir diferentes tipos de fibras, los investigadores pudieron crear nanocables de oro, películas de material conductor, o cristales diminutos con propiedades de mecánica cuántica. Las aplicaciones, afirman sus creadores, son muy diversas, y se podrían aplicar en campos como la generación de energía o la agricultura, donde por ejemplo podrían lograr hacer que los residuos agrícolas se convirtieran en biocombustibles.

Más información | MIT

Fuente:

Xakata Ciencia

3 de abril de 2014

Ua E. coli capaz de alimentarse de citrato.

Hace 25 años un científico estadounidense llamado Richard Lenski comenzó un experimento de evolución en el laboratorio con un único ejemplar de Escherichia coli, la bacteria más estudiada de la historia y uno de los seres vivos mejor conocidos. De ese único ejemplar extrajo 12 líneas diferentes de bacterias, que desde entonces se reproducen separadas las unas de las otras, dividiéndose y reproduciéndose; 58.000 generaciones de separación a estas alturas. Es el 'Long Term E. Coli Evolution Experiment' (experimento de evolución a largo plazo de E. coli), y está empezando a dar resultados. Lo que ocurre es que los resultados no son simples, y subrayan la complejidad del proceso evolutivo y, de rebote, la brillantez de quien supo desentrañarlo por primera vez, un tal Darwin. Porque las cosas no son sencillas ni siquiera con un organismo relativamente simple en un entorno perfectamente controlado como éste. Contrariamente a lo que defienden los creacionistas, la evolución se puede ver en el laboratorio, pero hay que saber mirar. Y la historia comienza hace 11 años, en 2003, cuando de repente apareció en una de las líneas algo que no debía existir: una E. coli capaz de alimentarse de citrato. Algo que por definición E. coli no puede hacer; en términos bacteriológicos casi la aparición de una nueva especie.

Para entonces habían pasado 33.000 generaciones desde el inicio del experimento, así que los científicos comenzaron a trabajar para descubrir de qué modo esa cepa de E. coli había conseguido dar semejante salto evolutivo. Y que les haya llevado 11 años de trabajo nos puede dar una pista sobre lo que encontraron: que la historia era muy, pero que muy compleja. Afortunadamente cada 500 generaciones congelan una muestra de las bacterias, así que podían volver atrás y analizar qué pasó y cuándo. Hacia la generación 31.500 descubrieron que se había producido el primer cambio: una duplicación en un gen denominado citT que permite a E. coli alimentarse de citrato en ausencia de oxígeno, que cambió el control de una de las copias, haciendo que el gen permaneciese activo incluso en ambiente aerobio. Sucesivas mutaciones en las siguientes 1.500 generaciones mejoraron esa capacidad, permitiendo a esta cepa convertirse en devoradora de citrato. Pero la cosa no era tan sencilla, porque simplemente trasplantar el nuevo gen citT a las bacterias ancestrales no las hacía capaces de comer citrato. Había algo más; algo que había pasado antes de la generación 31.500.

Así que a sus congeladores regresaron los científicos, a tratar de localizar ese otro cambio imprescindible. Y la cosa no era fácil: para la generación 33.000 había 79 mutaciones más acumuladas. Muchos análisis después llegó el sorprendente resultado: muy pronto en la evolución de esta cepa se había producido un cambio en un gen llamado dctA, que se ocupa de bombear fuera de la célula una molécula llamada succinato. Resulta que el equilibrio químico de la célula depende del equilibrio entre citrato y succinato de tal modo que cuando la bacteria capta citrato debe expulsar succinato para compensar. Sin el cambio en dctA el ‘nuevo’ citT no funciona, por lo que no ofrece ninguna ventaja a las bacterias que lo portan. Pero cuando se combinan los dos en el orden correcto sucede algo que parece magia: aparece una nueva forma de vida capaz de alimentarse de una molécula que sus ancestros no son capaces de digerir. Lo verdaderamente sorprendente es que seamos capaces de comprender de qué modo ocurre, de tal modo que no sea necesario invocar lo sobrenatural o lo divino. Un proceso natural, automático, elegante y bello que a lo largo del tiempo da lugar a la increíble diversidad y belleza que tenemos a nuestro alrededor. Algo ciertamente a celebrar.

Fuente:

RTVE Blog de Ciencias

12 de marzo de 2014

Generan un modelo matemático preciso de las células nerviosas del cerebro

Un modelo matemático capaz de describir con toda exactitud el complejo comportamiento de las células nerviosas del cerebro ha sido desarrollado por el matemático británico Ivan Tyukin. Su método permite la “copia” automática de neuronas simuladas a través circuitos artificiales y proporciona muestras electrónicas de comportamiento casi idéntico al de las neuronas vivas, creando así una nueva interfaz entre el tejido biológico y los sistemas mecánicos.


La dinámica de las células.

La dinámica de las células.
El matemático de la Universidad de Leicester, Ivan Tyukinn, en colaboración con científicos de Japón y de los Países Bajos, ha desarrollado una nueva técnica que permite generar modelos matemáticos que describen de manera precisa el verdadero comportamiento de las células nerviosas del cerebro, informa la mencionada universidad en un comunicado.

El desarrollo de estos modelos requiere de información detallada de la dinámica de los elementos responsables de la generación de pulsos (spike) en la célula. En neurociencia, basta un disparo de potencial de acción de duración entre 3 y 5 milisegundos (casi un pulso) a través de una brecha sináptica, para lograr excitar a la neurona post-sináptica.

La barrera principal entre los modelos matemáticos y la realidad es que la mayoría de las variables intrínsecas de las células vivas no puede observarse de manera directa. Un modelo matemático es una traducción de la realidad física para poder aplicar los instrumentos y técnicas de las teorías matemáticas para estudiar el comportamiento de sistemas complejos, y posteriormente hacer el camino inverso para traducir los resultados numéricos a la realidad física.

Generalmente, los modelos matemáticos introducen simplificaciones de realidad, especialmente en la modelización de la dinámica celular. Sin embargo, Ivan Tyukin y sus colegas han conseguido crear un método que permite reconstruir de forma automática las variables múltiples y todavía no conocidas que describen las dinámicas celulares, haciendo uso únicamente de los registros de la actividad eléctrica de respuesta de las células.

Variables múltiples

Una función biológica rara vez es el producto de una única macromolécula, sino que generalmente es el resultado de la interacción de un grupo de macromoléculas, como son los genes o las proteínas.

La comprensión de los complejos mecanismos de las células requiere una modelización de todas las interacciones entre macromoléculas que ha dado origen a una nueva ciencia transversal llamada biología de sistemas.

El trabajo de Tyukin y sus colegas forma parte de esta línea de investigación y representa un avance en la comprensión de los principios ocultos de los cálculos del cerebro biológico. Asimismo, explora vías alternativas de manipulación e incremento de las funciones cerebrales, según la mencionada Universidad.

Copia automática de neuronas

La “copia” automática de neuronas simuladas a través circuitos artificiales (y, potencialmente, a través de micro-chips) proporcionará muestras electrónicas de comportamiento casi idéntico al de las neuronas vivas, creando una nueva interfaz entre el tejido biológico y los sistemas mecánicos.

El Dr. Tyukin señala al respecto que “la técnica desarrollada permitirá la creación de nuevas interfaces cerebro-máquina. Las neuronas artificiales pueden conectarse fácil y electrónicamente con las máquinas. Por otro lado, al ser copias lo suficientemente parecidas a sus similares biológicas, podrán comunicarse con las células biológicas.”

“Por otro lado, añadió, la detección y el rastreo de los cambios instantáneos de las variables internas responsables de la generación de pulsos en las células, como una función derivada de la estimulación química externa, servirá para desarrollar técnicas matemáticas para el estudio sistemático de las señales extrasinápticas, que suponen más del 75% de las comunicaciones entre neuronas en algunas áreas del cerebro”.

La transmisión sináptica es una forma de comunicación en red entre neuronas que tradicionalmente se ha considerado el principal mecanismo para el procesamiento de información en el cerebro.

Mayor control del cerebro

Sin embargo, estudios recientes han señalado la importancia de la acción extrasinápitca de los transmisores químicos, que podría suponer una comprensión adicional de cómo las señales son transferidas y transformadas por éste.

Según Tyukin, la comprensión y los modelos matemáticos ajustados para este fenómeno permitirá progresar en el conocimiento de los principios físicos que subyacen a los cálculos del cerebro biológico.

Además, el conocimiento detallado de cómo puede variar la función del cerebro si modificamos los parámetros de difusión (por ejemplo, cambiando el volumen extra celular o añadiéndole algunas moléculas largas), permitirá un grado extra de control del cerebro que sería potencialmente importante para fines médicos, como cuando se quiera proteger la raíz de un foco de infarto con una barrera.

En este proyecto, además de Ivan Tyukin, del Departamento de Matemáticas de la Universidad de Leicester, en el Reino Unido, han participado el profesor Cees van Leeuwen, el profesor Alexey Semyanov y el doctor Inseon Song del RIKEN Brain Science Institute de Japón, que han proporcionado la experiencia neurofisiológica y los registros de actividad neuronal. Asimismo, ha participado también el profesor Nijmeijer y Eric Steur, de la Universidad Tecnológica de Eindhoven (en los Países Bajos), que actualmente trabajan en la realización electromecánica de los modelos, así como en el estudio de su sincronía.

Tomado de:

Tendencias21
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0