Latest Posts:

Mostrando las entradas con la etiqueta mecanica. Mostrar todas las entradas
Mostrando las entradas con la etiqueta mecanica. Mostrar todas las entradas

17 de marzo de 2013

Mecánica de Fluidos: Líquidos, gases y plasmas

Mecánica de Fluidos - Segunda Parte

En la introducción a la mecánica de fluidos hablamos sobre la diferencia fundamental entre sólidos y fluidos: la capacidad de cambiar de forma, es decir, de fluir. Sin embargo, aunque todos los fluidos tengan esta característica en común, existen otras diferencias en su comportamiento que merecen un capítulo aparte. Aprovecharemos, además, para adquirir una idea general sobre cómo y por qué fluyen este tipo de medios, y para definir un concepto que nos será utilísimo más adelante: la densidad.

  • ¿Preparado?

La mejor manera de entender las diferencias entre los distintos estados de agregación es empezar con uno y luego ir modificando las propiedades poco a poco. En mi opinión, una de las formas más intuitivas de hacerlo es empezar con los sólidos para luego caer por la “escalera del caos” hacia estados menos ordenados.

Sí, este bloque no está dedicado a los sólidos, pero como verás más adelante los usaremos como referencia varias veces, de modo que permite que nos detengamos un momento en ellos antes de zambullirnos –qué chispa tengo, ¿eh?– en líquidos y otros fluidos aún más interesantes.


Sólidos

Es imposible comprender las causas del distinto comportamiento de sólidos, líquidos, gases y plasmas sin entender cuál es su estructura microscópica, ya que ésa es la razón de que se comporten de diferente manera. Desde luego, aquí no vamos a dar un tratado sobre fuerzas intermoleculares y vamos a simplificar bastante las cosas, pero es necesario conocer el modelo básico de cada estado.

Como seguro que sabes, toda la materia a nuestro alrededor está formada por partículas microscópicas: pueden ser moléculas, átomos o incluso protones, neutrones y electrones sueltos, pero ahora mismo eso nos da igual. Lo esencial es la naturaleza discreta de la materia, a pesar de que nos sea imposible discernir esa naturaleza discreta y podamos considerar, en nuestras ecuaciones, que muchos objetos son continuos, como ya vimos en la introducción al bloque.

Lo que distingue unos medios de otros es, fundamentalmente, cómo están asociadas esas partículas. Puedes imaginar cada una de ellas como una minúscula canica de un metal enormemente denso, y cada objeto como un conjunto de billones de esas minúsculas canicas.

Para imaginar un sólido y su comportamiento, intenta visualizar la siguiente escena: la miríada de pequeñas canicas están unidas unas a otras mediante pequeñas barras metálicas, finísimas pero increíblemente resistentes. Cada canica está soldada a las barras que la rodean, que a su vez están soldadas a más canicas. El resultado es una gran red formada por infinidad de canicas unidas unas a otras mediante esas barras metálicas.

Sólido

Modelo microscópico de un sólido ideal (fdecomite / CC 2.0 Attribution License).

Desde luego, en la realidad no hay “barras”: lo que mantiene las partículas que forman el sólido en esas posiciones son fuerzas eléctricas entre ellas, pero es más sencillo imaginarlos así para nuestro propósito en este bloque, que es estudiar cómo se mueven unas partes del objeto respecto a otras. En el caso de un sólido nada se mueve por su lado: es posible mover el objeto como un todo, pero las posiciones y distancias relativas de las partículas que lo constituyen no cambian jamás.

 

 ¿Y la temperatura?

Si sabes algo de termodinámica tal vez estés arqueando la ceja ante ese jamás tan categórico… y sí, tienes razón.

Dado que la temperatura de un cuerpo está relacionada con la velocidad con la que se mueven sus partículas, estrictamente hablando el único cuerpo en el que las distancias entre “canicas” no cambian nunca sería uno a la temperatura más baja posible, el cero absoluto. En un sólido real las partículas vibran alrededor de sus posiciones de equilibrio tanto más rápido cuanto más caliente está el cuerpo.

Sin embargo, dado que en este bloque nos preocuparemos por el movimiento macroscópico de las cosas, esos movimientos microscópicos tan nimios no son importantes. Si quieres profundizar un poco más en esa parte del comportamiento de los cuerpos es mejor que leas el bloque dedicado a ese asunto, Termodinámica I.
En lo que a nosotros respecta al estudiar la mecánica de los cuerpos, lo esencial de un sólido ideal es que se mueve como un todo. Permíteme que ponga un ejemplo un poco tonto para luego modificarlo al hablar de los otros estados. Imagina un cubo sólido de 1000 kg de masa y un metro de lado; imagina ahora, paciente y estimado lector, que pongo ese cubo de 1 m3 sobre tu cabeza. El desenlace sería bastante desagradable para ti, y creo que no hace falta que entre en más detalles –lo haré cuando modifiquemos el ejemplo al hablar de líquidos y gases–.

En nuestro modelo de “canicas y barras”, lo que distingue a unos sólidos de otros en su interacción con los fluidos es básicamente la masa de las canicas y la longitud de las barras: es posible, por ejemplo, que las distancias intermoleculares –si las partículas que forman el objeto son moléculas– sean muy grandes, de modo que las canicas estén muy separadas unas de otras, o que por el contrario estén muy cerca; es posible que cada canica tenga una gran masa, si se trata de un elemento muy pesado, o que cada canica sea muy ligera si es un elemento ligero.

Pero, independientemente de la causa, es posible cuantificar esta propiedad de un modo bastante sencillo, definiendo una magnitud que nos diga cuánta masa hay en un volumen determinado del sólido, ya sea por la distancia entre partículas, por la masa de cada partícula o una combinación de ambos factores. Y esta magnitud, que utilizaremos mucho a lo largo del bloque, no es otra que la densidad.


Densidad

El origen de la densidad como concepto es muy antiguo, y la base del concepto es la necesidad de comparar lo pesados que son los distintos materiales.

La clave de la cuestión es precisamente ésa: comparar materiales, no cuerpos concretos. No vale tomar un trozo de acero de 1 kg y un trozo de madera de 500 kg y deducir, por tanto, que la madera en general es más pesada que el acero en general: eso no tendría ningún sentido. Tampoco lo tiene comparar 1 kg de plomo con 1 kg de paja y concluir que la paja pesa, como material, lo mismo que el plomo. Por un lado no queremos comparar objetos concretos sino los materiales en sí, independientemente del objeto; pero por otro lado no podemos pesar “plomo en general” y “madera en general”, sólo podemos pesar objetos concretos.

La solución es simplemente tomar objetos del mismo volumen. Así, si comparamos dos objetos de 5 m3, uno de acero y otro de corcho, el de acero pesará muchísimo más que el de corcho. Pero si tomamos objetos de los mismos materiales y de 10 m3 sucederá lo mismo, e igual si comparamos cualquier par de objetos del mismo volumen, uno de acero y otro de corcho. De hecho, la relación numérica entre las masas de ambos objetos –siempre que los dos tengan el mismo volumen, claro– se mantendrá constante para cualquier volumen: si un trozo de corcho pesa 1 kg y el trozo de acero del mismo tamaño pesa 20 kg, entonces si tomamos un trozo de corcho de 1 tonelada el trozo de acero del mismo tamaño que él pesará 20 toneladas.

Puesto que da igual qué volumen se tome siempre que sea el mismo para todos los objetos, tiene todo el sentido del mundo emplear como “volumen de referencia” la unidad de volumen, es decir, el metro cúbico. Así, la densidad de un material se define del siguiente modo:
La densidad es la masa por unidad de volumen.
Por lo tanto, para conocer la densidad de un material basta con obtener un objeto de 1 m3 de ese material, pesarlo y listo. Naturalmente, también es posible obtener un objeto de 10 m3, pesarlo y luego dividir la masa por diez para conocer la masa por cada metro cúbico, o pesar un objeto de tan sólo 0,1 m3 y luego multiplicar su masa por diez. Lo esencial es siempre utilizar como referencia final el metro cúbico, de modo que el tamaño del objeto que estemos estudiando no influya en el resultado.


Unidad de la densidad – El kilogramo por metro cúbico

Puesto que la densidad es la masa por unidad de volumen, sus unidades son precisamente ésas: las de masa entre las de volumen. A pesar de que es una magnitud muy utilizada, no ha recibido un “nombre propio”, como sucede con otras unidades que veremos en este mismo bloque. Esto hace que su definición sea un tanto perogrullesca:
Un kg/m3 es la densidad de un objeto de masa 1 kg que ocupa un volumen de 1 m3.
Sin embargo, ¿cuánto es eso? ¿mucho, poco o regular? Si vas a aprovechar este bloque debes tener, al menos, una idea aproximada de qué significa una densidad concreta, ya que como veremos es una magnitud esencial para conocer lo que le sucede a las cosas inmersas en un fluido.

1 metro cúbico

Un metro cúbico de hormigón (Rama/Creative Commons Atribution Sharealike 2.0 France).

En este caso es posible estimarlo sin demasiados problemas: 1 kg es la masa de un paquete de arroz típico, y 1 m3 es un cubo de un metro de ancho, un metro de largo y otro de alto. Si repartes el arroz en todo ese volumen, la densidad resultante es 1 kg/m3. En resumen, la unidad de densidad es muy pequeña, y la mayor parte de los objetos a nuestro alrededor tienen densidades bastante mayores.

Como siempre, la mejor manera de visualizar unidades es precisamente con ejemplos de la vida real. La densidad del hierro es de unos 7 000 kg/m3, la del hormigón de unos 2 400 kg/m3 y la del cartón unos 700 kg/m3. Más importante aún es conocer la densidad aproximada de los dos fluidos más importantes en nuestra vida –tan importante es que son las únicas dos densidades que exijo memorizar a mis alumnos–: el agua y el aire. Pero hablaremos de ellas al hacerlo de cada uno de esos dos tipos de fluido.

 

¡Ojo! Los sólidos no son más densos que los fluidos

Es muy común caer en el error de pensar que un sólido, por el hecho de serlo, es más denso que un líquido, y que los líquidos son a su vez más densos que los gases. Esto es, sin embargo, una mentira como un piano de cola.

La razón de que tengamos esta idea en la cabeza es que, efectivamente, en los objetos a nuestro alrededor sucede muy a menudo: un clavo es más denso que el agua, y el agua es más densa que el aire. Sin embargo, la densidad del mercurio líquido a temperatura ambiente es de unos 13 500 kg/m3, de modo que es unas cinco veces más denso que el hormigón.

No: lo que distingue a unos de otros no es lo densos que son o dejan de ser, sino la movilidad de sus partículas unas respecto a otras. Es posible tener partículas en posiciones fijas pero bastante alejadas o viceversa.


Líquidos

Ya hemos visto qué tienen en común los estados fluidos de la materia: la carencia de forma propia. En todos ellos, las partículas que forman el medio no se encuentran en posiciones fijas, como sucedería en un sólido, sino que pueden deslizarse y moverse unas respecto a otras. En términos de nuestras canicas y barras, aquí no hay barras, sino canicas que no tienen posiciones fijas.

Ahora bien, ¿en qué se diferencian los tres estados fluidos? Tener clara esta diferencia hará mucho más fácil atacar problemas teóricos más adelante; por eso, aunque sea algo razonablemente sencillo, quiero dejarlo bien asentado antes de seguir con el bloque. No hace falta que diga que un fluido real no se adecúa perfectamente a las características de ninguno de los tres estados ideales que son, precisamente, “moldes teóricos” de comportamiento.

De los tres estados, el líquido es el más parecido a un sólido. Puede fluir, desde luego, pero la distancia entre moléculas apenas cambia. Es algo parecido a harina extremadamente fina: los granos siempre están tocándose, pero pueden deslizarse unos sobre otros de modo que la harina tome una forma u otra.

En términos de las canicas, es algo así como un montón de pequeñas bolas imantadas: pueden moverse y adaptarse a la forma del recipiente que las contenga, pero no se alejarán unas de otras, sino que permanecerán en contacto –orientándose además según los polos magnéticos de cada una, pero eso nos da igual ahora mismo–. Como puedes ver, es un paso hacia el caos y la flexibilidad respecto a los sólidos: en aquéllos no cambia ni forma ni volumen, pero aquí puede cambiar la forma (por eso es un fluido), aunque todavía no el volumen (por eso es un líquido y no otro fluido).

Dicho de otra manera, un líquido ideal tiene siempre el mismo volumen, es decir, es incompresible (no incomprensible, por cierto, salvo que sea un fluido que se explica muy mal). Por mucho que intentes expandirlo o comprimirlo no podrás, ya que hacer eso significaría alterar la distancia entre moléculas: apretar unas contra otras o alejar unas de otras. Y eso no puede suceder por la propia definición del líquido. La razón de que los líquidos se comporten así, por cierto, es que las fuerzas intermoleculares son lo suficientemente intensas como para mantener ese statu quo de distancia.

Puedes pensar en ello así, aunque sea una simplificación: en un líquido, las moléculas están lo más cerca que pueden estar, “tocándose”. Por tanto, no pueden acercarse más. Además, esas moléculas sienten la suficiente atracción unas por otras como para no alejarse, con lo que la consecuencia conjunta de ambas cosas es que la distancia siempre permanezca igual.

Gota de agua

Gota de agua (Fir0002/Flagstaffotos/Gnu Free Documentation License 1.2).

Si volvemos al ejemplo del objeto de 1 000 kg de masa y 1 m3 de volumen que yo ponía sobre tu cabeza, imaginemos ahora que no es un sólido, sino un líquido. De hecho imaginemos que es el líquido más importante para nosotros, el agua, ya que ésa es precisamente la densidad del agua: 1 000 kg/m3. Ya sé que puede parecer un número muy grande, pero recuerda que la unidad de densidad es muy pequeña, y que un metro cúbico de agua –es decir, mil litros– es mucha agua.

¿Qué te sucedería si pusiera ese cubo de agua sobre tu cabeza –sin paredes ni recipiente, claro–? Pues muy poco. El agua se deslizaría sobre ti, caería al suelo y te mojaría, pero poco más: algo muy diferente del caso anterior en el que poníamos un bloque sólido sobre tu testa. Sé que esto puede parecer una obviedad, pero para afrontar el siguiente bloque, piensa en ello así: tu cabeza no ha interaccionado con toda el agua ni ha recibido el peso de todo el bloque de agua, sino sólo parte de él.

En el caso del sólido, aunque sólo algunas moléculas tocaban tu cabeza, la fuerza que hacía el bloque sobre ella era mucho mayor, porque unas moléculas “tiraban” de otras, al tener posiciones fijas, obligando al bloque a comportarse como un todo empujando, cayendo y moviéndose. Pero ahora la cosa no es igual: unas moléculas del agua pueden empujar tu cabeza, otras pueden caer deslizándose… la libertad de movimiento de las moléculas en el líquido cambia completamente su comportamiento, y de eso hablaremos en el siguiente capítulo del bloque.


Gases

Un gas supone un paso más hacia el caos: ahora ni siquiera la distancia entre partículas es constante. En términos de nuestras canicas es algo así como tener las bolas moviéndose a gran velocidad, al azar, rebotando en las paredes de una habitación. Por lo tanto, un gas es un fluido compresible: es posible forzar las partículas a acercarse unas a otras o alejarse unas de otras.

La primera consecuencia de esto es que la densidad de un gas puede variar con gran facilidad, a diferencia de sólidos y líquidos. Un ejemplo muy fácil es un globo: si aprietas las paredes, el gas dentro se comprime. Por eso es más difícil hablar de la densidad de un gas en general — siempre hace falta especificar a qué presión y a qué temperatura. Para ahorrar palabras, es común hablar de la densidad de un gas en condiciones normales, con lo que nos referimos a la presión atmosférica normal y una temperatura de 0 °C.

El gas más importante para nosotros, sin duda, es el aire. Químicamente es, desde luego, una mezcla de cosas, fundamentalmente nitrógeno molecular y oxígeno molecular, pero ahora mismo eso nos da igual, ya que lo que nos interesa es su comportamiento mecánico. La densidad del aire que te rodea ahora mismo, salvo que estés en un sitio un poco raro, seguramente es de unos 1,2 kg/m3, es decir, tan sólo un poco superior a la unidad de densidad, y unas ochocientas veces menos denso que el agua. Pero, como he dicho antes, no es difícil variar esta densidad si cambia la temperatura o la presión.




Pero… ¡si el aire no pesa!

Ésta es una idea que muchos tenemos en la cabeza: que el aire no pesa. En algunas ocasiones la idea se refiere a otros gases distintos del aire, como el helio: el helio sube, luego no pesa. Esto es, desde luego, más falso que Barrabás.

Cualquier cosa con masa sufre la acción de la gravedad y, por tanto, tiene peso. A consecuencia de ello, es atraído hacia el centro de la Tierra con una fuerza que depende de su masa –una fuerza que se llama, no por casualidad, peso–. Por lo tanto, todo lo que tiene masa tiene peso.

Si el aire, por ejemplo, no pesara, no habría nada que lo retuviese sobre la superficie de la Tierra, escaparía al espacio a lo largo del tiempo y todos estaríamos muertos. Puesto que tanto tú como yo estamos vivos y respirando, el aire pesa y por eso sigue aquí, apretado contra la superficie de la Tierra y proporcionándonos oxígeno.

Respecto al helio y otros gases más ligeros, puesto que tienen masa, también pesan: de la razón de que parezca que no pesan hablaremos al hacerlo de la flotabilidad. Por si tienes curiosidad, la densidad del helio es de unos 0,18 kg/m3, casi siete veces más ligero que el aire.

Si soltásemos un objeto gaseoso de 1 000 kg de masa y 1 m3 de volumen sobre tu cabeza –y para conseguir algo así tendríamos que comprimirlo mucho– la situación no sería muy distinta de la del líquido anterior: puesto que el gas fluye, no interaccionarías con todo el cubo de gas, sino sólo con la parte que toca tu cabeza. Además, la libertad absoluta de movimiento de las partículas del gas seguramente haría que muchas salieran disparadas en todas direcciones, de modo que ni siquiera se acercarían demasiado a ti.
Las partículas que forman los gases suelen moverse a tal velocidad y con tal libertad que tienden a ocupar todo el espacio disponible para ellas –salvo que pasen ciertas cosas, pero de eso hablaremos más adelante–. Los gases son, por lo tanto, bastante más difíciles de retener y mantener bajo control que los líquidos: enseguida se escapan de los recipientes que los contienen. Es posible, por ejemplo, tener un líquido en un recipiente y verterlo sobre otro, pero hacer lo mismo con un gas es mucho más complicado, salvo que sea un gas más denso que el aire. Hace bastante tiempo hicimos aquí mismo un experimento en el que se ponía de manifiesto precisamente eso en el caso del dióxido de carbono.


Plasmas

Aunque en este bloque nos dedicaremos principalmente a los fluidos más comunes a nuestro alrededor –líquidos y gases–, no está de más tener una idea del comportamiento del tercer tipo de fluidos, los plasmas. En muchas cosas se parecen a los gases, pero en otras son completamente distintos de cualquier otro estado de la materia.

Las cosas que nos rodean están formadas por moléculas o átomos sueltos. Tanto unas como otros, a su vez, están compuestos de partículas más pequeñas –electrones, protones y neutrones–, algunas de las cuales tienen carga eléctrica. Pero, en cualquier sólido, líquido o gas normal, las cargas eléctricas están compensadas en cada molécula o átomo. Por poner un ejemplo concreto: el átomo de hidrógeno más simple que existe está formado por un protón (con carga positiva) y un electrón (con carga negativa). Por lo tanto, cada átomo de hidrógeno no tiene carga neta, ya que ambas se compensan.

Si tienes un montón de hidrógeno formado por billones de átomos, la cosa no cambia: sigue habiendo billones de protones unidos a billones de electrones, con lo que la carga neta de cada átomo es nula. Pero ¿qué pasaría si consiguieras separar los protones de los electrones? Haría falta calentar mucho el gas, o bien someterlo a campos electromagnéticos muy intensos, pero es posible hacerlo (de hecho, lo hacemos todo el tiempo en varios de nuestros aparatos tecnológicos). ¿Qué tendríamos entonces?

Lo que tendríamos sería el mismo número de protones y electrones de antes pero, en vez de unidos en parejas protón-electrón sin carga eléctrica, estarían todos sueltos, protones y electrones libres moviéndose cada uno a su albedrío. En palabras más técnicas, tendrías un gas ionizado –puesto que las partículas con carga eléctrica no nula se llaman iones–, es decir, un plasma.

Gas y plasma

En otras palabras, un plasma es algo así como una sopa de cargas eléctricas. Es un paso más hacia el caos; puede parecer que es básicamente lo mismo que antes, pero no es así. Hay multitud de cosas que pueden sucederle a las cargas eléctricas “sueltas” cuando se las somete a campos eléctricos y magnéticos que las cargas “compensadas” no notan. Si se somete un plasma a un campo electromagnético más o menos intenso, en él pueden formarse corrientes eléctricas, remolinos y muchos otros fenómenos bastante complicados.

Por esa razón es bastante más complicado estudiar los plasmas que los gases, aunque se parezcan en otras cosas. De hecho, es muy difícil estudiar plasmas empleando únicamente la mecánica, ya que el electromagnetismo es fundamental para entender su comportamiento, al ser tan sensibles a él. Ésa es la segunda razón de que en este bloque no hablemos mucho de los plasmas: hace falta combinar mecánica con otras partes de la Física para entenderlos, pero éste es un bloque introductorio. ¡Algún día!

Al principio he dicho que los fluidos más comunes a nuestro alrededor son líquidos y gases, y esto es cierto. Sin embargo, si abrimos la mirada al Universo entero, la cosa cambia mucho: casi todo lo que existe es un plasma. De hecho, podríamos decir que el Universo es un plasma de hidrógeno con impurezas. Y nosotros, claro, somos una de esas impurezas. La razón es que las estrellas son básicamente hidrógeno en forma de plasma, y gran parte de la materia interestelar e intergaláctica está también ionizada.

Plasma en la superficie del Sol

El Sol, alias “inmensa bola de plasma” (NASA).


Ideas clave

Para afrontar el resto del bloque deben haberte quedado meridianamente claras las siguientes ideas:
  • En un sólido no cambian nunca ni las posiciones ni las distancias entre las partículas que forman el cuerpo.
  • Un líquido es un fluido incompresible, por lo que cambian las posiciones pero no las distancias de las partículas.
  • Un gas es un fluido compresible en el que pueden cambiar tanto posiciones como distancias de partículas que componen el cuerpo.
  • Un plasma es un gas ionizado en el que las cargas están sueltas, con lo que su comportamiento viene determinado en gran parte por el electromagnetismo.
  • La densidad de un medio es su masa por unidad de volumen.
  • La unidad de densidad es el kilogramo por cada metro cúbico (kg/m3).


Hasta la próxima…

En la próxima entrega haremos énfasis en algo que hemos mencionado hoy: el hecho de que no interaccionas con un fluido en su totalidad, sino sólo con parte de él. Nos dedicaremos, por tanto, a hablar de la presión. Mientras tanto, ya que volveremos a ello en un par de capítulos, practicaremos un poco con la densidad.




Desafío 1 – Densidad

Aunque en este tipo de bloques no hagamos demasiados cálculos, es importante asimilar el concepto de densidad con números, sobre todo al comparar densidades con las del agua (recuerda, 1 000 kg/m3) y el aire (1,2 kg/m3). De manera que hagamos exactamente eso…

El objetivo de este pequeño desafío es que ordenes los siguientes objetos del menos denso al más denso:
1. Una bola de goma cuya densidad es el 80% de la del agua.
2. Un anillo de oro (búscate la vida).
3. Un tornillo de 10 gramos y 10-6 m3.
4. Un trozo de madera de 0,5 kg y un volumen de 0,8 m3.

Fuente:

El Tamiz

16 de marzo de 2013

Mecánica de Fluídos: Introducción

Hoy iniciamos el cuarto “bloque de conocimiento”, tras los dedicados a la electricidad, la termodinámica y la mecánica clásica. Como aquéllos, se trata de un bloque introductorio en el que no supondré conocimientos previos por parte del lector e intentaré mantener las matemáticas en el mínimo necesario: nuestro objetivo ahora no es alcanzar fórmulas tanto como establecer conceptos cualitativos. Esto no significa, por otro lado, que todo sea un camino de rosas: son necesarias cierta disciplina e inteligencia para asimilar cada bloque, y hace falta esfuerzo para sacar todo el partido posible a cada artículo.

Como siempre, cada capítulo del bloque incluirá cajas de texto con contenido adicional: advertencias, ampliaciones, desafíos y experimentos. Quienes hayáis leído alguno de los otros bloques notaréis una diferencia: en vez de cajas de colores, vamos a utilizar los iconos de los libros, pues creo que son más elegantes. En cualquier caso, mi recomendación es siempre leer el artículo una primera vez saltándote las cajas y centrándote en lo fundamental. Deja pasar un tiempo –por ejemplo, un día o dos– y vuelve a leerlo, pero esta vez con las cajas de texto incluidas. De este modo no debería resultar un exceso de información y seguramente lo entenderás mejor.

Dicho esto, empecemos nuestro camino para conocer la mecánica de fluidos. En este artículo pretendo explicar en qué consiste esta parte de la Física, cuál ha sido el camino que hemos seguido para desentrañar sus secretos a lo largo de la historia y cuáles son las características fundamentales de su objeto de estudio, los fluidos. ¡Vamos con ello!


¿Qué es la mecánica de fluidos?

Hombre, no hace falta una larga explicación sobre esto, pero quiero detenerme en ello porque hay un par de aspectos interesantes. La mecánica de fluidos, como indica su nombre, estudia los fluidos. Sin embargo, no trata de describir todo lo relacionado con ellos: se centra en aspectos mecánicos del comportamiento de los fluidos, como su movimiento, la presión que ejercen, cómo alteran el movimiento de objetos introducidos en ellos, etc. Otras facetas del comportamiento de los fluidos, como sus cambios de temperatura y cosas así, son estudiados por la termodinámica. De hecho, si has leído aquel bloque, verás que aquí repito algunos conceptos definidos allí, aunque en un contexto diferente y haciendo énfasis en cosas distintas; disculpa la repetición, pero al ser ambos bloques introductorios, he preferido mantener ambos independientes a costa de repetir alguna cosa que otra.

La mecánica de fluidos es, por tanto, una aplicación de la mecánica, que estudia el movimiento de partículas puntuales y establece principios generales sobre su comportamiento, a un tipo especial de cuerpos: los fluidos. En cierto sentido, esto hace de esta disciplina algo derivado y no fundamental. Con esto me refiero a que sería posible describir el comportamiento de los fluidos utilizando los principios de la mecánica clásica; en otras palabras, si nos sumergimos de verdad en la mecánica de fluidos y preguntamos “¿por qué?” una y otra vez ante cada afirmación que realiza, al final llegamos a los principios básicos de la mecánica.
Sin embargo, el hecho de que la mecánica de fluidos sea teóricamente derivable a partir de la mecánica clásica no quiere decir que, en la realidad, la hayamos derivado de ella. Esta parte de la Física fue desarrollada en paralelo a la mecánica newtoniana, y contiene muchos principios físicos obtenidos de manera empírica, en varios casos siglos antes de que su explicación teórica a partir de las leyes de la dinámica fuera posible, porque esas leyes no eran aún conocidas.

Incluso ahora que nuestra mecánica está bien madura, sigue teniendo sentido utilizar una mecánica específica para los fluidos. Al fin y al cabo, estudiar el movimiento de una partícula utilizando los principios de la mecánica es bastante simple; hacerlo con dos partículas es más complicado, y hacerlo con cien algo más difícil. Pero piensa lo siguiente: un litro de agua contiene unas 3,35·1025 moléculas, treinta y tres cuatrillones de moléculas en cada litro. ¿Tiene sentido determinar el movimiento de cada molécula con sus propias ecuaciones para describir el comportamiento de un litro de agua? Desde luego que no, sobre todo porque es posible hacerlo con principios que se aplican al conjunto de todas las moléculas — de ahí la existencia, incluso hoy, de la mecánica de fluidos.

Agua
 
Ondas formadas por gotas sobre el agua (Brocken Inaglory / CC Attribution-Sharealke 3.0 License).

En ella, en vez de tratar los fluidos como conjuntos de moléculas, se tratan como un continuo. Para comprender el concepto lo mejor, en mi opinión, es alcanzarlo llevando un proceso al límite. Imagina 1 kg de arena de playa, formada por un grano de arena de 1 kg de masa. Ahora imagina que lo partimos en dos, de modo que la arena está formada por dos granos de 0,5 kg cada uno. Si seguimos haciendo esto hasta tener granos de 1 gramo, la arena estará formada por mil granos de 1 g cada uno.

Ahora imagina que los volvemos a partir un millón de veces, y luego un millón de veces más. Tendríamos un número gigantesco de granos tan pequeños que serían invisibles, individualmente, al ojo humano. Bien, ahora imagina que repetimos el proceso hasta el infinito: la “granularidad” de la arena se haría infinitamente fina, como si triturásemos la masa con una trituradora infinitamente poderosa. El resultado es un continuo, en el que no tiene sentido hablar de las partes, sino del conjunto formado por ellas. Evidentemente la materia no es continua y los fluidos, por tanto, tampoco lo son, pero recuerda el número de moléculas de agua en un litro del líquido; la mecánica de fluidos parte de esta premisa para simplificar enormemente las cosas sin perder apenas rigor y precisión en el resultado.


¿Qué es un fluido?

Como sucede tantas otras veces, es muy fácil tener una idea intuitiva bastante razonable sobre qué es un fluido, pero dar una definición rigurosa no lo es tanto porque se trata de una “etiqueta” más o menos arbitraria que damos a ciertos medios. Dicho mal y pronto,

Un fluido es un medio capaz de fluir, es decir, de cambiar de forma y adaptarse al recipiente que lo contiene.
Esta propiedad la cumplen, en su definición ideal, los líquidos, los gases y los plasmas. Es lo que tienen en común, por mucho que se diferencien en otras cosas, y esta propiedad determina gran parte de su comportamiento en contraposición al de los sólidos. De las diferencias entre los distintos tipos de fluidos hablaremos en la próxima entrega pero, por ahora, centrémonos en lo que los une.



¡Ojo! Fluido ≠ líquido

Sí, ya sé que acabo de definir fluido, pero esta confusión está tan extendida que no puedo dejar de dedicarle su propia advertencia. Los líquidos son fluidos, pero no son los fluidos, sino simplemente un subconjunto de ellos. Tan fluidos como los líquidos son los plasmas, y tanto como ellos los gases.

Existen diferencias entre esos estados de agregación (no se comporta igual el agua que el plasma que forma el núcleo del Sol), pero todos tienen en común una propiedad fundamental, que es la que determina el hecho de que sean fluidos. De modo que un líquido siempre es un fluido, pero hay fluidos que no son líquidos. Sí, ya dejo de ser pedantón.

Así, un ladrillo es un sólido y no es capaz de fluir: tendrá siempre forma de ladrillo esté dentro de un barril, sobre tu mano o en el suelo. Sin embargo, el agua de una botella es un fluido, ya que tiene forma de botella mientras está en ella, pero si la viertes sobre tu mano se adapta a su forma; puesto que tu mano tiene huecos entre los dedos, de hecho, la gravedad terrestre hará que el fluido se escape entre ellos y caiga al suelo. Y, una vez en el suelo, se adaptará a su forma y creará un charco más o menos amplio dependiendo de la profundidad que pueda tener por la forma del terreno.

El aire dentro de un globo tiene la misma propiedad: puedes apretar la superficie del globo con un dedo creando una hendidura, y el gas del interior cambiará de forma para adaptarse a la nueva superficie del globo. Si metes el globo dentro de una caja cuadrada y lo fuerzas a tomar la forma de la caja, el aire tomará forma cuadrada como la caja, etc.



¿Y el puré de patatas?

Como he dicho muchas veces anteriormente en El Tamiz, los nombres que damos a las cosas, nuestras definiciones y nuestras ecuaciones están en nuestra cabeza y son herramientas que nos ayudan a predecir el comportamiento de las cosas, pero no forman parte de las propias cosas.

Siempre se nos enseña que hay sólidos, líquidos y gases, y que los primeros no son fluidos pero los segundos sí. Sin embargo, esos nombres idealizan comportamientos. Ningún líquido es realmente un fluido de acuerdo con la definición, y ningún sólido deja de serlo realmente. Se trata de una cuestión de grado. Por ejemplo, ¿qué es el puré de patatas? ¿Un sólido? Si así fuera daría igual la forma del recipiente en el que lo introduces, porque siempre tendría una forma propia, algo que no sucede. ¿Un fluido? No, porque sería imposible tomar puré de patatas con un tenedor, ya que fluiría entre los dientes y caería de nuevo al recipiente.

Ah, puedes pensar, depende de la consistencia del puré de patatas. Si tiene mucha leche o agua, entonces se irá aproximando a un fluido hasta que sea imposible cogerlo con un tenedor, y si tiene muy poca leche o agua, llegará un momento en el que tenga casi una forma propia, independiente del recipiente. Pero si piensas así habrás llegado, creo, a la conclusión que intento hacerte ver: es una cuestión de grado. No hay sólidos y fluidos, sino medios que se parecen más a unos o a otros. Cuando un medio se aproxima muchísimo a un comportamiento, las conclusiones teóricas derivadas de la definición serán casi idénticas a lo que sucede en la realidad y viceversa.

Esto significa, claro, que las sustancias que están “a medio camino”, como muchos plásticos, la plastilina, el puré de patatas, etc., no se definen bien mediante las definiciones de fluido o sólido. A lo largo del tiempo hemos ideado magnitudes y ecuaciones que tienen en cuenta estas desviaciones de los comportamientos ideales, como la viscosidad, y de ellas hablaremos tarde o temprano. Mi objetivo en esta ampliación es simplemente recordarte que no te dejes llevar por las etiquetas que damos a las cosas y pensar así que en la Naturaleza existe tal cosa como un “sólido”.


Hidráulica, hidrodinámica y mecánica de fluidos

La necesidad de comprender el comportamiento de los fluidos ha sido siempre imperiosa para nosotros: al fin y al cabo, nuestra vida depende de dos fluidos, el aire y el agua. Asegurar el suministro de ambos es un requisito indispensable para nuestra supervivencia, y esto significa que mucho antes de que Newton estableciera principio alguno ni supiéramos lo que es una fuerza con el menor rigor ya teníamos cierta idea sobre las características fundamentales de los fluidos y cómo manipularlos.

Esto significa que, en sus comienzos –mucho antes de recibir su nombre actual– la mecánica de fluidos era algo completamente empírico, y no tanto el campo de estudio de los científicos como de los ingenieros civiles: sin un conocimiento, aunque sea rudimentario, de la flotabilidad de los cuerpos, las variaciones de presión del agua y hasta dónde es posible elevarla y cosas parecidas, es muy difícil establecer una civilización tecnológica. Esta versión eminentemente práctica, no demasiado preocupada por principios fundamentales y sí por las aplicaciones técnicas del conocimiento, fue denominada hidráulica por su preocupación central, el agua.

Por poner un ejemplo, los romanos utilizaron sus conocimientos de hidráulica para construir canalizaciones que alimentaban de agua potable lugares alejadísimos de sus fuentes, y disponían de sistemas de tuberías y alcantarillado bastante sofisticados. Durante muchos siglos continuamos avanzando muy lentamente en nuestra comprensión del comportamiento de los fluidos de este modo empírico. El famoso principio de Arquímedes –que destriparemos a conciencia en este bloque– es un buen ejemplo de esto. Se trata de un fenómeno que puede explicarse a partir de leyes más fundamentales, pero durante siglos fue un principio natural sin necesidad de más explicación.

La ausencia de una verdadera teoría unificada sobre el comportamiento de los fluidos y, sobre todo, de las matemáticas y ecuaciones que describieran ese comportamiento, hizo que nuestro conocimiento fuera cualitativo. Por ejemplo, desde el principio fue algo evidente que la forma de la quilla de un barco influye sobre el flujo de agua sobre el casco cuando la nave se mueve por el agua, y es posible ir probando hasta obtener formas razonablemente hidrodinámicas sin utilizar ecuaciones. Por otro lado, es muy difícil alcanzar una perfección enorme en este aspecto sin un aparato teórico más avanzado, de modo que llegó un momento en el que, en casi todo lo relacionado con los fluidos, nos quedamos estancados.

Uno de los primeros en atacar el problema de una manera más científica fue Leonardo da Vinci. El divino italiano realizó multitud de experimentos bastante metódicos sobre el flujo de agua y aire alrededor de objetos, y documentó sus descubrimientos con diagramas maravillosos, como hacía casi siempre. Leonardo llegó a introducir pequeños objetos en el agua para observar su movimiento según fluía el líquido, observó los remolinos que aparecen cuando el agua fluye rápidamente sobre un cuerpo, es decir, la aparición de la turbulencia, y llegó a realizar diseños que minimizaban esa turbulencia.

Flujo de agua por Leonardo
 
Dibujo de flujo turbulento por Leonardo da Vinci.


Sin embargo, en la época de Leonardo la Física no se había casado aún con las Matemáticas –algo que empezaría a suceder con Galileo Galilei–, con lo que una auténtica teoría de fluidos no podía surgir. El propio Galileo, que yo sepa, no dedicó demasiado esfuerzo a esa tarea, pero dos de sus discípulos, Benedetto Castelli y Evangelista Torricelli, fueron de los primeros en establecer las bases de lo que se llamaría hidrodinámica, la contrapartida teórica de la hidráulica. Fíjate en que el nombre seguía estando derivado del fluido más estudiado de todos, el agua.

El problema era la complejidad del comportamiento de los fluidos: son muy difíciles de describir teóricamente, en parte por las sutiles diferencias entre fluidos y sólidos, en parte por la interacción de unas partes del fluido con otras y con las paredes que lo contienen. Por tanto, durante mucho tiempo la hidrodinámica sólo fue útil en casos muy particulares y para situaciones concretas; fuera de ellas era un desastre como predicción del comportamiento real. Una vez más, nuestras limitaciones matemáticas eran las culpables, ya que haría falta el desarrollo del cálculo infinitesimal para describir acertadamente el movimiento de los fluidos.

En el caso de fluidos en equilibrio, dado que no había movimiento del fluido, la cosa era bastante más sencilla. Su descripción, la hidrostática –un caso partícular de la hidrodinámica–, sí era posible matemáticamente con una precisión muy razonable. Torricelli estableció algunas de sus bases, pero el auténtico padre de la hidrostática y, por tanto, uno de los pioneros de la hidrodinámica, fue el francés Blaise Pascal, del que hablaremos con seguridad en este bloque.

Isaac Newton realizó algunos avances en hidrodinámica, como el estudio del flujo del agua a través de orificios y la descripción de la viscosidad, pero su principal aporte a esta ciencia fue el desarrollo del cálculo infinitesimal –probablemente de manera independiente y casi simultánea a Gottfried Leibniz–. Con esa “madurez” de las matemáticas fue posible atacar el problema de verdad, con una herramienta realmente preparada para el problema.

Otros científicos tras Newton, como Daniel Bernoulli y Jean le Rond d’Alembert, realizaron grandes avances en hidrodinámica. A estas alturas, a mediados del siglo XVIII, los científicos ya no estudiaban casos concretos del comportamiento de los fluidos, sino que trataban de establecer principios generales; por ejemplo, una de las mejores obras de d’Alembert se llama Traité des fluides. Las matemáticas nos proporcionaron, una vez más, las herramientas para dar un salto en nuestro conocimiento de los fluidos cuando el genial Leonhard Euler desarrolló las ecuaciones en derivadas parciales y las empleó para describir, por primera vez, el comportamiento general de un fluido de manera teórica.

El problema era que las ecuaciones de Euler y otras basadas en su trabajo eran desastrosas en la mayor parte de los casos, y sólo funcionaban bien de verdad en algunas situaciones. Por lo tanto, incluso en el siglo XVIII gran parte de la hidrodinámica era considerada una curiosidad teórica. Los ingenieros seguían obteniendo mejores resultados simplemente utilizando métodos puramente empíricos que recurriendo a las ecuaciones de Euler y similares.

Todo cambió en el siglo XIX. Primero, un par de físicos –un inglés, Sir George Stokes, y un francés, Claude-Louis Navier– establecieron en 1822 una ecuación que describía razonablemente bien el comportamiento de los fluidos. Posteriormente, el alemán Gustav Kirchhoff (cuyo nombre puede sonarte por la radiación de cuerpo negro). Kirchhoff refinó las ecuaciones para determinar un coeficiente relacionado con el movimiento turbulento de un fluido a través de un agujero –una de las circunstancias en las que anteriormente los resultados teóricos y los experimentales divergían enormemente–. El coeficiente no es importante ahora mismo, pero sí lo es el hecho de que Kirchhoff predijo un valor de 0,61 utilizando las ecuaciones diferenciales. El resultado experimental resultó ser 0,60. Todo cambiaría desde entonces: ya no estábamos frente a una curiosidad, sino a algo utilísimo en la práctica.

A partir de entonces se diluyó la diferencia entre hidráulica e hidrodinámica y nació una verdadera mecánica de fluidos. El nombre es, desde luego, infinitamente mejor que cualquiera de los otros dos, porque no sugiere nada acerca del agua. Hoy en día hablamos de ella cuando nos referimos al estudio de fluidos en general, pero seguimos usando los términos antiguos de hidrostática e hidrodinámica para el estudio de los líquidos –no cualquier fluido– en equilibrio o no. También utilizamos aerodinámica, por ejemplo, para referirnos al flujo de gases; como en el caso del agua, el aire forma parte del nombre por ser el gas al que más aplicamos esta teoría.

El caso es que desde la segunda mitad del XIX los ingenieros empezaron a utilizar más y más las ecuaciones diferenciales, perfeccionadas por muchos otros científicos. Ya en el siglo XX nos encontramos con un nuevo obstáculo: las matemáticas funcionaban, pero en muchos casos el comportamiento de los fluidos resultó ser caótico, es decir, endiabladamente difícil de calcular con exactitud más allá de cierto tiempo. Las matemáticas estaban preparadas, pero nuestra capacidad de cálculo no.

En este caso quien vino a nuestro rescate fue la informática. Hoy en día, para las aplicaciones prácticas que involucran conjuntos de ecuaciones no lineales son nuestros programas informáticos quienes resuelven las ecuaciones y predicen el comportamiento de los fluidos. Pero, por más complejas que se hayan hecho las matemáticas involucradas, la base teórica sigue siendo la misma: la aplicación de la mecánica newtoniana a medios continuos capaces de fluir.

Si todo esto de ecuaciones diferenciales te ha dejado un poco apabullado, no te preocupes: como Pascal, nosotros empezaremos a estudiar los fluidos en equilibrio –es decir, la estática de fluidos– para luego ir adentrándonos en asuntos más tortuosos. Lo bueno de la mecánica de fluidos es que unas bases sólidas no demasiado extensas permiten ya entender muchas cosas del mundo que nos rodea sin necesidad de meterse en camisas de once varas.

En la siguiente entrega hablaremos sobre las diferencias entre los tres tipos de fluidos y, ya que tiene que ver con el asunto, definiremos una de las propiedades más importantes de cualquier fluido: la densidad.


Ideas clave

Para empezar el bloque con ganas, espero que te hayan quedado clarísimas las siguientes ideas, ya que son solamente tres:

  • La mecánica de fluidos estudia los fluidos en cuanto a su comportamiento mecánico (movimientos, fuerzas, presiones, etc.).
  • Un fluido es un medio capaz de fluir, es decir, cambiar su forma libremente.
  • Existen tres tipos de fluidos: líquidos, gases y plasmas.

Tomado de:

El Tamiz

7 de noviembre de 2012

Ya es realidad: Un «brazo de Terminator»



Esta prótesis llamada BeBionic3 es tan realista y tiene tanta precisión que su dueño puede teclear en el ordenador, pelar unas patatas o incluso partir un huevo.

Pero lo que puede aterrar a muchos es que ya hay gente planteándose reemplazar ciertas partes de su cuerpo por injertos mecánicos, una especie de piercing a lo bestia en el que el cuerpo se modifica para dar paso a un híbrido biónico «superior». Cámaras, pantallas y otros elementos buscan hacerse un hueco fusionándose con la carne. Y es que se empieza por un agujero en la nariz y se acaba con unos leds en el ombligo, un mini-display LCD en la muñeca… o, por qué no, pidiendo que te cambien una mano a lo Skywalker.

Fuente:

4 de noviembre de 2012

Física: La rueda y el suelo

¿A qué velocidad se mueve la rueda de un vehículo con respecto al suelo? A algunos alumnos de ingeniería les extraña el hecho de que haya puntos de la rueda que estén estáticos (quietos), así que creo que merece la pena dedicarle al tema esta entrada.

Primero, veamos un vídeo a cámara lenta de una rueda en contacto con el suelo. En este caso, de un tren de aterrizaje justo tras tocar tierra:



Vemos claramente dos fases:

  1. Rodadura con deslizamiento: la rueda rota y se arrastra sobre el suelo, a la vez. Vamos, lo que llamamos derrapar.
  2. Rodadura pura: es el modo de rodar para el que están diseñadas las ruedas, engranajes, etc. No existe derrape, y la distancia recorrida en una vuelta completa coincide con la longitud de la circunferencia de contacto de la rueda con el suelo.
Es dentro de ese modo normal de funcionar, la de rodadura pura, donde ocurre que la velocidad relativa de algunos puntos de la rueda con respecto al suelo es de exactamente cero. Para quienes no se lo crean, aquí van un par de demostraciones.

1. Demostración matemática

Imagina una rueda girando libremente alrededor de su eje, a una velocidad angular constante de ω. Fijémonos en el punto de la circunferencia que queda en el extremo derecho y veamos cómo se mueve tras un tiempo Δt:


Hemos marcado como L la distancia que ha recorrido, siguiendo un arco de circunferencia de ángulo θ. Ese ángulo claramente será θ = ω Δt, ya que la rueda gira a velocidad constante. Por otro lado, si la rueda tiene un radio de R, la longitud del arco vale L = R · θ.

De estas expresiones podemos calcular fácilmente la velocidad lineal (v) a la que se mueve ese punto (o cualquier otro) de la cara externa de la rueda, ya que:
\begin{array}{rcl}L&=&v\Delta t \rightarrow v = \frac{L}{\Delta t} \\ L &=& R \theta = R \omega \Delta t \rightarrow \frac{L}{\Delta t} = R \omega \end{array}
\longrightarrow v = R \omega

Conocido el módulo, sólo queda definir la dirección del vector velocidad en cada punto. Es fácil ver que esta será tangencial a la circunferencia en cada punto, y en el sentido del giro de la rueda. Por ejemplo, para los puntos inferior y superior tenemos:



Pues bien: estas velocidades son las de los puntos del exterior de la rueda, con respecto al centro de la rueda. Son, como todas las velocidades en mecánica clásica, relativas a un sistema de referencia dado, que hay que especificar.

Cojamos ahora esa misma rueda, aún girando, y coloquémosla sobre un suelo sobre el que va a rodar sin deslizamiento. Esta condición implica, necesariamente, que el centro de la rueda se mueva a una velocidad de v = R  ω en relación al suelo:



Finalmente, para averiguar la velocidad de un punto de la rueda con respecto al suelo (Vc.r.suelo) hay que componer vectorialmente su velocidad relativa con respecto a la rueda (Vrelativa) con la de la rueda con respecto al suelo (Vrueda):
\vec{\mathbf{V}}_{c.r.suelo}=\vec{\mathbf{V}}_{rueda}+\vec{\mathbf{V}}_{relativa}


Fijándonos en el punto inferior de la rueda en la figura, vemos que ambas componentes tienen sentidos opuestos, por lo que la velocidad relativa final se convierte en una resta:
V_{c.r.suelo}=V_{rueda}-V_{relativa}=\underbrace{v}_{R\omega}-R\omega=0


Con lo que se demuestra que el punto de la rueda que en cada momento esté en contacto con el suelo está instantáneamente estático con respecto a éste.

Lea el artículo completo en:

28 de mayo de 2012

Científicos checos desarrollan una bicicleta voladora

bici_voladora

Si eres un amante del ciclismo, o de la aviación, esta noticia seguro te va a emocionar tanto como a mí: Un grupo de científicos checos ha anunciado que está trabajando en el desarrollo de una bicicleta capaz de volar.

Capaz de desarrollar una potencia de 47 kilovatios, esta bici que pesa 85 kilogramos sin el piloto, mide 3,5 metros de largo, 2,5 metros de ancho y 1,2 metros de altura. Su tiempo aproximado de vuelo son de tres a cinco minutos, y alcanzará una velocidad máxima de 50 kilómetros por hora, siendo 170 kilogramos la carga máxima que puede desplazar en el aire.

Esta bici que bien podría cumplirnos la fantasía de volar como E.T, estaría siendo desarrollada por un grupo de empresas de República Checa, Technodat, Evektor y Duratec; y cuenta con cuatro motores de 10 kilovatios, y dos motores estabilizadores de 3,5 vatios en ambos lados, como vemos en la imagen que acompaña esta nota. La energía para hacer volar esta bici se obtiene de una batería de litio con capacidad de 50 amperios/hora.

Claro que aún tenemos que armarnos de mucha paciencia: El primer prototipo de bicicleta voladora llegaría en el mes de septiembre y sería mostrado en la Feria Internacional de Maquinaria de República Checa. Mientras, tendremos que conformarnos con el vídeo de simulación con el que han emocionado al mundo:
¿Estaremos realmente cerca de una bici voladora? Visto lo visto, aún falta para que la bici pueda ser una realidad, aunque de que veremos vehículos voladores en el mediano plazo, los veremos, porque ya recordaréis que os contamos que el auto volador comenzará a venderse en 2014. Así que probablemente nuestras calles luzcan como la de los Supersónicos, con sus casas suspendidas en el aire y sus aero-autos como medio de transporte, más pronto de lo que imaginamos.


Fuente:

15 de mayo de 2012

Científicos generan electricidad a partir de capas de virus

  • Su método convierte la energía mecánica en electricidad
  • El estudio se ha publicado en la revista Nature Nanotechnology
Científicos del Departamento de Energía del Laboratorio Nacional Lawrence Berkeley (Berkeley Lab), en EE.UU., han desarrollado un método para generar energía utilizando virus inofensivos, que convierten la energía mecánica en electricidad. 

Los investigadores han publicado su estudio en la revista Nature Nanotechnology.

Los científicos probaron su enfoque creando un generador que produce la corriente necesaria para operar una pequeña pantalla de cristal líquido, que funciona pulsando con un dedo un electrodo del tamaño de un sello de correos, revestido con virus especialmente diseñados -que convierten la fuerza aplicada con el dedo, en carga  eléctrica.

Este generador es el primero en producir electricidad mediante el aprovechamiento de las propiedades piezoeléctricas de un material biológico -la piezoelectricidad es la acumulación de carga en un sólido, en respuesta a la tensión mecánica.

Este método podría dar lugar a pequeños dispositivos que cosecharan energía eléctrica, a partir de las vibraciones de las tareas cotidianas -como cerrar una puerta, o subir escaleras. Además, también sugiere una forma más sencilla de crear dispositivos microelectrónicos.

"Se necesita más investigación"

"Se necesita más investigación, pero nuestro trabajo es un primer paso hacia el desarrollo de generadores de energía personales, para su uso en nano-dispositivos, y otros mecanismos basados en la  electrónica de virus", explica Seung-Wuk Lee, científico de la Universidad de Berkeley, y profesor de Bioingeniería. Lee condujo la investigación en un equipo que incluye, entre otros, a Ramamoorthy  Ramesh, profesor de Ciencias de los Materiales en la Universidad de  Berkeley, y Byung Yang Lee, del Berkeley Lab.

El efecto piezoeléctrico fue descubierto en 1880 y, desde  entonces, ha sido observado en cristales, cerámica, huesos, proteínas y ADN. También se ha puesto en uso: los encendedores de los  cigarrillos eléctricos y los microscopios de sonda, por ejemplo, no  podrían funcionar sin él. Sin embargo, los materiales utilizados para  fabricar dispositivos piezoeléctricos son tóxicos, lo que limita el  uso generalizado de esta tecnología.

Lee y sus colaboradores se preguntaron si un virus, estudiado en laboratorios de todo el mundo, ofrecía una mejor alternativa: el bacteriófago M13, que sólo ataca a las bacterias, y es benigno para  las personas y, al ser un virus, se reproduce por millones en cuestión de horas, proporcionando un suministro constante. Además, este virus es fácil de manipular genéticamente.

Sin embargo, los  investigadores de Berkeley primero tenían que determinar si el virus M13 es piezoeléctrico. Para ello, Ramesh y Lee aplicaron un campo  eléctrico a una película de virus M13, observando lo que ocurría mediante un microscopio especial. Los investigadores vieron entonces que las proteínas helicoidales que envuelven los virus se retorcían y  giraban en respuesta, una señal segura del efecto piezoeléctrico.

Los científicos mejoraron aún más el sistema apilando películas compuestas de capas individuales de virus, una encima de otra -una  pila de, aproximadamente, 20 capas de espesor, mostró el mayor efecto  piezoeléctrico.

Finalmente, los científicos fabricaron un generador de virus, basado en la energía piezoeléctrica; así, crearon las condiciones para que los virus modificados genéticamente se organizaran de forma espontánea en una película de capas múltiples, esta película se intercaló, entonces, entre dos electrodos revestidos de oro, conectados por cables a una pantalla de cristal líquido.

 Cuando se aplicó presión en el generador, éste produjo un máximo de 6 nanoamperios de corriente, y 400 milivoltios de potencial. 

"Ahora estamos intentando mejorar esta técnica", afirma Lee, quien concluye que, "debido a que las herramientas de la biotecnología permiten la producción a gran escala de virus modificados genéticamente, los materiales piezoeléctricos basados en virus podrían ofrecer una ruta sencilla hacia la microelectrónica del futuro".

Fuentes:


12 de diciembre de 2011

Cómo dibujaban los matemáticos la trayectoria de una bola de cañón antes de la invención del cálculo


Esta imagen está extraída de un libro de texto de matemáticas escrito por el astrónomo y matemático neerlandés Daniel Santbech en 1561 titulado “Problematum Astronomicorum et Geometricorum Sectiones Septem.” Muestra la trayectoria de una bola de cañón. Una trayectoria triangular formada por una línea recta hasta alcanzar una altura máxima y luego otra recta vertical mostrando la caída a plomo de la bola a tierra. Un siglo más tarde la figura era algo más realista, como muestra la imagen de abajo, fechada en 1684 y extraída del libro de S. Sturmy, ”The Mariners Magazine, or Sturmy’s Mathematicall and Practicall Arts,” 2nd. edn. (London: William Fisher) p. 69. Sin embargo, sigue cayendo la bola en plan plomada al final de la trayectoria. Hasta aproximadamente 1700 estas imágenes no se transformaron en las “parábolas asimétricas” que hoy en día dibujaríamos.

Estas figuras están extraídas del interesante artículo de Seán M. Stewart, “On the trajectories of projectiles depicted in early ballistic woodcuts,” European Journal of Physics 33: 149-166, 2012 [el artículo ahora mismo es de acceso gratuito, previo registro en IOP, aprovecha]. Este artículo discute si trayectorias como la fechada en 1684 son realistas según la mecánica de Newton. Para que juzgues por ti mismo, abajo tiene una figura que muestra una de las trayectorias newtonianas de una bola de cañón. Muchos profesores de física disfrutarán del artículo que puede dar lugar a multitud de ejercicios elementales y no tan elementales de física para un primer curso de Física; y no solo teóricos, también ejercicios prácticos como el ajuste experimental de un modelo a las curvas presentadas en las figuras del s. XVII (dos parámetros bastan para un buen ajuste, como muestra Stewart en su artículo). Los que se animen que lo disfruten.

google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0