Latest Posts:

1 de mayo de 2014

¿Qué sucede con el agua en el espacio?

Cómo se comporta en condiciones de gravedad cero y presión cero del espacio exterior una de las moléculas más interesantes de la Tierra:
“Día tras día, día tras día,
permanecíamos fijos, sin aliento,
ociosos como una nave pintada
a flote en un pintado mar.

Agua, por todas partes agua,
y un rechinar de cundernas;
agua, por todas partes agua,
y ni una gota que beber.”
La Balada del Viejo Marinero. Samuel Taylor Coleridge.
La Tierra es uno de esos lugares extremadamente escasos y especiales en el Universo donde el agua puede existir, de forma estable, en forma de líquido. Nuestra canica azul nos resulta tan familiar que olvidamos lo escasa que es el agua líquida en el Universo.
 
earth
 
 
Image credit: NASA Goddard Space Flight Center Image by Reto Stöckli, Terra Satellite / MODIS instrument.

Hay tanta agua en la Tierra que si juntáramos todos los océanos del planeta, pesarían más de 10^18 toneladas, más que el mayor de los asteroides descubiertos y aproximadamente lo mismo que Caronte, la luna gigante de Plutón. En resumidas cuentas, un montón de agua,  ¡la suficiente como para llenar una esfera de 1.385 km de diámetro!

1-1varVmH68txR3RcGheDQFA
 
 
Image credit: Jack Cook / WHOI / USGS.

Sin embargo, el agua sólo dispone de un pequeño margen en el que puede existir físicamente como líquido, incluso en la Tierra. Por ejemplo, si lleváramos agua caliente a un lugar muy elevado, comenzaría a hervir y se convertiría en gas. Cuanto más alto la llevásemos, más descendería su punto de ebullición.


1-mpIhDtNJ8wCRzIY6OHBMLA
 
 
Image credit: Thomson Higher Education.

¿Y esto por qué es así? Porque a mayor altitud, hay un menor porcentaje de atmósfera presionando sobre el agua, es decir, la presión es menor. A las temperaturas atmosféricas que son normales en la Tierra, las moléculas de agua tienen una determinada cantidad de energía cinética y tienden a moverse a una determinada velocidad media. Algunas de esas moléculas tienen la suficiente energía como para escapar en un momento dado de la fase líquida y convertirse en gas. La mayor fuerza que contrarresta esto es la presión atmosférica. Si se incrementa la presión se vuelve más difícil para el agua escapar y pasar a gas; si se disminuye la presión, se vuelve más fácil. Esta es la razón de que la temperatura de ebullición del agua sea mayor dentro de una olla a presión, pero menor en grandes altitudes, donde la presión atmosférica es más baja.

Por otra parte, el agua tampoco puede ser líquida a bajas temperaturas. Puedes comprobar (en el diagrama de debajo) que si empiezas con agua líquida, puedes convertirla en gas bajando la presión, pero también puedes convertirla en un sólido bajando la temperatura.

Lea el artículo completo en:

Divúlgame
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0