Latest Posts:

Mostrando las entradas con la etiqueta cosmos. Mostrar todas las entradas
Mostrando las entradas con la etiqueta cosmos. Mostrar todas las entradas

1 de mayo de 2014

¿Qué sucede con el agua en el espacio?

Cómo se comporta en condiciones de gravedad cero y presión cero del espacio exterior una de las moléculas más interesantes de la Tierra:
“Día tras día, día tras día,
permanecíamos fijos, sin aliento,
ociosos como una nave pintada
a flote en un pintado mar.

Agua, por todas partes agua,
y un rechinar de cundernas;
agua, por todas partes agua,
y ni una gota que beber.”
La Balada del Viejo Marinero. Samuel Taylor Coleridge.
La Tierra es uno de esos lugares extremadamente escasos y especiales en el Universo donde el agua puede existir, de forma estable, en forma de líquido. Nuestra canica azul nos resulta tan familiar que olvidamos lo escasa que es el agua líquida en el Universo.
 
earth
 
 
Image credit: NASA Goddard Space Flight Center Image by Reto Stöckli, Terra Satellite / MODIS instrument.

Hay tanta agua en la Tierra que si juntáramos todos los océanos del planeta, pesarían más de 10^18 toneladas, más que el mayor de los asteroides descubiertos y aproximadamente lo mismo que Caronte, la luna gigante de Plutón. En resumidas cuentas, un montón de agua,  ¡la suficiente como para llenar una esfera de 1.385 km de diámetro!

1-1varVmH68txR3RcGheDQFA
 
 
Image credit: Jack Cook / WHOI / USGS.

Sin embargo, el agua sólo dispone de un pequeño margen en el que puede existir físicamente como líquido, incluso en la Tierra. Por ejemplo, si lleváramos agua caliente a un lugar muy elevado, comenzaría a hervir y se convertiría en gas. Cuanto más alto la llevásemos, más descendería su punto de ebullición.


1-mpIhDtNJ8wCRzIY6OHBMLA
 
 
Image credit: Thomson Higher Education.

¿Y esto por qué es así? Porque a mayor altitud, hay un menor porcentaje de atmósfera presionando sobre el agua, es decir, la presión es menor. A las temperaturas atmosféricas que son normales en la Tierra, las moléculas de agua tienen una determinada cantidad de energía cinética y tienden a moverse a una determinada velocidad media. Algunas de esas moléculas tienen la suficiente energía como para escapar en un momento dado de la fase líquida y convertirse en gas. La mayor fuerza que contrarresta esto es la presión atmosférica. Si se incrementa la presión se vuelve más difícil para el agua escapar y pasar a gas; si se disminuye la presión, se vuelve más fácil. Esta es la razón de que la temperatura de ebullición del agua sea mayor dentro de una olla a presión, pero menor en grandes altitudes, donde la presión atmosférica es más baja.

Por otra parte, el agua tampoco puede ser líquida a bajas temperaturas. Puedes comprobar (en el diagrama de debajo) que si empiezas con agua líquida, puedes convertirla en gas bajando la presión, pero también puedes convertirla en un sólido bajando la temperatura.

Lea el artículo completo en:

Divúlgame

3 de abril de 2014

¿Dónde se esconde la materia oscura?

  • Forma el 90% de la materia que existe en el Universo
  • Los científicos saben que existe pero no han logrado detectarla
  • Las primeras evidencias de su existencia se remontan a los años 70
Abell 1689, uno de los mayores cúmulos de galaxias que se conoce

Hace unos días el telescopio Hubble capturó la imagen de Abell 1689, uno de los mayores cúmulos de galaxias que se conoce.

Los físicos teóricos no les salen las cuentas. Según sus cálculos, el Universo debería tener más materia de la que han observado. La materia convencional, es decir, la que forma la pantalla del ordenador que estás usando, tu cuerpo, una montaña, las estrellas o los planetas, solo supone el 10% de la materia total del Universo. ¿Dónde está el 90% que falta?

La materia que falta es la denominada materia oscura. Se llama oscura porque no podemos verla. Los científicos han comprobado que, al contrario que con la materia ordinaria, la oscura no se puede detectar con los procesos asociados a la luz, es decir, porque no absorbe ni emite radiaciones electromagnéticas. Por eso, aunque hace más de 70 años los físicos teóricos calcularon su existencia aún no han logrado localizarla.

Los científicos saben que está ahí, aunque no puedan verla, por sus efectos sobre estructuras enormes, como las galaxias. Fue en los años treinta del siglo pasado cuando el astrónomo suizo Fritz Zwicky notó una anomalía: las galaxias del enorme cúmulo de Coma se movían como si tuviesen mucha más masa que la observable.

A grandes rasgos, las galaxias que forman un cúmulo están reunidas gracias a la atracción gravitatoria que se produce entre ellas. Sin embargo, la cantidad de materia convencional que hay en cúmulo de Coma no es suficiente para generar la atracción necesaria para mantener atrapadas a las galaxias. Zwicky concluyó que la masa que falta para agruparlas debía existir aunque no la viera.

En los setenta, la astrónoma estadounidense Vera Rubin volvió a toparse con el mismo dilema. En esta ocasión no podía explicar sin recurrir a la existencia de la materia invisible el movimiento de rotación de las estrellas de las galaxias espirales.

Hoy en día, detectar esa materia y averiguar de qué está hecha es uno de las grandes misiones de la comunidad científica. En un litro de aire se estima que hay tres partículas de materia oscura. Es una cifra tan baja que es extremadamente difícil localizarla.

Hay decenas de proyectos en marcha que intentan detectar materia oscura. Los más destacados están situados en laboratorios subterráneos para evitar que lleguen los rayos cósmicos que son fuente de neutrinos, partículas tan parecidas a las de materia oscura que podrían confundirse. Allí los científicos han colocado sensores enfriados a una temperatura cercana al cero absoluto, la más baja que existe, para que evitar que vibren.

Uno de ellos es el Experimento Criogénico de Búsqueda de la Materia Oscura (el CDMS, por sus siglas en inglés). Se lleva a cabo en la mina Soudan, en Minnesota (Estados Unidos). Otros se desarrollan en un laboratorio bajo una montaña Gran Sasso (Italia), a 1,5 kilómetros de profundidad.

Atraviesan todo lo que se les ponga delante

Los dos grupos buscan unas partículas hipotéticas llamadas Partículas Masivas de Interacción Débil (WIMPS). No se puede asegurar que existan, pero por sus características, si existieran resolverían el misterio de la materia oscura. Precisamente también por sus características son muy difíciles de detectar. Son mucho más pequeñas que un átomo por lo que atraviesan todo aquello que se les ponga por delante. Se mueven tan despacio que si por algún casual chocan con el núcleo de un átomo del detector, la perturbación sería mínima. Por eso los detectores deben ser extremadamente sensibles.

Fuera de la Tierra también hay proyectos que buscan materia oscura, como el telescopio Fermi de la NASA que busca fuentes de rayos gamma, que pueden ser producto de la aniquilación de dos partículas de materia oscura. Otra misión es Euclides de la Agencia Espacial Europea, un telescopio aún en construcción que está previsto poner en órbita en 2020. Cartografiará la forma, el brillo y la distribución tridimensional de 2000 millones de galaxias, que cubren más de un tercio del firmamento. Así, el telescopio se remontará hasta el primer cuarto de la historia del Universo. En su labor, espera encontrar pistas sobre el misterio de la materia oscura.

En España investiga la materia oscura desde el punto de vista teórico el proyecto MultiDark, Método de Multimensajeros para la Detección de la Materia Oscura, coordinado por la Universidad Autónoma de Madrid y el Instituto de Física Teórica IFT. Desarrollan tres líneas de investigación complementarias: buscan las partículas candidatas a constituir la materia oscura, estudian cómo éstas forman los halos galácticos y contribuyen al desarrollo de experimentos que puedan detectarlas.

Descubrir dónde se esconde esta materia invisible será un hito de la cosmología que tendrá más repercusión aún que el hallazgo del ya archiconocido bosón de Higgs. Quien la encuentre merecerá sin duda el Premio Nobel.

Otro ingrediente oscuro

La energía oscura es otro ingrediente enigmático del Universo. No se sabe cuál es su origen. Junto a la materia oscura suman el 96% del Universo. Esta energía es la fuerza que acelera la expansión del Universo. Su existencia se propuso en 1998 para justificar el hecho de que el Universo está acelerándose, en lugar de frenarse bajo la atracción gravitatoria de la enorme cantidad de materia que contiene. El descubrimiento de esta aceleración cósmica fue reconocido con el Premio Nobel de Física en el año 2011.

Tomado de:

RTVE Ciencia


23 de marzo de 2014

¿Cómo nacen las estrellas?


  • Nacen a partir de la agregación del gas y polvo frío de las nebulosas
  • Viven gracias al tenso equilibrio entre gravedad y reacciones nucleares
Corazón de NGC 604, una nebulosa con unas 200 estrellas nacientes.

Corazón de NGC 604, una nebulosa con unas 200 estrellas nacientes.NASA/Hui Yang

Las estrellas nacen por azar. Se juntan fragmentos de materia de las nubes frías de gas y polvo que flotan en el espacio, las llamadas nebulosas. Estas partículas se van agregando por atracción gravitatoria hasta formar una gran masa.

Este conglomerado, por efecto de la gravedad, se contrae sobre sí mismo y como consecuencia aumenta en su centro, la densidad, presión y calor. De esta manera, los átomos se mueven cada vez más rápido y chocan unos con otros. En esas condiciones, pronto se inician reacciones de fusión nuclear. Cuando comienzan ha nacido la estrella.

Las agrupaciones de masa que no logran iniciar las reacciones nucleares, es decir, las estrellas frustradas, se denominan enanas marrones. Las que sí lo logran continúan un arduo camino cósmico. Las reacciones nucleares liberan presión del centro de la estrella, contrarrestan el efecto de la gravedad, lo que evita que la estrella colapse sobre sí misma.

La estrella vivirá gracias a ese tenso equilibrio entre gravedad y reacciones nucleares. Morirá cuando la gravedad gane la batalla, algo que sucederá sin excepción.

Evolución estelar

Las estrellas evolucionan a medida que van agotando su masa, que es el combustible de las reacciones nucleares. Cuanto más masa tiene una estrella, más combustible tiene para alimentar su ‘motor’ y brilla más, pero vive menos tiempo.

Cuando se agota el combustible de su centro, la estrella vuelve a contraerse y aumenta de nuevo su temperatura, lo que favorece las aparición de nuevas reacciones nucleares. Esta vez se producen en la siguiente capa de masa alrededor de la central, que ya está gastada y contrayéndose. Esta capa circundante se expande y así la estrella se hace más grande.

El aumento de volumen es el responsable del cambio de color de las estrellas. Cuanto más grande, más se enfrían las capas externas y emiten luz visible en un color determinado. Las estrellas más frías son rojas (con unos 2800 ºC), las amarillas rondan los 5500 ºC, las más calientes son azules (aproximadamente 20.000 ºC) y las verdosas (100.000 ºC).

Un estrella típica de masa media es nuestro Sol. Es joven, tiene tan solo unos 4.600 millones de años. Es una gigante amarilla y dentro de 7.000 millones de años habrá madurado y se habrá convertido en una gigante roja.

Será unas cien veces más grande de lo que es en la actualidad y habrá engullido a la Tierra. Morirá a la edad de 12.000 millones de años tras perder gran parte de su masa, que habrá lanzado eyectada en todas direcciones formando una nebulosa planetaria. Será entonces una enana blanca, que brillará con debilidad hasta que se agote, se vuelva negra e inerte.

La mayoría de la estrellas mueren como enanas blancas, excepto las estrellas supermasivas, que son de color azul. Ellas tienen un final apoteósico. Su final consiste en una explosión de brillo excepcional llamada supernova. Desprenden en unos pocos segundos tanta energía como la que ha emitido y emitirá nuestro Sol en toda su existencia.

Fuente:

RTVE Ciencia
 

21 de febrero de 2014

El brillo de la estrella polar viene aumentando desde hace siglos

Movimiento aparente de las estrellas en torno a la Polar
Movimiento aparente de las estrellas en torno a la Polar LCGS Russ


ADVERTISEMENT

El astrónomo Rafael Bachiller nos descubre en esta serie los fenómenos más espectaculares del Cosmos. Temas de palpitante investigación, aventuras astronómicas y novedades científicas sobre el Universo analizadas en profundidad.


El eje terrestre y la Polar en nuestros días
 
Gracias a la comparación de medidas recientes con otras realizadas a lo largo de la historia, se ha descubierto que el brillo de la Estrella Polar viene aumentando desde hace siglos, quizás milenios. Aunque en la Polar se conocían pulsaciones de tipo Cefeida, que van acompañadas por variaciones periódicas de su brillo, las causas de este incremento continuado de su luminosidad son desconocidas.

La Polar y Julio César


Posición del polo Norte en diferentes épocas
"Soy constante como la Estrella Polar que por su estabilidad no tiene rival en el firmamento".... los astrónomos parecen empeñados en hacer extemporáneas estas palabras que Shakespeare puso en los labios de Julio César. Naturalmente la Polar actual, la estrella más brillante de la Osa Menor, no siempre estuvo en el polo Norte (y no lo estaba en tiempos de Julio César) pues la precesión del eje terrestre hace que el polo Norte describa una circunferencia en la bóveda celeste. Pero además, resulta que unos trabajos recientes vienen a demostrar que la posición aparente en el firmamento no es lo único que cambia en la actual Estrella Polar, también cambia su brillo.

La Polar es una estrella supergigante amarilla, 2.440 veces más luminosa y 90.000 veces más voluminosa que el Sol. Situada a menos de 440 años luz de distancia, en la cola de la Osa Menor, es la estrella más fácil de localizar en el Hemisferio Norte. No es la más brillante, ni la más cercana, pero (después del Sol) la Estrella Polar es la más observada de nuestro hemisferio. Gracias a su posición fija en la bóveda celeste, con todas las estrellas girando aparentemente a su alrededor (como reflejo de la rotación terrestre), la Polar ha sido la guía de navegantes durante siglos. También para los astrónomos ha servido de referencia a lo largo de la historia tanto para orientarse en el cielo como para construir telescopios de montura estable.

Lea el artìculo completo en:

El Mundo Ciencia

14 de enero de 2014

'Pandora' desvela las galaxias más lejanas y primitivas del Universo

El telescopio Hubble capta la imagen más nítida de algunas de las galaxias más distantes y antiguas, cuya luz es amplificada al atravesar el cúmulo de Pandora.


El telescopio espacial Hubble ha conquistado un nuevo hito astronómico al fotografiar un conjunto de galaxias sumamente interesante con la mayor resolución conseguida hasta el momento. Esta agrupación de galaxias, que ya había sido estudiada por el Hubble y otros telescopios en el año 2011, es conocida como Abell 2744. Su formación se produjo a partir de un choque de cuatro grupos de galaxias, generando así un conjunto gigante con una estructura aparentemente caótica. Abell 2744 también se es conocido como 'cúmulo de Pandora' pues, según los astrónomos, esta colisión múltiple entre cúmulos abrió una caja de Pandora de notables fenómenos astrofísicos.

La mezcla de fenómenos cósmicos que se dan en Pandora, "algunos de los cuales nunca se habían visto antes", según señalan desde el Instituto de Ciencia del Telescopio Espacial, hacen que los cúmulos de galaxias actúen como lentes gravitacionales, de manera que las imágenes recogidas por el telescopio Hubble permiten ver lo que se encuentra a 12.000 millones de años luz, recreando cómo era el Universo poco después del Big Bang.

Un telescopio natural

La lente gravitacional es un fenómeno que se produce en astrofísica cuando la luz procedente de un objeto lejano pasa por las proximidades de una gran masa que se encuentra en la misma línea de mirada. Esta masa amplifica la imagen del objeto lejano actuando como un gran telescopio natural.

Estas nuevas imágenes captadas telescopio Hubble, en las que el cúmulo de Pandora actúa como una lente gravitacional, muestra galaxias situadas a distancias muy lejanas y a la vez muy jóvenes. Algunas de ellas son excepcionalmente brillantes. "Hemos observado cómo de repente las galaxias se han empezado a acumular y a hacerse cada vez más luminosas en muy poco tiempo", dice el doctor Garth Illingworth de la Universidad de California en Santa Cruz. Casi 3.000 galaxias de fondo y cientos de ellas en el primer plano aparecen en las fotografías.

Las galaxias que aparecen distorsionadas en forma de arco azul son porciones de los llamados anillos de Einstein. "Los anillos sólo se ven completos cuando la galaxia distante está perfectamente alineada con la que actúa como lente", apunta Rafael Bachiller, director del Observatorio Astronómico Nacional en España. Los anillos de Einstein permiten estudiar cómo eran las galaxias cuando el Universo tenía apenas 3.000 millones de años de edad.

El 75% de la masa de Pandora está compuesta por la enigmática materia oscura, uno de los mayores misterios de la astrofísica contemporánea, que también tiene una gran importancia en estas agrupaciones de galaxias.

Lee el artículo completo en:

El Mundo Ciencia

6 de enero de 2014

¿Por qué titilan las estrellas?


La ornamentación navideña que decora las calles de las ciudades estos días intenta simular con sus luces parpadeantes las estrellas que, en lugares con poca contaminación lumínica, se pueden observar durante la noche. Pero, ¿por qué titilan las estrellas? ¿Varía la luz que emitieron hace millones o miles de años y que nos llega ahora a la Tierra?
 
La respuesta nos la da Antonio Ruiz Elvira, catedrático de Física Aplicada de la Universidad de Alcalá, desde el museo CosmoCaixa de Madrid. En realidad, lo que fluctúa es la atmósfera. 

Las variaciones de temperatura de cada capa de la atmósfera según el viento en ellas causan variaciones en la dirección de la luz de cada estrella desde que llega a las capas altas de la atmósfera hasta que llega a nuestros ojos en la superficie.

La luz se refracta como lo hace en los cristales de las joyas. Cuando éstas se mueven, la luz refractada cambia de dirección como hace la luz que llega de las estrellas.

La refracción vibrante es mucho más pronunciada cuando la luz de la estrella llega desde el horizonte, mientras que la Polar, que está arriba, fluctúa mucho menos. La atmósfera está siempre en movimiento, y este es turbulento, en pequeños vórtices que van uniéndose hasta formar los grandes ríos de aire que producen el tiempo meteorológico. La luz de las estrellas no viene de las varitas de las hadas en el cielo. "La ciencia genera menos ilusión, pero es mas bella que ésta".
Fuente:

16 de noviembre de 2013

Un universo “de juguete” revela que el tiempo es una ilusión

Investigadores italianos demuestran empíricamente una teoría de los años 80 a partir del entrelazamiento cuántico de dos fotones.

Un experimento realizado con un modelo de universo “de juguete”, formado sólo por dos fotones cuánticamente entrelazados, sugiere que el tiempo “es una ilusión” o que la existencia del tiempo depende de la existencia de los relojes, como propuso una teoría matemática de la década de 1980. Además, vincula la emergencia del tiempo al entrelazamiento cuántico. Interesantes resultados que avivan una cuestión fundamental, tanto para la ciencia como para la filosofía. Por Yaiza Martínez.


Imagen: JoLin. Fuente: PhotoXpress.
Imagen: JoLin. Fuente: PhotoXpress.

Un experimento realizado con un modelo de universo “de juguete” sugiere que el tiempo “es una ilusión” o que la existencia del tiempo depende sólo de la existencia de los relojes.

La física moderna intenta fusionar las leyes de dos “universos”: el macrocoscópico, y el de las partículas atómicas y subatómicas. Actualmente, describe así la realidad a través de dos vías: la mecánica cuántica‎, que explica lo que sucede a escala microscópica; y la relatividad general‎, que da cuenta de lo que sucede en el resto del cosmos: a los planetas, a los agujeros negros, etc.

Pero ambas descripciones no terminan de combinar bien. Desde que las ideas de la mecánica cuántica se expandieron, a partir de la primera mitad del siglo XX, parece que son incompatibles.

La cuestión del tiempo

A mediados de la década de los años 60 del siglo pasado, los físicos John Wheeler y Bryce DeWitt parecieron encontrar una solución a este dilema: la llamada ecuación de Wheeler-DeWitt.

Con ella se eludían los problemáticos infinitos que surgían de otras combinaciones de ambas teorías. Pero, aunque la ecuación de Wheeler DeWitt resolvió uno de los problemas fundamentales de la combinatoria entre las dos interpretaciones de la realidad antes mencionadas, hizo emerger un segundo y muy serio problema: expresaba un universo estático, “sin tiempo”, algo que a todas luces no existe.

En 1983, los teóricos Don Page y William Wootters propusieron una solución a este segundo problema basada en el llamado “entrelazamiento cuántico”, esa propiedad subatómica que tan bien describieron en su libro “El cántico de la cuántica” Ortoli y Pharabod: si tienes dos peces (o partículas) en un mismo charco y éstos se unen tan íntimamente que alcanzan un estado “entrelazado”, cuando pases uno de ellos a otra charca, ambos seguirán reaccionando de la misma manera, aunque ya no estén juntos. Así, si el primero es pescado, el segundo saltará igualmente fuera de su charca.

Este extraño comportamiento de las partículas subatómicas entrelazadas –al que Einstein denominó “acción fantasmal a distancia”- provoca que éstas no puedan definirse a partir del entrelazamiento como partículas individuales con estados definidos, sino como un sistema. El entrelazamiento cuántico hace que las partículas pasen a tener una “misma existencia”, a pesar de encontrarse espacialmente separadas.

El artículo completo en:

Tendencias21

25 de septiembre de 2013

La idea matemática que hizo volar al Voyager



Michael Minovitch

Michael Minovitch solucionó el "problema de los tres cuerpos" en 1961, e impulsó la misión del Voyager.

La sonda espacial Voyager ha cautivado al mundo con su proeza en los confines del Sistema Solar, pero su lanzamiento en 1977 sólo fue posible gracias a las ideas matemáticas y la persistencia de un estudiante de doctorado que descubrió cómo catapultar sondas al espacio.

En 1942, por primera vez en la historia un objeto creado por el hombre cruzó la invisible línea de Karman, que marca el borde del espacio. Sólo 70 años después, otra nave espacial viaja hasta la última frontera del Sistema Solar.

La sonda Voyager 1, 35 años después de haber despegado, está a 18.400 millones de kilómetros de la Tierra y a punto de cruzar el límite que marca el alcance de la influencia del sol, donde el viento solar se encuentra con el espacio interestelar.
Así contado parece fácil, pero la puerta al más allá del Sistema Solar permaneció cerrada durante los primeros 20 años de la carrera espacial.

El problema de los tres cuerpos

Computadora IBM

Minovitch utilizó la computadora más potente del momento. 

Desde 1957, cuando el Sputnik 1 se convirtió en la primera obra de ingeniería que pudo orbitar sobre la Tierra, la ciencia comenzó a mirar cada vez más allá en el cosmos.

Se enviaron naves a la Luna, a Venus y a Marte. Pero un factor crucial impedía alcanzar distancias más lejanas.

Para viajar a los planetas exteriores hace falta escapar de la fuerza gravitacional que ejerce el Sol, y para eso es necesaria una nave espacial muy grande.

El viaje hasta Neptuno, por ejemplo, a 2.500 millones de kilómetros, podría llevar fácilmente 30 o 40 años debido a esa fuerza.

En su momento, la Nasa no podía asegurar la vida útil de una sonda por más tiempo que unos meses, así que los planetas lejanos no estaban dentro de las posibilidades.

Hasta que un joven de 25 años llamado Michael Minovitch, entusiasmado por la nueva computadora IBM 7090, la más rápida en 1961, resolvió el problema más difícil de la ciencia mecánica celeste: el de "los tres cuerpos".

Se refiere al Sol, un planeta y un tercer objeto que puede ser un asteroide o un cometa viajando por el espacio con sus respectivas fuerzas de gravedad actuando entre ellos. La solución establece con exactitud cómo afectan la gravedad del Sol y la del planeta a la trayectoria del tercer objeto.

Sin amilanarse por el hecho de que las mentes más brillantes de la historia -la de Isaac Newton entre ellas- no lograron resolver esta incógnita, Minovitch se concentró en despejarla. Su intención era usar la computadora para buscar la solución a través de un método de repetición.

Verano de 1961

Planeta lejano

Los cálculos de Minovitch permitieron la exploración de los planetas del Sistema Solar más lejanos.

En su tiempo libre, mientras estudiaba un doctorado en el verano de 1961, se puso a programar series de ecuaciones para aplicar al problema.

Minovitch llenó su modelo con datos de las órbitas planetarias, y durante una pasantía en el laboratorio de propulsión de la Nasa (Jet Propulsion Lab) obtuvo información más exacta sobre las posiciones de los planetas.

El joven estudiante demostró así que si una nave pasa cerca de un planeta que orbita alrededor del Sol puede apropiarse de parte de la velocidad orbital de ese astro y acelerar en dirección opuesta al Sol sin utilizar el combustible de propulsión de la nave.

Sin financiamiento para continuar con sus pruebas en la computadora, y en un intento por convencer a la Nasa de la importancia de su descubrimiento, dibujó a mano cientos de trayectorias de misiones teóricas al espacio exterior. Entre ellas había una ruta de vuelo específica que se convirtió en la trayectoria de las sondas Voyager.

Pero en 1962 el Jet Propulsion Lab estaba ocupado con el Proyecto Apolo, y nadie hizo mucho caso al hallazgo de Minovitch.

Lea el artículo completo en:

BBC Ciencia
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0