Latest Posts:

Mostrando las entradas con la etiqueta volumen. Mostrar todas las entradas
Mostrando las entradas con la etiqueta volumen. Mostrar todas las entradas

5 de enero de 2015

El cerebro masculino tiene más volumen que el femenino


El cerebro del hombre y el de la mujer son diferentes pero, hasta este momento, no se había realizado un estudio específico sobre qué estructuras marcan esa diferencia. Ahora, gracias a una investigación de la Universidad de Cambridge, las evidencias han sido reveladas y publicadas en la revista Neuroscience and Biobehavioral Reviews.

Para el meta-análisis del tema, el equipo de investigadores realizó una revisión de toda la literatura existente de imágenes cerebrales de individuos de entre 0 y 80 años que mostraran las diferencias en los volúmenes de los cerebros de ambos sexos. En total, se analizaron 126 artículos de entre todos los publicados entre 1990 y 2013.

El análisis final determinó que los hombres tienen un mayor volumen promedio de cerebro que las mujeres (entre un 8-13% más). Sin embargo, las diferencias de volumen entre sexos están localizadas en regiones muy concretas del cerebro, sobre todo en el sistema límbico (donde se originan las emociones).

Los resultados ponen de relieve un efecto asimétrico en el desarrollo del cerebro según el sexo, confirmando la diferencia de tamaño y estructura de ambos. Así que, partir de ahora, el género de un paciente también deberá formar parte de las consideraciones a tener en cuenta de cara a un estudio psiquiátrico, por ejemplo, ya que el sistema límbico está relacionado con la esquizofrenia y otras enfermedades psiquiátricas.

Tomado de:

Muy Interesante

3 de septiembre de 2013

Los auriculares pueden ser el peor enemigo de la memoria

audífonos

Los ruidos fuertes pueden afectar la memoria, según el estudio.

A muchos adolescentes les gusta escuchar música a todo volumen, incluso mientras estudian, una costumbre que ha sido criticada por padres durante generaciones.

Ahora científicos en Argentina demostraron que nuestros padres tenían razón: a través de un experimento utilizando ratas comprobaron que los ruidos fuertes pueden afectar la memoria y los mecanismos de aprendizaje en animales en desarrollo.
El trabajo, que fue publicado en la revista Brain Research, se realizó utilizando roedores de entre 15 y 30 días, una edad equivalente a chicos de entre 6 y 22 años.

"Usamos ratas porque tienen un sistema nervioso parecido al de los humanos", explicó a BBC Mundo Laura Guelman, coordinadora del proyecto e investigadora del Centro de Estudios Farmacológicos y Botánicos (Cefybo), de la Universidad de Buenos Aires (UBA).

Los científicos expusieron a los animales a ruidos con intensidades de entre 95 y 97 decibeles (dB), más altas que lo considerado un nivel seguro (70-80 dB) pero por debajo del sonido que produce un concierto de música (110 dB).

Y descubrieron algo novedoso: tras dos horas de exposición, las ratas sufrieron daño celular en el cerebro.

Las alteraciones se produjeron en la zona del hipocampo, una región asociada a la memoria y los procesos de aprendizaje.

"Esto sugiere que lo mismo podría ocurrir en humanos en etapa de desarrollo, aunque será difícil de comprobar debido a que no podemos exponer a niños a este tipo de experimentos", explicó la experta.

Lea el artículo compketo en:

BBC Ciencia

26 de julio de 2013

Si llenamos un vaso y el hielo sobrepasa el borde, ¿se desbordará el líquido cuando el hielo se derrita?

El hielo ocupa más volumen que el agua del que está hecho, por eso cuando se derrite, el hielo que se asoma por el vaso se encoge, recuperando su antiguo volumen. Por eso el vaso no se desborda.

Por esta misma razón si los bloques de hielo que flotan en el mar se derriten por al calentamiento global, esto no provocará un aumento en el nivel de los mares.

Fuente:

BBC Ciencia

30 de abril de 2013

¿Por qué la bola blanca vuelve a salir?



-¿Bola blanca? ¿qué bola blanca?
 

-Cuál va a ser, la bola blanca del billar.

Cuando en la mesa de billar las bolas se introducen por las troneras ya no vuelven a salir. Pero la bola blanca sí. ¡Siempre vuelve a salir! ¿Cómo lo hace?

Hay varios sistemas. Uno de ellos consiste en que la bola blanca tenga unas dimensiones ligeramente superiores al resto. Según la fuente, las bolas de colores estándar pueden estar en torno a un diámetro de 5,72cm, mientras que la blanca tiene un diámetro de 6cm. 

Gracias a esta diferencia de tamaño se evita que la bola blanca pase por el mismo sitio que el resto, y siga por una rampa diferente que nos devolverá la bola.

Pero hay otro sistema que mantiene la igualdad en el peso y el tamaño entre todas las bolas. Este sistema es mejor ya que así se evitan jugadas con efectos extraños causadas por estas diferencias físicas.
¿Y de qué consta este sistema?

La bola blanca contiene partículas de metal y un imán nos ayuda a separarla del resto. Sencillo, ¿no?

Veamos a continuación un vídeo explicativo. Eso sí… que a nadie se le ocurra hacer lo que hacen estos individuos.


Fuente:

Saber Curioso

25 de marzo de 2013

¿Cuánto peso pueden transportar las hormigas?

Hormiga

Las hormigas tienen una enorme fuerza relativa a su peso.

Al menos medio gramo. No parece mucho, hasta que uno se da cuenta de que eso representa alrededor de 100 veces el peso de una hormiga.

Pero no deberíamos sentirnos inferiores a un insecto.

De hecho, la razón de que tengan una fuerza relativa a su peso tan impresionante es que las hormigas son muy pequeñas.

Imaginemos una hormiga aumentada en escala hasta el tamaño de un humano.

Sería alrededor de 300 veces más larga, mientras que su volumen aumentado pesaría alrededor de 10 millones de veces más.

Sin embargo, la fuerza muscular de las hormigas depende del número de fibras que contienen, y por lo tanto, de su sección transversal.

Pero a medida que aumenta tamaño de un organismo, la masa corporal aumenta en mayor proporción que el área de la sección transversal de los músculos.

Así que la hormiga 300 veces más larga sólo sería unas 100.000 veces más fuerte.

Por tanto, la hormiga de tamaño humano sería mucho más pesada, pero su fuerza muscular no crecería tanto como para compensar, y apenas podría levantar su propio peso corporal.

Igual que los seres humanos.

Fuente:

BBC Ciencia

17 de marzo de 2013

Mecánica de Fluidos: Principio fundamental de la hidrostática

Mecánica de Fluidos - Cuarta Parte


Ya llevamos tres artículos a la espalda del bloque [Mecánica de fluidos I], en el que tratamos de describir su comportamiento de manera cualitativa. Tras describir el concepto de fluido primero y sus tres tipos después, en el último capítulo hablamos sobre uno de los conceptos más importantes para comprender el comportamiento de los fluidos: la presión. Como vimos entonces, la importancia de la presión se debe a que las interacciones con un fluido –a diferencia de las que se producen con un sólido– suceden sólo con una parte del fluido, debido a la libertad relativa de movimiento de las partículas del fluido.

Tras dejar claras –espero– las causas de la existencia de la presión en los fluidos, además de la diferencia en esas causas entre líquidos y gases, hoy vamos a concretar más y a determinar juntos no ya el hecho de que los fluidos ejerzan presión (eso debería haber quedado claro en el capítulo anterior), sino cuánta presión ejercen y de qué factores depende esa presión.

Pero antes, como siempre, la solución al desafío de la entrega anterior.


Solución al desafío 2 – Presión

El desafío era fundamentalmente matemático: simplemente hacía falta tener cuidado con unidades y demás. 

Dado que la presión es la fuerza entre la superficie sobre la que se reparte esa fuerza, nos hacía falta calcular ambas:

La fuerza era el peso de la mesa, es decir, 200 N: 20 kg en la gravedad terrestre.
La superficie era la de las cuatro patas sobre las que se apoya la mesa. Cada pata tenía un lado de 0,2 metros, es decir, una superficie –lado por lado– de 0,04 m2. Puesto que hay cuatro patas, la superficie sobre la que se reparte el peso de la mesa es 0,16 m2.

Por lo tanto, la presión en pascales que ejerce la mesa sobre la nieve es el cociente de ambos: 200 N entre 0,16 m2, es decir, 1 250 Pa. Como se nos decía que la nieve puede soportar 5 000 Pa, la nieve resiste sin problemas. Harían falta otros 3 750 Pa “extra” para que la mesa se hundiese en la nieve.

En la segunda pregunta debemos tener en cuenta que la superficie de contacto sigue siendo la misma, 0,16 m2, pero dado que el peso aumenta según añadimos bocadillos, la presión también lo hará, hasta que supere los 5 000 y la mesa y los bocadillos se hundan.

Es posible realizar el cálculo de muchas maneras, pero aquí tienes una: cada bocadillo ejerce 2,5 N de fuerza (pues tiene 0,25 kg de masa). La presión de 2,5 N repartidos sobre 0,16 m2 –la superficie de contacto con la nieve– es de 15,625 Pa. Dado que hacían falta 3 750 Pa “extra” para hundir la mesa, eso se corresponde con 240 bocadillos.

Como digo, hay otras maneras de responder a esta pregunta, como calcular la fuerza máxima que puede ejercer la mesa, la masa máxima que puede apoyarse sobre la nieve, etc. Pero el resultado debería ser el mismo salvo que nos hayamos confundido unos u otros.


Factores de los que depende la presión en el interior de un fluido

Para empezar a comprender qué factores afectan a la presión debida a un fluido, te recomiendo que releas el desafío de antes –o que lo leas, si te lo saltaste por ser algo opcional–. Comprender la presión debida a los sólidos ayuda a entender la de los fluidos, aunque sólo sea por contraste con ella. En el ejemplo del desafío, la superficie que importaba era la de contacto entre mesa y nieve: es decir, la de la base de las cuatro patas. La mesa podría ser enorme, o tener muchas cosas encima, pero dado que es sólida, la superficie de contacto no varía.

Pero calculemos ahora la presión que ejerce el agua sobre el fondo de una piscina. Aunque éste sea un bloque introductorio, para saber qué factores incluyen tendremos que hacer algunos cálculos sencillos, pero creo que juntos y con calma lo haremos sin crear demasiada confusión. Siempre intentaré tomar el caso más simple posible para que no se compliquen las fórmulas.

Como en el caso de la mesa, necesitamos saber la superficie sobre la que se apoya el agua, pero ¡ah!, en este caso es un fluido, con lo que la cosa es fácil: el agua se apoya sobre toda la superficie del fondo de la piscina. Si la superficie del fondo es S (nos da lo mismo lo que valga), ya tenemos la superficie sobre la que se reparte el peso de la piscina: precisamente S.

El peso de la piscina es un poco más complicado, pero no mucho. Supongamos que la profundidad del agua (desde el fondo hasta la superficie del agua) es h: vas a tener que disculparme por usar esa letra, pero es la que te vas a encontrar siempre al hablar de profundidad en fluidos, de modo que prefiero que te vayas acostumbrando aunque no tenga demasiado sentido, ya que creo que es una herencia del height inglés.


¡Ojo! Profundidad ≠ altura

Este error es lo suficientemente común como para merecer su propio cuadro. Como acabo de decir, por razones históricas se utiliza la letra h para representar la profundidad de fluido, es decir, la altura desde el punto de que se trate hasta la superficie del fluido.

Como en muchas otras fórmulas de física se utiliza h para representar la altura desde el suelo, es un error muy frecuente hacer lo mismo aquí cuando la situación se presta a ello. Por ejemplo, si un submarinista está a 200 metros del fondo del mar, mucha gente inmediatamente piensa que h = 200.

Pero ese dato es absolutamente irrelevante. La presión que sufre el submarinista se debe al peso del agua que hay sobre él: da lo mismo que bajo sus pies haya 200 metros o 200 kilómetros. Lo que importa es lo que hay desde su cabeza hasta la superficie del océano, es decir, la profundidad, y no la altura sobre ninguna cosa.

Entonces, el volumen de agua de la piscina será el área de la base por la altura, es decir, Sh, y la masa de agua será el volumen por la densidad, es decir, dSh –usaremos d para representar la densidad, como hicimos al presentar esta magnitud–.

Finalmente, el peso de algo es igual a su masa por la aceleración de la gravedad g (que en la superficie de la Tierra es alrededor de 10 m/s2, pero eso nos da igual ahora mismo), así que el peso de la piscina es de dShg newtons. Dicho de otro modo, ésa es la fuerza que ejerce sobre el fondo de la piscina.

¿De qué depende entonces la fuerza que hace el agua sobre el fondo? De la densidad del fluido –cuando más denso, más pesa–, de la gravedad del lugar –en Júpiter, por ejemplo, la piscina pesaría muchísimo más que en la Tierra aun teniendo la misma masa–, de la superficie de la piscina –una olímpica tendrá mucha más agua que una de jardín–, y finalmente de la profundidad del agua –un charquito pesará mucho menos que una piscina de 4 metros de profundidad–.

Hasta aquí todo es bastante intuitivo y la mayor parte de la gente lo asimila y lo acepta sin problemas. Pero ahora viene la parte menos fácil de aceptar.

La presión es el cociente de fuerza entre superficie, de modo que para calcular la presión en el fondo de la piscina tenemos que dividir la fuerza ejercida –dShg– entre la superficie en la que se reparte –S–. De modo que la presión resulta ser simplemente dhg, ya que la superficie del numerador se cancela con la del denominador. Esto es suficientemente importante como para tener su propio párrafo y en negrita.

La presión ejercida por un fluido no depende de la superficie.

Fórmulas aparte, si una superficie se cancela con otra tiene que ser por algo, y hace falta entenderlo sin recurrir necesariamente a las matemáticas. ¿Cuál es la razón de que la superficie no influya?

Imagina una piscina olímpica, y supongamos que sufre una presión determinada en el fondo. Imagina ahora que la extendemos, de modo que todo sea igual que antes, pero con el doble de superficie: algo así como dos piscinas olímpicas una al lado de la otra. Al hacerlo hay el doble de agua que antes, con lo que la fuerza es el doble. Pero esa agua se apoya sobre el doble de superficie que antes, con lo que la presión es exactamente igual que al principio.


Columnas y presión
 

Si la superficie se cuadruplica sin cambiar la profundidad de la columna, la presión no cambia.

Tal vez lo veas mejor con el ejemplo del billete del capítulo anterior: un billete ejerce una presión sobre la mesa de más o menos 1 Pa. ¿Qué presión ejercen dos billetes? Quien no entiende lo que es la presión seguramente diría que 2 Pa, ¡si hay dos billetes! Pero la presión es exactamente la misma que antes: hay el doble de billetes, luego hay el doble de masa pero también el doble de superficie de apoyo. Hablamos precisamente de esto en una caja de texto de aviso de ese capítulo, de modo que si no estás convencido deberías echarle un ojo antes de seguir.


¿Y si no es una columna recta?

Es muy común preguntarse qué pasa si la cosa no es tan simple como la hemos pintado aquí. En el caso de la columna de arriba se ve claramente que, al aumentar la superficie, aumentan proporcionalmente la cantidad de agua pero también la propia superficie de apoyo, de modo que la presión no cambia. Pero ¿y si el recipiente tiene una forma diferente, de modo que la superficie cambie con la profundidad?
Por ejemplo, un recipiente de forma cónica (como un matraz), con una base más ancha que la boca… ¿tiene la misma presión en el fondo que uno de paredes verticales como las de antes? La respuesta, aunque a algunas personas al principio les cuesta aceptarlo –al menos a mí me pasó–, es que sí.

La razón es que da igual cómo hagas el cambio de superficie. Aquí no vamos a entrar a calcular casos tan raros, pero intentaré convencerte de manera cualitativa. En un recipiente que se va ensanchando según bajas hay más agua que en uno recto –tanta más agua cuanto más bruscamente aumente la superficie según bajas–. Pero, por otro lado, mayor es la base en la que se apoya el agua, con lo que un efecto se cancela con el otro.

¿Y si es al revés? Lo mismo da. Si el recipiente se estrecha, como un cuenco, de modo que la superficie en la boca sea mucho mayor que la base, al principio puede parecer que la presión abajo será mucho mayor que si las paredes fuesen rectas, ¡es una superficie de apoyo muy pequeña, pero el recipiente tiene mucha agua porque la parte de arriba es muy ancha!

Pero, ¡ah!, aquí también hay que encender la bombilla: la superficie de apoyo ya no es sólo la pequeña base del cuenco. Las paredes no son verticales, sino que parte del peso del agua se apoya sobre ellas: tanto más cuanto más horizontales estén. Si se inclinan mucho la superficie de la base será mucho más pequeña, pero las paredes a su vez, al ser más horizontales, soportan mayor parte del peso del agua, con lo que –aquí tienes que creerme porque, insisto, no voy a ponerme a calcular nada– un efecto se cancela matemáticamente con el otro y el resultado es exactamente el mismo.

Sí, aunque parezca raro, da exactamente igual la forma de las paredes del recipiente –luego veremos una ilustración con muchas y muy variadas porque da lo mismo–: la presión depende única y exclusivamente de la profundidad, la densidad del fluido y la gravedad.

También es posible que estés pensando que hago muchos aspavientos y que esto no es nada raro, sino absolutamente evidente. Bien, lo “raro” de esto es lo siguiente: imagina una piscina de 5 metros de profundidad. Como puedes imaginar, la presión en el fondo es bastante grande, y de sus efectos hablaremos más adelante. Pero ahora imagina que tomas pajitas como las de beber refresco y unes muchas hasta que tienes 5 metros de largo, y luego llenas de agua la súperpajita y la pones en vertical. La presión en el fondo de la pajita es exactamente la misma que en el fondo de la piscina.

Tan “rara” es esta idea, postulada por primera vez por el flamenco Simon Stevin, que aunque hoy en día suele conocerse como principio fundamental de la hidrostática –o de la estática de fluidos–, en el siglo XVII se la llamaba paradoja hidrostática: la idea de que la presión en el interior de un fluido depende, no de la cantidad total de fluido, sino del espesor de fluido sobre el punto de que se trate. Algunos contemporáneos de Stevin opinaban que aquello era una tontería: ¿cómo iba una cantidad tan pequeña de agua como la de una pajita tener el mismo efecto que una gruesa columna de agua?

Barril de Pascal
 

Experimento del barril de Pascal, 1646.

Sin embargo otro genio, el francés Blaise Pascal, respondió con un experimento memorable, el del barril de Pascal, en 1646. El bueno de Blaise llenó un barril de agua a través de un tubo muy fino y muy largo, y luego siguió echando agua en el delgado tubo. Cuando el agua subió por el tubo hasta determinado nivel –el tubo tenía 10 metros de largo–, el barril reventó debido a la presión del agua en su interior. Pascal tenía razón — lo mismo que en muchas otras cosas, en este y otros campos, y volveremos a él varias veces en este bloque.

Principio fundamental de la hidrostática

Aunque en muchos sitios ya no se llame así (llamarlo principio está un poco anticuado, ya que es posible deducirlo), aparece con la suficiente frecuencia con este nombre como para que enunciemos lo que acabamos de ver de manera formal:
La presión en el interior de un fluido en equilibrio debida a su propio peso es igual al producto de la aceleración de la gravedad por la profundidad hasta la superficie del fluido por la densidad del fluido.
Tres aclaraciones sobre esto:
  • El nombre es terrible, pero ya hablamos de ello en la introducción. Nada obliga a que el fluido sea agua, ni siquiera un líquido. Tampoco se trata ya de un principio, ya que es posible demostrarlo formalmente –aquí lo hemos hecho para un caso sencillo, pero puede hacerse en general–.
  • Esta expresión supone que todas las variables son números fijos. No vale, por lo tanto, si la densidad del fluido no es igual en todas partes o la gravedad cambia –por ejemplo, en el caso de la atmósfera la densidad del aire disminuye con la altura–. En ese caso la expresión es algo más compleja, pero los factores siguen siendo los mismos tres. De la atmósfera hablaremos en el siguiente capítulo, así que paciencia.
  • Generalmente, aunque a mí no me guste, se da una expresión más general que describe la diferencia de presión entre dos puntos arbitrarios de un fluido. Esa forma es equivalente a ésta –si una es cierta la otra también lo es y viceversa– y, en mi opinión, simplemente complica las cosas para nada, de modo que aquí te he mostrado la versión más sencilla. Si la has entendido, cuando te topes con la otra la entenderás perfectamente.
El caso es que lo interesante del principio o ecuación fundamental de la hidrostática, en mi opinión, es de lo que no depende la presión en el interior de un fluido, algo que pone de manifiesto estupendamente el experimento de Pascal: que la cantidad total de fluido es irrelevante. La presión a dos metros de profundidad en una piscina o en el lago Eire es exactamente la misma –suponiendo que la densidad del agua es igual en ambos sitios, etc.–.

Como digo, esto es difícil de aceptar. Cuando miramos una presa hidráulica, por ejemplo, y vemos las enormes paredes de la presa, pensamos (al menos yo), “Claro, hacen falta paredes muy gruesas para sostener tanta agua”, pero no es realmente así. Hacen falta paredes gruesas para sostener agua tan profunda. Si la presa tuviera la misma profundidad pero tan sólo un litro de agua (en un tubo finísimo, por ejemplo), el grosor de las paredes tendría que ser el mismo, ya que también lo sería la presión. Vale, dejo de repetir lo mismo: es que es esencial.

Vasos comunicantes

La cantidad de situaciones en las que es relevante esta idea central de la estática de fluidos es tan enorme que me es imposible aquí dar todos los ejemplos. Un caso clásico, sin embargo, es el de los vasos comunicantes: un fluido en el que es posible llegar a la superficie por más de un lugar, es decir, que tiene superficies inconexas.

Para entender el funcionamiento de un sistema de vasos comunicantes es necesario mirar el principio fundamental de la hidrostática al revés. Hemos dicho que, en un fluido en equilibrio, la presión debida al peso es igual a la densidad del fluido por la gravedad por la profundidad. Pero ¿y si no hay una sola superficie? Imagina la siguiente situación:

Vasos comunicantes

En este caso, si nos fijamos en cualquier punto del interior del fluido, ¿cuál es la profundidad? ¡Hay “dos profundidades”! Si te fijas en una superficie y luego en la otra, la profundidad no es la misma. Esto significa que no podemos aplicar el principio fundamental, ya que podríamos obtener dos valores diferentes para la presión: una referida a cada superficie. Pero, si no podemos aplicar el principio, es que no se cumple su premisa fundamental.

Este fluido no está en equilibrio.

Visto de otra manera, efectivamente, hay dos presiones: las dos columnas de fluido ejercen dos presiones diferentes, lo que supone que la parte del fluido situada, por ejemplo, en el interior del tubo que comunica ambos barriles, sufrirá dos presiones distintas, una que trata de desplazarlo hacia la derecha y otra hacia la izquierda:

Vasos comunicantes 2

De manera que el fluido se moverá hasta que la presión sea única, independientemente de “hasta cuál superficie”. En ese momento estará en equilibrio y la presión será la misma. Esto es lo que hace que, si se vierte agua con la suficiente lentitud como para que se mantenga un estado lo más parecido al equilibrio, suceda algo así:

Vasos comunicantes animación
 

Animación de vasos comunicantes (Waglione / CC Attribution-Sharealike 3.0 License).

Dado que la presión depende única y exclusivamente de la profundidad, y no de la forma del recipiente, es posible tenerlos de formas tan imaginativas como se quiera, pero al rellenarlos con el mismo fluido, éste alcanzará el mismo nivel en todos una vez que esté en equilibrio.

Vasos comunicantes
 

Vasos comunicantes (dominio público).

Éste es el principio del funcionamiento de muchísimas cosas, pero una de las más interesantes es el pozo artesiano. Cuando el nivel de la superficie del agua –aunque sea subterráneo– se encuentra por encima de donde hagamos un agujero en el suelo, tendremos una suerte de “vasos comunicantes” en los que una de las dos superficies –la del agua bajo el suelo– está por encima, mientras que la otra –la superficie donde hagamos el agujero– está a un nivel diferente. Por lo tanto sucede lo mismo que en el dibujo de los dos barriles: hay “dos profundidades” diferentes, el agua no está en equilibrio y tenderá a moverse.

Pozo artesiano
 

Diagrama de un pozo artesiano (modificado de Gregors / CC Attribution-Sharealike 2.0 License).

Pero claro, en este caso es dificilísimo que ambos niveles lleguen jamás a igualarse, sobre todo si la lluvia va rellenando el depósito subterráneo de agua, de manera que el agua seguirá fluyendo desde el pozo artesiano (a veces con una presión tremenda) para siempre.

Algunos ejemplos concretos

Aunque en este bloque no hagamos demasiados cálculos, siempre es conveniente tener una idea aproximada sobre el valor de magnitudes comunes. Vamos a utilizar la ecuación fundamental de la hidrostática para calcular un par de presiones en el interior de fluidos muy cotidianos, como es el caso del agua de la piscina del principio del artículo.

Cuando hablamos sobre el concepto de densidad dijimos que la del agua es de unos 1 000 kg/m3. Dado que la aceleración de la gravedad en la superficie terrestre es de unos 10 m/s2, es muy fácil calcular la presión debida al peso del agua.

Un primer ejemplo: una piscina. En el fondo de una piscina de 3 metros de profundidad la presión es igual al producto de la densidad del agua por la gravedad y la profundidad, es decir, grosso modo, 1 000·10·3 = 30 000 Pa. Ya dijimos al definir la unidad de presión que un pascal es muy pequeño, por lo que no debe sorprender que las presiones cotidianas sean bastante grandes al expresarlas en pascales.

Para ver una presión bastante más impresionante, descendamos hasta el fondo del océano. La Fosa de las Marianas tiene una profundidad máxima de unos 11 km, con lo que la presión debida al peso del agua allí abajo es nada más y nada menos que 1 000·10·11 000 = 110 000 000 Pa. ¡Ciento diez millones de pascales! Así hacen falta batiscafos de gruesas paredes para llegar allí, claro.

En cambio, el aire es un fluido bastante ligero, como dijimos también al hablar de densidades: unos 1,2 kg/m3 al nivel del suelo. Como veremos en el siguiente capítulo, el aire es más complejo de estudiar que el agua, ya que es compresible y su densidad varía mucho con la profundidad, pero si no nos alejamos mucho del suelo esto no es un problema.

Así, un edificio de diez pisos tiene una altura aproximada de 30 metros, con lo que la diferencia de presión entre la azotea y el suelo es más o menos de 1,2·10·30 = 360 Pa. Claro, tras ver los números de antes éste parece de broma… pero es que, efectivamente, se trata de una presión muy pequeña. Recuerda los billetes: trescientos sesenta billetes, aunque sean muchos, no ejercen una presión muy grande sobre una mesa al colocarlos unos sobre otros.

Y, ya que hablamos sobre el aire, en el siguiente capítulo nos dedicaremos exclusivamente a él, ya que vivimos sumergidos en un océano tenue y sutil, pero un océano al fin y al cabo: un océano de aire. En la siguiente entrega hablaremos sobre la presión atmosférica.

Ideas clave

Para construir el resto del bloque sobre una base sólida deben haberte quedados claros los siguientes puntos:
  • La presión en el interior de un fluido debida al peso del propio fluido no depende en absoluto de la superficie ni de la forma del recipiente, si lo hay.
  • El principio fundamental de la hidrostática afirma que esa presión es igual al producto de la densidad del fluido por la gravedad y la profundidad.
  • Este principio sólo es aplicable si el fluido está en equilibrio, de modo que puede deducirse que no lo está si no se cumple el principio.
  • El fenómeno de vasos comunicantes garantiza que un solo cuerpo de fluido que rellena recipientes unidos se moverá hasta que la presión en el fondo sea la misma independientemente de qué recipiente sea el que ejerce esa presión.

Hasta la próxima…

Podríamos hacer cálculos con más presiones cotidianas, pero tú mismo puedes pensar en situaciones de la vida real y aplicar el principio fundamental de la hidrostática, de modo que no hace falte que te ponga más desafíos de ese tipo. Algo mucho más revelador, aunque no sea tremendamente fácil de hacer a bote pronto, es experimentar el principio fundamental como hizo Pascal con su barril. De modo que eso es precisamente lo que te propongo hacer de aquí al siguiente capítulo dentro de un mes.



Experimento 1 – El barril de Pascal

Material necesario: Un recipiente, un tubo, muchas pajitas, agua, imaginación.

Instrucciones: El objetivo del experimento es replicar, hasta donde sea posible, el de Pascal con el barril, el tubo y el embudo. Evidentemente es muy difícil llegar a los diez metros del bueno de Blaise, pero mi propuesta es la siguiente, sobre todo si das clase en un colegio. Intenta conseguir muchas pajitas o tubos que puedan ensamblarse unos con otros, un recipiente, un lugar donde alcanzar la parte de arriba del tubo y un grupo de niños con ilusión y, si fuera posible, grábalo y nos lo mandas o enseñas en la red.

Si consigues llegar bastante alto, para que la presión abajo sea grande, es una experiencia estupenda y permite ver “en vivo y en directo” la independencia de la presión y la cantidad total de fluido.

Fuente:

El Tamiz

Mecánica de Fluidos: Líquidos, gases y plasmas

Mecánica de Fluidos - Segunda Parte

En la introducción a la mecánica de fluidos hablamos sobre la diferencia fundamental entre sólidos y fluidos: la capacidad de cambiar de forma, es decir, de fluir. Sin embargo, aunque todos los fluidos tengan esta característica en común, existen otras diferencias en su comportamiento que merecen un capítulo aparte. Aprovecharemos, además, para adquirir una idea general sobre cómo y por qué fluyen este tipo de medios, y para definir un concepto que nos será utilísimo más adelante: la densidad.

  • ¿Preparado?

La mejor manera de entender las diferencias entre los distintos estados de agregación es empezar con uno y luego ir modificando las propiedades poco a poco. En mi opinión, una de las formas más intuitivas de hacerlo es empezar con los sólidos para luego caer por la “escalera del caos” hacia estados menos ordenados.

Sí, este bloque no está dedicado a los sólidos, pero como verás más adelante los usaremos como referencia varias veces, de modo que permite que nos detengamos un momento en ellos antes de zambullirnos –qué chispa tengo, ¿eh?– en líquidos y otros fluidos aún más interesantes.


Sólidos

Es imposible comprender las causas del distinto comportamiento de sólidos, líquidos, gases y plasmas sin entender cuál es su estructura microscópica, ya que ésa es la razón de que se comporten de diferente manera. Desde luego, aquí no vamos a dar un tratado sobre fuerzas intermoleculares y vamos a simplificar bastante las cosas, pero es necesario conocer el modelo básico de cada estado.

Como seguro que sabes, toda la materia a nuestro alrededor está formada por partículas microscópicas: pueden ser moléculas, átomos o incluso protones, neutrones y electrones sueltos, pero ahora mismo eso nos da igual. Lo esencial es la naturaleza discreta de la materia, a pesar de que nos sea imposible discernir esa naturaleza discreta y podamos considerar, en nuestras ecuaciones, que muchos objetos son continuos, como ya vimos en la introducción al bloque.

Lo que distingue unos medios de otros es, fundamentalmente, cómo están asociadas esas partículas. Puedes imaginar cada una de ellas como una minúscula canica de un metal enormemente denso, y cada objeto como un conjunto de billones de esas minúsculas canicas.

Para imaginar un sólido y su comportamiento, intenta visualizar la siguiente escena: la miríada de pequeñas canicas están unidas unas a otras mediante pequeñas barras metálicas, finísimas pero increíblemente resistentes. Cada canica está soldada a las barras que la rodean, que a su vez están soldadas a más canicas. El resultado es una gran red formada por infinidad de canicas unidas unas a otras mediante esas barras metálicas.

Sólido

Modelo microscópico de un sólido ideal (fdecomite / CC 2.0 Attribution License).

Desde luego, en la realidad no hay “barras”: lo que mantiene las partículas que forman el sólido en esas posiciones son fuerzas eléctricas entre ellas, pero es más sencillo imaginarlos así para nuestro propósito en este bloque, que es estudiar cómo se mueven unas partes del objeto respecto a otras. En el caso de un sólido nada se mueve por su lado: es posible mover el objeto como un todo, pero las posiciones y distancias relativas de las partículas que lo constituyen no cambian jamás.

 

 ¿Y la temperatura?

Si sabes algo de termodinámica tal vez estés arqueando la ceja ante ese jamás tan categórico… y sí, tienes razón.

Dado que la temperatura de un cuerpo está relacionada con la velocidad con la que se mueven sus partículas, estrictamente hablando el único cuerpo en el que las distancias entre “canicas” no cambian nunca sería uno a la temperatura más baja posible, el cero absoluto. En un sólido real las partículas vibran alrededor de sus posiciones de equilibrio tanto más rápido cuanto más caliente está el cuerpo.

Sin embargo, dado que en este bloque nos preocuparemos por el movimiento macroscópico de las cosas, esos movimientos microscópicos tan nimios no son importantes. Si quieres profundizar un poco más en esa parte del comportamiento de los cuerpos es mejor que leas el bloque dedicado a ese asunto, Termodinámica I.
En lo que a nosotros respecta al estudiar la mecánica de los cuerpos, lo esencial de un sólido ideal es que se mueve como un todo. Permíteme que ponga un ejemplo un poco tonto para luego modificarlo al hablar de los otros estados. Imagina un cubo sólido de 1000 kg de masa y un metro de lado; imagina ahora, paciente y estimado lector, que pongo ese cubo de 1 m3 sobre tu cabeza. El desenlace sería bastante desagradable para ti, y creo que no hace falta que entre en más detalles –lo haré cuando modifiquemos el ejemplo al hablar de líquidos y gases–.

En nuestro modelo de “canicas y barras”, lo que distingue a unos sólidos de otros en su interacción con los fluidos es básicamente la masa de las canicas y la longitud de las barras: es posible, por ejemplo, que las distancias intermoleculares –si las partículas que forman el objeto son moléculas– sean muy grandes, de modo que las canicas estén muy separadas unas de otras, o que por el contrario estén muy cerca; es posible que cada canica tenga una gran masa, si se trata de un elemento muy pesado, o que cada canica sea muy ligera si es un elemento ligero.

Pero, independientemente de la causa, es posible cuantificar esta propiedad de un modo bastante sencillo, definiendo una magnitud que nos diga cuánta masa hay en un volumen determinado del sólido, ya sea por la distancia entre partículas, por la masa de cada partícula o una combinación de ambos factores. Y esta magnitud, que utilizaremos mucho a lo largo del bloque, no es otra que la densidad.


Densidad

El origen de la densidad como concepto es muy antiguo, y la base del concepto es la necesidad de comparar lo pesados que son los distintos materiales.

La clave de la cuestión es precisamente ésa: comparar materiales, no cuerpos concretos. No vale tomar un trozo de acero de 1 kg y un trozo de madera de 500 kg y deducir, por tanto, que la madera en general es más pesada que el acero en general: eso no tendría ningún sentido. Tampoco lo tiene comparar 1 kg de plomo con 1 kg de paja y concluir que la paja pesa, como material, lo mismo que el plomo. Por un lado no queremos comparar objetos concretos sino los materiales en sí, independientemente del objeto; pero por otro lado no podemos pesar “plomo en general” y “madera en general”, sólo podemos pesar objetos concretos.

La solución es simplemente tomar objetos del mismo volumen. Así, si comparamos dos objetos de 5 m3, uno de acero y otro de corcho, el de acero pesará muchísimo más que el de corcho. Pero si tomamos objetos de los mismos materiales y de 10 m3 sucederá lo mismo, e igual si comparamos cualquier par de objetos del mismo volumen, uno de acero y otro de corcho. De hecho, la relación numérica entre las masas de ambos objetos –siempre que los dos tengan el mismo volumen, claro– se mantendrá constante para cualquier volumen: si un trozo de corcho pesa 1 kg y el trozo de acero del mismo tamaño pesa 20 kg, entonces si tomamos un trozo de corcho de 1 tonelada el trozo de acero del mismo tamaño que él pesará 20 toneladas.

Puesto que da igual qué volumen se tome siempre que sea el mismo para todos los objetos, tiene todo el sentido del mundo emplear como “volumen de referencia” la unidad de volumen, es decir, el metro cúbico. Así, la densidad de un material se define del siguiente modo:
La densidad es la masa por unidad de volumen.
Por lo tanto, para conocer la densidad de un material basta con obtener un objeto de 1 m3 de ese material, pesarlo y listo. Naturalmente, también es posible obtener un objeto de 10 m3, pesarlo y luego dividir la masa por diez para conocer la masa por cada metro cúbico, o pesar un objeto de tan sólo 0,1 m3 y luego multiplicar su masa por diez. Lo esencial es siempre utilizar como referencia final el metro cúbico, de modo que el tamaño del objeto que estemos estudiando no influya en el resultado.


Unidad de la densidad – El kilogramo por metro cúbico

Puesto que la densidad es la masa por unidad de volumen, sus unidades son precisamente ésas: las de masa entre las de volumen. A pesar de que es una magnitud muy utilizada, no ha recibido un “nombre propio”, como sucede con otras unidades que veremos en este mismo bloque. Esto hace que su definición sea un tanto perogrullesca:
Un kg/m3 es la densidad de un objeto de masa 1 kg que ocupa un volumen de 1 m3.
Sin embargo, ¿cuánto es eso? ¿mucho, poco o regular? Si vas a aprovechar este bloque debes tener, al menos, una idea aproximada de qué significa una densidad concreta, ya que como veremos es una magnitud esencial para conocer lo que le sucede a las cosas inmersas en un fluido.

1 metro cúbico

Un metro cúbico de hormigón (Rama/Creative Commons Atribution Sharealike 2.0 France).

En este caso es posible estimarlo sin demasiados problemas: 1 kg es la masa de un paquete de arroz típico, y 1 m3 es un cubo de un metro de ancho, un metro de largo y otro de alto. Si repartes el arroz en todo ese volumen, la densidad resultante es 1 kg/m3. En resumen, la unidad de densidad es muy pequeña, y la mayor parte de los objetos a nuestro alrededor tienen densidades bastante mayores.

Como siempre, la mejor manera de visualizar unidades es precisamente con ejemplos de la vida real. La densidad del hierro es de unos 7 000 kg/m3, la del hormigón de unos 2 400 kg/m3 y la del cartón unos 700 kg/m3. Más importante aún es conocer la densidad aproximada de los dos fluidos más importantes en nuestra vida –tan importante es que son las únicas dos densidades que exijo memorizar a mis alumnos–: el agua y el aire. Pero hablaremos de ellas al hacerlo de cada uno de esos dos tipos de fluido.

 

¡Ojo! Los sólidos no son más densos que los fluidos

Es muy común caer en el error de pensar que un sólido, por el hecho de serlo, es más denso que un líquido, y que los líquidos son a su vez más densos que los gases. Esto es, sin embargo, una mentira como un piano de cola.

La razón de que tengamos esta idea en la cabeza es que, efectivamente, en los objetos a nuestro alrededor sucede muy a menudo: un clavo es más denso que el agua, y el agua es más densa que el aire. Sin embargo, la densidad del mercurio líquido a temperatura ambiente es de unos 13 500 kg/m3, de modo que es unas cinco veces más denso que el hormigón.

No: lo que distingue a unos de otros no es lo densos que son o dejan de ser, sino la movilidad de sus partículas unas respecto a otras. Es posible tener partículas en posiciones fijas pero bastante alejadas o viceversa.


Líquidos

Ya hemos visto qué tienen en común los estados fluidos de la materia: la carencia de forma propia. En todos ellos, las partículas que forman el medio no se encuentran en posiciones fijas, como sucedería en un sólido, sino que pueden deslizarse y moverse unas respecto a otras. En términos de nuestras canicas y barras, aquí no hay barras, sino canicas que no tienen posiciones fijas.

Ahora bien, ¿en qué se diferencian los tres estados fluidos? Tener clara esta diferencia hará mucho más fácil atacar problemas teóricos más adelante; por eso, aunque sea algo razonablemente sencillo, quiero dejarlo bien asentado antes de seguir con el bloque. No hace falta que diga que un fluido real no se adecúa perfectamente a las características de ninguno de los tres estados ideales que son, precisamente, “moldes teóricos” de comportamiento.

De los tres estados, el líquido es el más parecido a un sólido. Puede fluir, desde luego, pero la distancia entre moléculas apenas cambia. Es algo parecido a harina extremadamente fina: los granos siempre están tocándose, pero pueden deslizarse unos sobre otros de modo que la harina tome una forma u otra.

En términos de las canicas, es algo así como un montón de pequeñas bolas imantadas: pueden moverse y adaptarse a la forma del recipiente que las contenga, pero no se alejarán unas de otras, sino que permanecerán en contacto –orientándose además según los polos magnéticos de cada una, pero eso nos da igual ahora mismo–. Como puedes ver, es un paso hacia el caos y la flexibilidad respecto a los sólidos: en aquéllos no cambia ni forma ni volumen, pero aquí puede cambiar la forma (por eso es un fluido), aunque todavía no el volumen (por eso es un líquido y no otro fluido).

Dicho de otra manera, un líquido ideal tiene siempre el mismo volumen, es decir, es incompresible (no incomprensible, por cierto, salvo que sea un fluido que se explica muy mal). Por mucho que intentes expandirlo o comprimirlo no podrás, ya que hacer eso significaría alterar la distancia entre moléculas: apretar unas contra otras o alejar unas de otras. Y eso no puede suceder por la propia definición del líquido. La razón de que los líquidos se comporten así, por cierto, es que las fuerzas intermoleculares son lo suficientemente intensas como para mantener ese statu quo de distancia.

Puedes pensar en ello así, aunque sea una simplificación: en un líquido, las moléculas están lo más cerca que pueden estar, “tocándose”. Por tanto, no pueden acercarse más. Además, esas moléculas sienten la suficiente atracción unas por otras como para no alejarse, con lo que la consecuencia conjunta de ambas cosas es que la distancia siempre permanezca igual.

Gota de agua

Gota de agua (Fir0002/Flagstaffotos/Gnu Free Documentation License 1.2).

Si volvemos al ejemplo del objeto de 1 000 kg de masa y 1 m3 de volumen que yo ponía sobre tu cabeza, imaginemos ahora que no es un sólido, sino un líquido. De hecho imaginemos que es el líquido más importante para nosotros, el agua, ya que ésa es precisamente la densidad del agua: 1 000 kg/m3. Ya sé que puede parecer un número muy grande, pero recuerda que la unidad de densidad es muy pequeña, y que un metro cúbico de agua –es decir, mil litros– es mucha agua.

¿Qué te sucedería si pusiera ese cubo de agua sobre tu cabeza –sin paredes ni recipiente, claro–? Pues muy poco. El agua se deslizaría sobre ti, caería al suelo y te mojaría, pero poco más: algo muy diferente del caso anterior en el que poníamos un bloque sólido sobre tu testa. Sé que esto puede parecer una obviedad, pero para afrontar el siguiente bloque, piensa en ello así: tu cabeza no ha interaccionado con toda el agua ni ha recibido el peso de todo el bloque de agua, sino sólo parte de él.

En el caso del sólido, aunque sólo algunas moléculas tocaban tu cabeza, la fuerza que hacía el bloque sobre ella era mucho mayor, porque unas moléculas “tiraban” de otras, al tener posiciones fijas, obligando al bloque a comportarse como un todo empujando, cayendo y moviéndose. Pero ahora la cosa no es igual: unas moléculas del agua pueden empujar tu cabeza, otras pueden caer deslizándose… la libertad de movimiento de las moléculas en el líquido cambia completamente su comportamiento, y de eso hablaremos en el siguiente capítulo del bloque.


Gases

Un gas supone un paso más hacia el caos: ahora ni siquiera la distancia entre partículas es constante. En términos de nuestras canicas es algo así como tener las bolas moviéndose a gran velocidad, al azar, rebotando en las paredes de una habitación. Por lo tanto, un gas es un fluido compresible: es posible forzar las partículas a acercarse unas a otras o alejarse unas de otras.

La primera consecuencia de esto es que la densidad de un gas puede variar con gran facilidad, a diferencia de sólidos y líquidos. Un ejemplo muy fácil es un globo: si aprietas las paredes, el gas dentro se comprime. Por eso es más difícil hablar de la densidad de un gas en general — siempre hace falta especificar a qué presión y a qué temperatura. Para ahorrar palabras, es común hablar de la densidad de un gas en condiciones normales, con lo que nos referimos a la presión atmosférica normal y una temperatura de 0 °C.

El gas más importante para nosotros, sin duda, es el aire. Químicamente es, desde luego, una mezcla de cosas, fundamentalmente nitrógeno molecular y oxígeno molecular, pero ahora mismo eso nos da igual, ya que lo que nos interesa es su comportamiento mecánico. La densidad del aire que te rodea ahora mismo, salvo que estés en un sitio un poco raro, seguramente es de unos 1,2 kg/m3, es decir, tan sólo un poco superior a la unidad de densidad, y unas ochocientas veces menos denso que el agua. Pero, como he dicho antes, no es difícil variar esta densidad si cambia la temperatura o la presión.




Pero… ¡si el aire no pesa!

Ésta es una idea que muchos tenemos en la cabeza: que el aire no pesa. En algunas ocasiones la idea se refiere a otros gases distintos del aire, como el helio: el helio sube, luego no pesa. Esto es, desde luego, más falso que Barrabás.

Cualquier cosa con masa sufre la acción de la gravedad y, por tanto, tiene peso. A consecuencia de ello, es atraído hacia el centro de la Tierra con una fuerza que depende de su masa –una fuerza que se llama, no por casualidad, peso–. Por lo tanto, todo lo que tiene masa tiene peso.

Si el aire, por ejemplo, no pesara, no habría nada que lo retuviese sobre la superficie de la Tierra, escaparía al espacio a lo largo del tiempo y todos estaríamos muertos. Puesto que tanto tú como yo estamos vivos y respirando, el aire pesa y por eso sigue aquí, apretado contra la superficie de la Tierra y proporcionándonos oxígeno.

Respecto al helio y otros gases más ligeros, puesto que tienen masa, también pesan: de la razón de que parezca que no pesan hablaremos al hacerlo de la flotabilidad. Por si tienes curiosidad, la densidad del helio es de unos 0,18 kg/m3, casi siete veces más ligero que el aire.

Si soltásemos un objeto gaseoso de 1 000 kg de masa y 1 m3 de volumen sobre tu cabeza –y para conseguir algo así tendríamos que comprimirlo mucho– la situación no sería muy distinta de la del líquido anterior: puesto que el gas fluye, no interaccionarías con todo el cubo de gas, sino sólo con la parte que toca tu cabeza. Además, la libertad absoluta de movimiento de las partículas del gas seguramente haría que muchas salieran disparadas en todas direcciones, de modo que ni siquiera se acercarían demasiado a ti.
Las partículas que forman los gases suelen moverse a tal velocidad y con tal libertad que tienden a ocupar todo el espacio disponible para ellas –salvo que pasen ciertas cosas, pero de eso hablaremos más adelante–. Los gases son, por lo tanto, bastante más difíciles de retener y mantener bajo control que los líquidos: enseguida se escapan de los recipientes que los contienen. Es posible, por ejemplo, tener un líquido en un recipiente y verterlo sobre otro, pero hacer lo mismo con un gas es mucho más complicado, salvo que sea un gas más denso que el aire. Hace bastante tiempo hicimos aquí mismo un experimento en el que se ponía de manifiesto precisamente eso en el caso del dióxido de carbono.


Plasmas

Aunque en este bloque nos dedicaremos principalmente a los fluidos más comunes a nuestro alrededor –líquidos y gases–, no está de más tener una idea del comportamiento del tercer tipo de fluidos, los plasmas. En muchas cosas se parecen a los gases, pero en otras son completamente distintos de cualquier otro estado de la materia.

Las cosas que nos rodean están formadas por moléculas o átomos sueltos. Tanto unas como otros, a su vez, están compuestos de partículas más pequeñas –electrones, protones y neutrones–, algunas de las cuales tienen carga eléctrica. Pero, en cualquier sólido, líquido o gas normal, las cargas eléctricas están compensadas en cada molécula o átomo. Por poner un ejemplo concreto: el átomo de hidrógeno más simple que existe está formado por un protón (con carga positiva) y un electrón (con carga negativa). Por lo tanto, cada átomo de hidrógeno no tiene carga neta, ya que ambas se compensan.

Si tienes un montón de hidrógeno formado por billones de átomos, la cosa no cambia: sigue habiendo billones de protones unidos a billones de electrones, con lo que la carga neta de cada átomo es nula. Pero ¿qué pasaría si consiguieras separar los protones de los electrones? Haría falta calentar mucho el gas, o bien someterlo a campos electromagnéticos muy intensos, pero es posible hacerlo (de hecho, lo hacemos todo el tiempo en varios de nuestros aparatos tecnológicos). ¿Qué tendríamos entonces?

Lo que tendríamos sería el mismo número de protones y electrones de antes pero, en vez de unidos en parejas protón-electrón sin carga eléctrica, estarían todos sueltos, protones y electrones libres moviéndose cada uno a su albedrío. En palabras más técnicas, tendrías un gas ionizado –puesto que las partículas con carga eléctrica no nula se llaman iones–, es decir, un plasma.

Gas y plasma

En otras palabras, un plasma es algo así como una sopa de cargas eléctricas. Es un paso más hacia el caos; puede parecer que es básicamente lo mismo que antes, pero no es así. Hay multitud de cosas que pueden sucederle a las cargas eléctricas “sueltas” cuando se las somete a campos eléctricos y magnéticos que las cargas “compensadas” no notan. Si se somete un plasma a un campo electromagnético más o menos intenso, en él pueden formarse corrientes eléctricas, remolinos y muchos otros fenómenos bastante complicados.

Por esa razón es bastante más complicado estudiar los plasmas que los gases, aunque se parezcan en otras cosas. De hecho, es muy difícil estudiar plasmas empleando únicamente la mecánica, ya que el electromagnetismo es fundamental para entender su comportamiento, al ser tan sensibles a él. Ésa es la segunda razón de que en este bloque no hablemos mucho de los plasmas: hace falta combinar mecánica con otras partes de la Física para entenderlos, pero éste es un bloque introductorio. ¡Algún día!

Al principio he dicho que los fluidos más comunes a nuestro alrededor son líquidos y gases, y esto es cierto. Sin embargo, si abrimos la mirada al Universo entero, la cosa cambia mucho: casi todo lo que existe es un plasma. De hecho, podríamos decir que el Universo es un plasma de hidrógeno con impurezas. Y nosotros, claro, somos una de esas impurezas. La razón es que las estrellas son básicamente hidrógeno en forma de plasma, y gran parte de la materia interestelar e intergaláctica está también ionizada.

Plasma en la superficie del Sol

El Sol, alias “inmensa bola de plasma” (NASA).


Ideas clave

Para afrontar el resto del bloque deben haberte quedado meridianamente claras las siguientes ideas:
  • En un sólido no cambian nunca ni las posiciones ni las distancias entre las partículas que forman el cuerpo.
  • Un líquido es un fluido incompresible, por lo que cambian las posiciones pero no las distancias de las partículas.
  • Un gas es un fluido compresible en el que pueden cambiar tanto posiciones como distancias de partículas que componen el cuerpo.
  • Un plasma es un gas ionizado en el que las cargas están sueltas, con lo que su comportamiento viene determinado en gran parte por el electromagnetismo.
  • La densidad de un medio es su masa por unidad de volumen.
  • La unidad de densidad es el kilogramo por cada metro cúbico (kg/m3).


Hasta la próxima…

En la próxima entrega haremos énfasis en algo que hemos mencionado hoy: el hecho de que no interaccionas con un fluido en su totalidad, sino sólo con parte de él. Nos dedicaremos, por tanto, a hablar de la presión. Mientras tanto, ya que volveremos a ello en un par de capítulos, practicaremos un poco con la densidad.




Desafío 1 – Densidad

Aunque en este tipo de bloques no hagamos demasiados cálculos, es importante asimilar el concepto de densidad con números, sobre todo al comparar densidades con las del agua (recuerda, 1 000 kg/m3) y el aire (1,2 kg/m3). De manera que hagamos exactamente eso…

El objetivo de este pequeño desafío es que ordenes los siguientes objetos del menos denso al más denso:
1. Una bola de goma cuya densidad es el 80% de la del agua.
2. Un anillo de oro (búscate la vida).
3. Un tornillo de 10 gramos y 10-6 m3.
4. Un trozo de madera de 0,5 kg y un volumen de 0,8 m3.

Fuente:

El Tamiz

6 de marzo de 2013

Cerebro y sonidos: Resuelto el problema de la fiesta de cóctel

En un ambiente ruidoso, como el de una reunión social, somos capaces de escuchar lo que nos cuenta una sola persona. Científicos de EE UU han desentrañado los entresijos neuronales de este mecanismo de selección de señales auditivas. Para conseguirlo, las ondas cerebrales se centran en los sonidos provenientes de quien nos interesa y se reduce la importancia de los demás.




Está usted en una fiesta. La música suena a todo volumen, los hielos titilan en sus copas, se oyen risas y voces de decenas de invitados; sin embargo, usted solo tiene oídos para esa persona con quien está hablando. Desde la década de 1950, los científicos tratan de explicar cómo el cerebro filtra las señales sonoras que le importan. De hecho, en neurociencias se conoce como ‘el problema de la fiesta de cóctel’.

Ahora, investigadores estadounidenses han desvelado los mecanismos por los que el cerebro, sin que seamos conscientes de haber realizado un esfuerzo excesivo, consigue reducir todo el barullo que nos rodea y quedarse solo con lo que le interesa, una capacidad cognitiva de gran importancia social.

Los resultados han sido publicados hoy en la revista Neuron y desvelan que el proceso de filtrado de la información se produce en dos etapas. En la corteza auditiva primaria se modulan las señales –es decir, se sube el volumen de lo que interesa y se baja lo demás, pero todo está presente–. Al mismo tiempo, áreas destinadas a funciones superiores hacen una selección y eliminan ya totalmente lo que se quiere ignorar.

Los científicos registraron la actividad eléctrica del cerebro de seis personas con electrodos sobre la corteza cerebral.

El estudio requería el registro de la actividad eléctrica directamente sobre la corteza cerebral. Por eso se realizó, previo consentimiento, en seis pacientes con epilepsia aprovechando que, para identificar las zonas donde se originaban los ataques de epilepsia, se les iba a realizar una electrocorticografía. En esta intervención se aplican electrodos sobre la superficie expuesta del cerebro.

Los participantes observaron un vídeo con dos personas hablando simultáneamente y se les dio instrucciones de prestar atención solamente a uno de los discursos, ignorando el otro. Durante el experimento se midieron sus ondas cerebrales con electrodos. Observar la cara y gestos del hablante contribuye al procesamiento del discurso, lo que da lugar a pensar que algunos de los efectos observados en el estudio estén influenciados no solo con lo escuchado sino también con estímulos visuales.

En la corteza auditiva primaria se percibieron tanto las señales del discurso principal, como las que no interesaban; algo esperable, puesto que, como dice Charles Schroeder, científico de la Universidad de Columbia y uno de los autores principales del estudio, “no podemos cerrar los oídos”. Sin embargo, ya en este momento la señal correspondiente al discurso de interés se detectaba con una amplitud mayor que las demás.

Por otro lado y simultáneamente, se analizaron las ondas cerebrales de áreas dedicadas a funciones superiores, como el lenguaje o el control de la atención. Es en este punto cuando el cerebro selecciona específicamente lo que le interesa. La señal del discurso de interés era muy clara, pero las demás conversaciones no fueron detectadas.

“Esta es la primera evidencia clara de que hay zonas del cerebro donde solo se tiene en cuenta la conversación a la que se atiende, mientras las ignoradas se filtran y eliminan” declara Schroeder.

El cerebro predice los giros del discurso

Pero, además, a medida que la frase toma forma y significado, la señal se hace cada vez más definida. Esto parece ocurrir porque la forma en la que se estructura el discurso permite al cerebro predecir cuándo van a tener lugar ciertos eventos clave y así las propias neuronas se predisponen para encenderse con mayor facilidad en estos momentos.

Otras investigaciones para revelar las zonas del cerebro implicadas en focalizar la atención habían utilizado estímulos simples, como pitidos breves o frases cortas. Esta vez, se ha utilizado un discurso natural y completo, lo cual proporciona herramientas para alcanzar los objetivos del proyecto mundial de mapeo de la actividad cerebral –Brain Activity Map Project–.

Hasta ahora este tipo de estudios solamente se habían realizado en animales. Schroeder y sus colegas han demostrado que es posible aprovechar operaciones en pacientes con epilepsia para el estudio de capacidades puramente humanas, como el lenguaje o la música.

Referencia bibliográfica:

E. M. Z. Golumbic, N. Ding, S. Bickel, P. Lakatos, C. A. Schevon, G. M. McKhann, R. R. Goodman, R. Emerson, A. D. Mehta, J. Z. Simon, D. Poeppel “Mechanisms Underlying Selective Neuronal Tracking of Attended Speech at a “Cocktail Party” Neuron 77, 2013 doi: doi: 10.1016/j.neuron.2012.12.037


Fuente:

Agencia SINC


google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0