Latest Posts:

Mostrando las entradas con la etiqueta espectro. Mostrar todas las entradas
Mostrando las entradas con la etiqueta espectro. Mostrar todas las entradas

8 de enero de 2019

El color rosa no existe, es solo nuestro cerebro mezclando longitudes de onda

El color rosa no existe en la naturaleza y lo que llamamos así es solo un esfuerzo del cerebro por conjugar la longitud de onda del rojo y el violeta; otros discrepan y aseguran que el rosa es un color tan real o irreal como cualquier otro.


Aunque el color rosa es uno de los menos polémicos y hasta cierto punto preferidos por muchísimas personas, comúnmente asociado a la ternura, a veces a la femineidad y conceptos afines, desde una perspectiva científica y natural hay ciertos problemas para comprobar su existencia.

Tomando en cuenta que todos los colores son solo ondas de luz con frecuencias específicas, es curioso que no existe como tal una que corresponda al rosa o, dicho de otra manera, en la que se combinen el color rojo y el violeta, por lo cual el rosa es una invención, el nombre dado a algo que estrictamente no puede existir naturalmente, solo un esfuerzo de nuestro cerebro por mezclar las longitudes de onda del rojo y el violeta.

Esta versión, sin embargo, ha sido debatida por Michael Moyer, colaborador de Scientific American, quien asegura que el color no es una propiedad de la luz ni de los objetos que la reflejan, sino una impresión nacida en el cerebro, por lo cual el rosa es un color tan real (o irreal) como cualquier otro.
Sea como fuere,  quizá algunos hagan suya una de las dos propuestas, tanto los rosafóbicos como los rosafílicos.

29 de diciembre de 2012

¿Cuántas moléculas de agua se necesitan para crear hielo?

hielo-peqInvestigadores alemanes y checos descubrieron hace poco que basta con 275 moléculas para que se inicie la cristalización y el paso de agua líquida a hielo. Si se suman otras 200 más, ya se observan incluso nanocristales de agua helada, tal y como publicaban los científicos en la revista Science

Dicho de otro modo, en el intervalo de las 275 a 475 moléculas de agua, la fase cambia de grupos no estructurados y amorfos a grupos cristalinos.

Además, el espectro infrarrojo de esas diminutas estructuras ha revelado que presentan las mismas características que las de muestras de hielo macroscópicas.

Fuente:



Muy Interesante

8 de octubre de 2012

La física de los arcoíris múltiples con gotas de agua no esféricas



Esta imagen de un arcoíris doble y bífido no es real, ha sido obtenida mediante el mejor software de simulación de arcoíris del mundo, resultado de una colaboración internacional en la que participa el grupo de investigación de Francisco Serón en la Universidad de Zaragoza. Para ello se ha mejorado el modelo físico de Lorenz-Mie, que asume gotas esféricas, para considerar gotas con forma no esférica realista (porque las de mayor tamaño lo son). En concreto, en esta imagen se observa un arcoíris ”bífido” porque se ha utilizado una mezcla de gotas pequeñas (esféricas) y gotas grandes no esféricas. El resultado es realmente espectacular y si no te dicen que está hecho por ordenador, lo mismo hasta te crees que es una fotografía de verdad. 

El artículo técnico para los interesados en los detalles técnicos es Iman Sadeghi, Adolfo Muñóz, Philip Laven, Wojciech Jarosz, Francisco Serón, Diego Gutiérrez, Henrik Wann Jensen, “Physically-Based Simulation of Rainbows,” ACM Transactions on Graphics 31: 3, January 2012 [tuit de Rafael Bachiller (@RafaelBachiller); la verdad es que ya no leo revistas de investigación en gráficos por ordenador (cuando hace un lustro las leía todas).

¿Realmente existen los arcoíris bífidos? Por supuesto, la imagen de la izquierda es una fotografía real obtenida por Benjamin Kuehne y la parte derecha la simulación correspondiente utilizando el nuevo software; se han utilizado gotas de agua de dos tamaños, con radio 0,4 mm y 0,45 mm. El acuerdo entre teoría y realidad es espectacular. Haz click en la imagen para verla en tamaño más grande (si te apetece disfrutar de sus sutiles detalles).


En estas cuatro imágenes de arcoíris incluyendo los arcos supernumerarios, la banda oscura de Alejandro y diferentes efectos. En concreto, arriba-izquierda, el arcoíris ideal según la teoría de Lorenz-Mie (gotas esféricas), arriba-derecha, cómo cambia éste cuando se introduce la efecto de que el Sol no es puntual, abajo-izquierda, una arco doble mostrando cómo cambian los colores de orden en el secundario, y abajo-derecha, un arcoíris doble con múltiples arcos supernumerarios resultado de una distribución uniforme de muchas gotas pequeñas.


La clave de la nueva teoría del arcoíris es considerar gotas de agua que no son esféricas. Beard y Chuang construyeron un modelo teórico de las gotas en 1987, que ratificaron con medidas experimentales. Os voy a confesar que yo le propuse a uno de mis estudiantes de doctorado hacer casi exactamente lo mismo que han hecho Paco Serón y sus colegas, estudiar cómo cambia la teoría de Lorenz-Mie cuando se usa el modelo de Beard-Chuang para la forma de las gotas. Pero al final mi estudiante, sin beca de investigación, no pudo completar su trabajo. Quizás por ello me ha encantado este nuevo trabajo. Los interesados en este modelo de gotas disfrutarán con Kenneth V. Beard and Catherine Chuang, “A New Model for the Equilibrium Shape of Raindrops,” Journal of the Atmospheric Sciences 44: 1509-1524, 1987, y Kenneth V. Beard, Rodney J.Kubesh, Harry T. III Ochs, “Laboratory Measurements of Small Raindrop Distortion. Part I: Axis Ratios and Fall Behavior,” Journal of Atmospheric Sciences 48: 698-710, 1991.


No este blog el lugar adecuado para discutir la teoría de la formación de los arcoíris. Quienes no la recuerden o nunca la hayan estudiado pueden recurrir a la web. En cualquier caso, resumiendo mucho, un arcoíris se forma por la refracción y reflexión de la luz del Sol en el interior de gotas de agua, incluyendo efectos de óptica geométrica (u óptica de rayos) y ondulatoria. El arcoíris primario (ver figura arriba-izquierda) se forma gracias a la luz que se refleja en el interior de la superficie interior de la gota, que ha llegado allí tras una refracción y que llega a nuestros ojos tras otra. El arcoíris secundario (ver figura arriba-derecha) requiere dos reflexiones en el interior de la gota (más las dos refracciones). Los arcos supernumerarios que se ven debajo del arcoíris primario se deben a la combinación de dos fenómenos ondulatorios, por un lado la interferencia (ver figura abajo-izquierdo), que les da los detalles finos, y por otro la difracción (ver figura abajo-derecha), que emborrona estos detalles finos.


El responsable de los maravillosos colores del arcoíris es la dispersión de la luz, el hecho que la refracción dependa de la longitud de onda de la luz incidente. La intensidad y el color de la luz dependen del ángulo con el que penetra la luz en el gota de agua y de su radio, como muestran estas dos figuras obtenidas utilizando la teoría de Lorenz-Mie para gotas esféricas. Para el caso de gotas no esféricas, el nuevo artículo técnico ha desarrollado un método numérico capaz de obtener el equivalente a estas figuras para diferentes radios de la gota de agua modelada según la teoría de Beard-Chuang.


Fotografía de un arcoíris en la que se ha insertado un trozo simulado por ordenador (solo se ha ajustado el color de fondo del arcoíris insertado). Click para ampliar.

¿Cómo compara el nuevo algoritmo con fotos reales de arcoíris? En estas fotografías reales de arcoíris se han insertado un pequeño trozo del arcoíris simulado por el nuevo modelo (los colores simulados no han sido retocados, solo se ha retocado el color de fondo para lograr un mejor ajuste con la fotografía). Tienes que ser click en la imagen para ampliar esta imagen y disfrutar del increíble acuerdo entre teoría y experimento. Los valores de los parámetros del arcoíris utilizados en estas fotografías aparecen en la siguiente tabla.


Haz click en la imagen para verla mejor. Arriba, se comparan la teoría de Lorenz-Mie y la nueva teoría; abajo izquierda, se ilustra el efecto del radio de la gota; y abajo derecha, se ilustra el efecto de la posición del Sol para gotas de 0,5 mm de radio.

En resumen, ya habrás notado que soy un apasionado de la óptica física de los arcoíris (y de otros fenómenos ópticos atmosféricos). Realmente si te apasionan como a mí este tema, te recomiendo leer el artículo de Paco Serón y sus colegas, así como muchas de las otras fuentes que hay disponibles por la web. 

Conocer la teoría detrás de los arcoíris te permitirá disfrutar mucho más del espectáculo que puedes contemplar cuando ves regar con aspersores el césped en cualquier parque de tu ciudad, o cuando disfrutas de los primeros rayos de Sol al acabar de llover

Fuente:

31 de enero de 2012

Desaparecen un objeto tridimensional por primera vez

Microondas bloqueadas y dispersadas (I), y "reconstruidas" con el armazón.

Investigadores consiguen envolver un objeto tridimensional, haciéndolo invisible desde cualquier ángulo, por primera vez.

La técnica funciona en el espectro de las microondas, que son las que tienen entre un milímetro y un metro de longitud de onda, pero que están fuera del espectro visible.

La técnica consiste en utilizar un armazón compuesto de materiales plasmónicos, que, al presentar un "negativo fotográfico" de un objeto cubierto, efectivamente lo anula.

Los materiales plasmónicos reflejan las ondas electromagnéticas de forma diferente a la usual.

La idea, presentada en la prestigiosa publicación New Journal of Physics, podría tener sus primeras aplicaciones en microscopios de alta resolución.

La mayoría de los esfuerzos para hacer objetos invisibles mediante el encubrimiento se han centrado en la ingeniería de "metamateriales": modificar materiales apra que tengan propiedades que no pueden ser encontradas en la naturaleza.

Estas modificaciones le permiten a los materiales canalizar la luz en formas inusuales, concretamente, pueden hacer que los rayos se perciban como si no hubiesen llegado o no hubiesen sido reflejados por un objeto cubierto.

Anteriores esfuerzos de hacer que objetos en tres dimensiones desaparezcan se basaban en la idea de la "alfombra de cobertura", mediante la cual el objeto es revestido con una especie de alfombra de metamateriales que reflejan la luz de una forma por la cual hacen aparecer al objeto invisible.

Ahora, Andrea Alu y sus colegas de la Universidad de Texas en Austin han usado el truco "al descubierto", haciendo que un cilindro de 18 centímetros de largo sea invisible a la luz en el rango de las microondas.

Efectos negativos

La luz puede ser explicada en términos de campos eléctrico y magnético, y lo que le da a un objeto su apariencia es la forma en que los átomos que lo constituyen absorben y reflejan estos campos.

Anteriores pruebas con metamateriales consistían en hacer que estos desviasen la luz alrededor de un objeto, usando estructuras cuidadosamente diseñadas que podían rebotar la luz de una manera determinada.

En contraste, los materiales plasmónicos pueden ser diseñados para que afecten los campos electromagnéticos opuestos al del objeto dado.

"Lo que nosotros hacemos es diferente. Usamos un armazón o estructura que dispersa la luz por si sola, pero lo interesante es que si combinas este armazón con el objeto al que está cubriendo, los efectos de ambos se complementan y el objeto se hace completamente invisible", le explica el profesor Alu a la BBC.

El armazón de material plasmónico es, en esencia, un negativo fotográfico del objeto cubierto, una representación de su opuesto.

Como resultado, la cobertura debe ser adaptada al objeto que va a cubrir, y sería imposible usar el mismo armazón para dos objetos distintos.

Pero el éxito con los cilindros sugiere que valdría la pena continuar con el estudio a diferentes longitudes de onda. "Es un objeto real en nuestro laboratorio, que básicamente desaparece", subraya el profesor Alu.

¿Invisible a simple vista?

El sistema podría mostrar con detalles imagenes de las aprtículas más pequeñas que conocemos.

Aún así, es poco probable que la idea funcione a longitudes de onda dentro del espectro visible.

Alu explica que este sistema podría ser usado en microscopios de escáner, los más potentes que existen, para conseguir una mejor imagen de ondas muy pequeñas.

Ortwin Hess, profesor de metamateriales en el Imperial College de Londres, dijo que el trabajo era una "muy buena verificación de que el sistema funciona".

"Hay algunos límites en su aplicación, pero igualmente es un hallazgo muy interesante", le dijo a la BBC.

Hess explicó que en futuras aplicaciones, los materiales plasmónicos podrían ser combinados con metamateriales estructurales ya en desarrollo. La luz podría ser dirigida a donde mejor convenga, o, como en este caso, incluso anulada.

El encubrimiento en el espectro visual, esto es, esconder al ojo humano materiales y formas complejas, se antoja distante en el tiempo, pero Alu explica que, mientras tanto, se darán pasos en esa dirección.

"Hay aún mucho trabajo que hacer", dijo Alu. "Nuestro objetivo era simplemente demostrar que esta técnica plasmónica puede reducir la dispersión de la luz de un objeto en un espacio abierto".

"Si tuviese que apostar, diría que en cinco años esta va a ser la técnica plasmónica usada para aplicaciones prácticas", añadió.

Fuente:Enlace

BBC Ciencia

Contenido relacionado

17 de octubre de 2011

¿Por qué no hay luz rosa?

La imagen que tenéis arriba es el espectro de luz visible. Sabemos que cada color que vemos está asociado a una longitud de onda diferente pero, ¿por qué no está el color rosa? ¿Es que no tiene ninguna longitud de onda? Bien, aquí tenéis la respuesta:




Este vídeo forma parte de una colección de vídeos llamada One-minute Physics que, como su nombre indica, son vídeos de un minuto donde se explican conceptos y curiosidades de la física. El autor de los vídeos es Henry Reich, y podéis encontrar más vídeos suyos aquí.

Tomado de:

La vaca esférica
Enlace

13 de septiembre de 2011

Cómo se mide el campo magnético de las estrellas

En la Tierra podemos utilizar aparatos que directamente sienten el campo magnético terrestre y arrojar mediciones directas del mismo. Pero esto es un poco más complicado de hacer cuando la estrella se encuentra a decenas o miles de años luz. Sin embargo, es posible hacer una medición indirecta y es gracias al conocido como efecto Zeeman. Su descubrimiento fue publicado por Pieter Zeeman en febrero de 1897 en un artículo titulado “The Effect of Magnetisation on the Nature of Light Emitted by a Substance” (ver).

Cuando sobre un átomo incide un campo magnético estático, externo y débil los niveles de energía del átomo se dividen. Es decir, si antes de que aparezca el campo los electrones están en determinados niveles de energía, el campo magnético provoca el desdoblamiento de estos niveles, haciendo que ahora ya no tengan exactamente la misma energía sino que aparecen dos o más niveles nuevos de energía muy parecida, pero lo bastante relevante como para ser medible con facilidad.

Primera fotografía del efecto Zeeman, P. Zeeman, 1897

Zeeman realizó su estudio sobre vapor de sodio y midió el espectro de absorción de las dos líneas características del sodio, el llamado “doblete del sodio“. En el espectro de luz del Sol, las líneas de sodio son de absorción, por tanto se ven de color negro, como podemos ver en la siguiente imagen:

Líneas espectrales del sodio en el Sol, foto por Fulvio Mete.

La separación energética entre estos nuevos niveles es directamente proporcional a la magnitud del campo magnético externo. Por eso, sin más que medir el valor de esta separación, se puede obtener con bastante precisión el valor del campo magnético externo.

Así, haciendo un análisis espectral de la luz que nos llega de las estrellas, podemos medir también su campo magnético cómodamente desde el laboratorio.

Fuente:Enlace

Migui

15 de mayo de 2010

Los espejismos


Sábado, 15 de mayo de 2010

Los espejismos

espejismo: la ciudad no está ahí

Un espejismo es una ilusión óptica debida a la reflexión total de la luz, originada cuando ésta atraviesa capas de aire de distinta densidad. Así objetos lejanos ofrecen una imagen invertida como si se reflejasen en el agua, o bien aparecen flotando en el aire o sobre la superficie del mar.

Pero… ¿cuál es el mecanismo que los forma?

refracciónYa se apuntaba en el primer párrafo: el cambio de dirección que experimenta la luz al pasar de un medio a otro de diferente densidad, que se mide con el índice de refracción, que no es más que la relación entre la velocidad de la onda en un medio de referencia (el vacío para las ondas electromagnéticas) y su velocidad en el medio del que se trate.

Así, cuando la onda de luz incide oblicuamente sobre la superficie de separación de los dos medios, y si éstos tienen índices de refracción distintos, se produce la refracción. El ejemplo clásico de este fenómeno es el de un lápiz y otro objeto semi-sumergido en un vaso con agua: la cuchara parece quebrada.

También se produce refracción cuando la luz atraviesa capas de aire a distinta temperatura (y por ello densidad), de la que depende el índice de refracción. Los espejismos son producidos por un caso extremo de refracción, denominado reflexión total.

reflexión

Los espejismos pueden ser de dos tipos: superiores e inferiores, dependiendo de en qué lugar se encuentra la capa de aire caliente.

¿Cómo es eso?

Los espejismos superiores se producen cuando el aire que está cerca de la superficie es más frío (y por lo tanto más denso) que el aire que se encuentra justo encima. Esta inversión térmica se suele dar en latitudes altas donde los mares son fríos y la capa de aire cercana a la superficie del mar está más fría que la superior. La luz ascendente es refractada hacia abajo por la capa cálida produciendo una imagen invertida que parece flotar en el cielo.

Los espejismos inferiores son más comunes, y se producen cuando el aire que está más cerca de la superficie es más caliente (y por lo tanto menos denso) que el aire que se encuentra justo encima. Este fenómeno se observa preferentemente en los desiertos donde el espejismo puede dar la apariencia de un lago o mar desde cierta distancia y, en un ejemplo mucho más cercano, en el asfalto recalentado de las carreteras, con la apariencia de una superficie líquida que refleja imágenes, como un charco. Pero cuanto más se avanza hacia esa zona más parece alejarse, hasta que de repente desaparece.

Veamos algunas imágenes más:

espejismo inferior

espejismo superior

Nota sabionda: Si hace mucho calor y el asfalto de la carretera está muy caliente, incluso se puede apreciar a simple vista como asciende el aire caliente. Y la diferente densidad de ese aire ascendente provoca que llegue una imagen borrosa al observador, pues el diferente índice de refracción hace que la luz se refracte de forma continua al atravesar las distintas capas de aire y se curve.

Nota sabionda: Una cosa parecida ocurre al repostar el automóvil. Si el día es soleado se puede observar en los alrededores de la entrada al depósito, un efecto óptico, una distorsión de imagen. En este caso provocada por los gases desprendidos por el combustible. De una densidad diferente al la del aire circundante y por ello provocadores de refracción.

Fuente:

Saber Curioso

6 de marzo de 2010

Herschel detecta huellas de moléculas orgánicas precursoras de vida


Sábado, 06 de marzo de 2010

Herschel detecta huellas de moléculas orgánicas precursoras de vida

El Observatorio Espacial Herschel

El
Observatorio Espacial Herschel es una misión de la Agencia Espacial Europea. El lanzamiento se realizó el 14 de mayo de 2009 a bordo de un Ariane 5 junto con el observatorio Planck Surveyor, en previsión de que entren en órbita a 1,5 millones de km de la Tierra, en el segundo de los puntos de Lagrange del sistema Tierra-Sol.

La misión era denominada anteriormente Far Infrared and Submilimetre Telescope (FIRST), y será el primer observatorio espacial en cubrir completamente el infrarrojo lejano y longitudes de onda submilimétricas, y su telescopio tendrá el mayor espejo desplegado nunca en el espacio (3,5 m). Este observatorio estará especializado en la observación de objetos distantes, poco conocidos. Para el correcto funcionamiento de los instrumentos se deben mantener refrigerados por debajo de los 2 K (-271 °C)

El observatorio tiene aproximadamente 7 metros de longitud y pesará unas 3,25 t. La mayor parte del peso de la sonda será debido a los depósitos de helio usados para generar las temperaturas necesarias para los detectores de infrarrojos.

La misión fue nombrada en honor de William Herschel, descubridor del espectro infrarrojo.

a
foto
Foto: ThalesAlenia Space

El Observatorio Espacial Herschel ha revelado la existencia de huellas de moléculas orgánicas potencialmente precursoras de vida en la nebulosa de Orión, una 'guardería estelar' cercana a nuestra galaxia, la Vía Láctea. Herschel es un proyecto liderado por la Agencia Espacial Europea con una importante participación de la NASA.

Los nuevos datos, obtenidos con el instrumento heterodino del telescopio infrarrojo lejano --uno de los tres instrumentos innovadores de Herschel-- demuestra la mina de oro que representa la información que Herschel proporcionará sobre la forma en qué las moléculas orgánicas están presentes en el espacio, informó el Jet Propulsion Laboratory de la NASA.

Herschel se lanzó al espacio en mayo de 2009 y está emplazado a 1,5 millones de kilómetros de la Tierra, con unas prestaciones únicas para el estudio del espacio profundo.

La nebulosa de Orión es conocida por ser una de las fábricas de productos químicos más prolíficas en el espacio, aunque la totalidad de su composición química y las vías para la formación de las moléculas no se conocen bien.

Escudriñando en el patrón de picos en los nuevos datos, lo que se conoce como un espectro, los astrónomos han identificado unas pocas moléculas comunes que son los precursores de las moléculas que permiten la vida, incluyendo agua, monóxido de carbono, formaldehído, metanol, cianuro de hidrógeno, óxido de azufre y dióxido de azufre.

Fuente:

Europa Press
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0