Latest Posts:

Mostrando las entradas con la etiqueta tiempo. Mostrar todas las entradas
Mostrando las entradas con la etiqueta tiempo. Mostrar todas las entradas

6 de septiembre de 2013

El hombre que estuvo atrapado en un presente "eterno"

Atrapado en un eterno presente - Cierta Ciencia podcast - Cienciaes.com

Cuatro centímetros y treinta segundos

La memoria a corto plazo

La memoria crea y define nuestra identidad, el sentido de quiénes somos y de cómo somos. Toda la información a la que estamos expuestos en nuestro día a día y que recibimos por los sentidos, entra al cerebro y se va procesando y almacenando para luego nutrir y forjar lo que somos. 

Hay quienes comparan este proceso con el funcionamiento de un computador: codificación de los datos que entran, clasificación y almacenamiento y luego la recuperación de esa información. Pero la neurobiología se ha encargado de demostrar que el cerebro funciona de una manera muchísimo más compleja. Cuando se envejece, por ejemplo, las funciones cerebrales cambian: algunas se vuelven más lentas y otras a cambio, más agudas – se dificulta memorizar un número de teléfono pero la comprensión de fenómenos generales se vuelve más precisa. Un computador funcionando así irá a parar a la basura.

Casi todos pensamos que la memoria de corto plazo es la que nos permite recordar eventos que han sucedido hace horas, días. Y que la de largo plazo nos trae recuerdos más lejanos, que nos pueden llevar hasta a la infancia. Pero no es así. La neurobiología nos cuenta que la memoria de corto plazo es un proceso que dura como máximo treinta segundos.

Así cuando estamos en un aeropuerto y nos dicen que nuestro avión sale por la puerta 6A, si no repetimos al menos un par de veces la información, o miramos en el tiquete el número, ya no sabremos por donde sale el avión. Si por el contrario hemos asociado el 6A con algo, si lo hemos “fijado” con cualquier recurso, ya esa información entra a formar parte de la memoria funcional, y se quedará guardada sin peligro de perderse, así el avión se atrase y nos dé por irnos a tomar un café o a visitar una librería.

El trabajo de la memoria funcional, consolidar, lo hace una estructura del cerebro con forma de caballito de mar, el hipocampo, sumergido en las profundidades de nuestros lóbulos temporales. Sin el hipocampo, no es posible fijar, más allá de los treinta segundos, toda la información que recibimos por el olfato, el oído, el tacto, el gusto, es decir todo lo que nos permite pensar, elaborar, crear, imaginar, querer, sentir, sufrir.

La terrible tragedia de Henry Gustave Molaison

Eso fue lo que le sucedió a un hombre conocido hasta el año 2008 como H.M., cuando murió y se le dio su nombre completo, Henry Gustave Molaison.

Henry vivió una infancia feliz con sus padres hasta que a los diez años empezó a sufrir lo que se llamaba hasta casi mediados del siglo pasado, un mal menor (petit mal), una especie de estupor que duraba poco y que lo alejaba del entorno. Cerraba los ojos y sudaba. Contaba a sus padres que se había ido y que no recordaba nada. Los empezó a sufrir a diario y a medida que crecía, su número aumentaba. Ya en la adolescencia pasó a ser un mal mayor, ataques epilépticos que lo alejaban de la escuela y que día a día lo incapacitaban más. Empezó a recibir dosis masivas de anticonvulsionantes, sin mejoría alguna.

Henry había sufrido un accidente con su bicicleta alrededor de los siete años, aunque no son muy claras las circunstancias. El resultado sí. Empezó a visitar médicos y especialistas aunque después de varios EEG no se encontró ninguna lesión en su cerebro. Las convulsiones se volvían cada vez más fuertes y a la edad de 27, sin mayores esperanzas, con el consentimiento de sus padres y el suyo propio se decidió recurrir a “un procedimiento bastante experimental”, como lo definiría el mismo neurocirujano, William Scoville.

Cuatro centímetros y treinta segundos

En la cirugía, a Henry le fueron removidos cuatro centímetros de tejido en ambos lóbulos temporales. En ese tejido se fue gran parte del hipocampo y toda la amígdala, el lugar donde residen las emociones.

La neurocirugía era práctica común alrededor de 1953 –año de la de Henry¬– para remediar la epilepsia. Salvo otros dos casos, estos con malformaciones congénitas en sus cerebros, el caso de Henry fue único: sus ataques de epilepsia cesaron pero pronto fue evidente que algo terrible, devastador, irreversible había pasado. Henry no podía recordar nada posterior al día de la cirugía. Su hipocampo perdido no le permitía consolidar la memoria de corto plazo –que permaneció intacta pues reside en otra región del cerebro que no fue tocada– y salir más allá de los tre inta segundos que eran lo único que le quedaba, imposibilitando para siempre la formación de una memoria de largo plazo en lo que le quedaba de vida después de la cirugía.
La razón para que Scoville extrajera más tejido del usual se debió a que durante toda la preparación para el procedimiento fue imposible localizar, como se hacía con otros pacientes, el lugar de la lesión que causaba las convulsiones. Por el daño ocasionado, Scoville siempre habló de la cirugía como de “trágico error” y nunca más volvió a realizar ninguna.

Las enseñanzas de un trágico error.
 
Lo que fue un terrible desastre para Henry Molaison, permanecer atrapado todo el resto de su vida en un permanente tiempo presente, para la neurobiología fue un más que precioso tesoro. Gracias a él, el hipocampo pasó a identificarse como el centro de la memoria.

Quien se encargó de preservar ese legado fue la neurocientífica del MIT, Suzanne Corkin, quien dedicó su vida a estudiar a Henry. No sólo cuidó de que se lo respetara en su total integridad de ser humano sino que fue más que cuidadosa en escrutar hasta el agotamiento a todos los científicos que se acercaban a él. Por ello Henry, descrito por todos como un hombre tranquilo y apacible, recibió la mejor atención posible.

Henry fue objeto de miles de estudios y pruebas de los que él, por supuesto no guardaba ningún recuerdo. Corkin entraba cada mañana y a su saludo él respondía como si fuera la primera vez que la viera. “Permanent Present Tense” es el precioso libro que narra las experiencias neurobiológicas, los estudios sicológicos, los estudios de aprendizaje, entre muchos otros, realizados por Corkin y su equipo durante más de cuarenta años con Henry.

Preguntada si se había logrado establecer algún vínculo entre ella y su paciente, Corkin es clara al decir que del lado de ella sí, que si no de qué otra manera se explica que estuviera subida en una silla durante horas, mirando por una ventana de la morgue cómo el cerebro de Henry era tomado de su cráneo.

Ahora, el cerebro de Henry, cuidadosamente preservado en parafina, ha sido cortado en 2401 finísimas tajadas, que con las técnicas actuales, y a disposición de quien lo solicite, permitirá realizar estudios inimaginables. El dolor de una memoria perdida, ayudará a remediar males cerebrales de miles de millones de personas. Por algo el de Henry es el cerebro que lo cambió todo

Ciencia para Escuchar

10 de agosto de 2013

¿Qué pasa al entrar en un agujero negro?

El principio de equivalencia de la teoría general de la relatividad de Einstein implica que no pasa nada al cruzar el horizonte de sucesos de un agujero negro, un observador no debe notar nada especial; de hecho, en un agujero negro supermasivo, la curvatura del espaciotiempo en el horizonte de sucesos es muchos órdenes de magnitud más pequeña que en la superficie de la Tierra.

Pero este resultado es clásico y la aplicación de la física cuántica a los agujeros negros indica que su horizonte de sucesos debe emitir radiación de Hawking. ¿Notaría de alguna forma el observador que cae la existencia de esta radiación si tuviera un instrumento adecuado? La pregunta puede parecer una tontería, pero su respuesta es más complicada de lo que parece a primera vista, pues en rigor requiere una teoría cuántica de la gravedad y todavía no tenemos ninguna. Por supuesto, podemos aplicar las reglas de la mecánica cuántica a la teoría de la gravedad de Einstein y obtener resultados correctos en el límite de campos débiles, es decir, de agujeros negros con gran masa (como ya hizo Hawking); en dicho caso, el observador no notaría nada (la radiación de Hawking no puede ser detectada en agujeros negros de masa estelar y menos aún en agujeros negros supermasivos).

Sin embargo, el problema sigue estando ahí en el caso de campos fuertes (agujeros negros de masa muy pequeña, llamados microagujeros negros); en dicho caso tenemos que usar una teoría cuántica de la gravedad y la respuesta nos lleva a la frontera entre lo que sabemos y lo que nos gustaría saber. Nos lo contó en Madrid Kyriakos Papadodimas (University of Groningen), “Falling into a Black Hole and the Information Paradox in AdS/CFT,” IFT Xmas Workshop 2012, December 20 [slides]; la charla está basada en su artículo Kyriakos Papadodimas, Suvrat Raju, “An Infalling Observer in AdS/CFT,” arXiv:1211.6767, 28 Nov 2012.


Dibujo20130730 hawking radiation - pure state becomes thermal radiation

Papadodimas estudia el problema de la observación de la radiación de Hawking en un agujero negro en un espaciotimpo AdS (anti-de Sitter), que en relatividad general corresponde a una solución de vacío de las ecuaciones de Einstein con una constante cosmológica negativa (atractiva). Gracias a la correspondencia AdS/CFT, este agujero negro equivale a un plasma de quarks y gluones en una teoría gauge conforme (CFT) similar a la cromodinámica cuántica con un número infinito de cargas de color. Gracias a esta analogía, tras un buen número de cálculos, Papadodimas concluye que en un agujero negro macroscópico un observador semiclásico que penetra en el horizonte de sucesos no nota nada especial.

Lea el artículo completo en:

Francis Science News

6 de agosto de 2013

Lima: Este es el invierno más frío desde hace 30 años

El frío y la humedad alcanzaron niveles históricos en la capital. Desde 1983 no se vivía un invierno tan frío en la ciudad. Las temperaturas bordean los 12 grados C y la humedad está en 97%.

El mal tiempo se extenderá hasta el mes de setiembre, según Senamhi. Advierten que casos de gripe AH1N1 podrían aumentar.

Por más que se abrigan, los limeños ya tiritan, y eso que la temperatura seguirá bajando. Según el Servicio Nacional de Meteorología e Hidrología (Senamhi), el clima en la capital empeorará; así lo detalla un informe publicado en el diario Perú 21.


Según el meteorólogo Félix Cuba, experto de esa entidad, las bajas temperaturas se deben a que el mar está registrando temperaturas anómalas, más frías de lo normal.


“Los vientos están trasladando la humedad, y esto, a su vez, produce las intensas lloviznas. Estas condiciones han acompañado todo el invierno en la capital, a diferencia de otras ciudades del litoral, ya sea al norte o al sur del país”, explicó al diario local.


Las tempraturas más frías se sintieron en los distritos al sur de la ciudad, como Villa María del Triunfo (VMT), donde la temperatura fluctúa entre los 12 y los 14 grados centígrados. Aquí la presencia de neblina reduce la visibilidad a unos 10 metros.


Sin embargo los puntos donde el invierno es más crudo en la capital son los sectores conocidos como  “Ticlio Chico”,  “Lomo de Corvina” y Tablada de Lurín, en VMT. Allí la lluvia es mucho más copiosa que en otros lugares de la ciudad y la temperatura puede caer por debajo de los 10 grados.  

 Foto: Terra Perú Foto: Terra Perú

En los distritos de la zona este, como Ate y La Molina, el termómetro descendió hasta los 12,9 grados; mientras que los distritos de Barranco y Chorrillos marcaron 14 grados. La sensación de frío se agudiza por los altos índices de humedad, que en El Callao llegó al 100% y en varios distritos registró un 97%, sin contar con una persistente garúa que cae intermitentemente sobre la ciudad desde la tarde del domingo.


Se prevé que estas condiciones persistan hasta setiembre. “Si bien es cierto que agosto es el mes en el cual el invierno es más crudo, esta misma intensidad se presentaría en setiembre. Eso significa que el mal clima afectará el inicio de la estación de la primavera”, puntualizó el experto.


El especialista Abraham Levi comentó en su cuenta de twitter @hombredeltiempo que mañana Lima llega al punto medio del invierno, acumulando 17 días sin brillo solar (excluyendo a zonas altas de la ciudad).  Levy explicó que la topografía del litoral, así como su perfil costero, convierten a la capital del Perú en un vertedero de aire húmedo.

 “Si utilizamos como oficial la data del aeropuerto Jorge Chávez, la temperatura mínima, la temperatura máxima y la continuidad de días con cobertura nubosa, podemos decir que este invierno es uno de los más severos de los últimos años”, indicó Levy. Refirió además que el océano tiene un ciclo anual de valores climáticos. “Este ciclo está sobreenfriado desde el final del verano, y se espera continúe hasta la primavera”, declaró.


El servicio meteorológico exhortó a la población a tomar medidas para protegerse del frío, usar varias capas de ropa abrigadora y prestar especial atención a los niños, que son quienes más sufren de males respiratorios ocasionados por el invierno.


ZONAS AZOTADAS

El Senamhi advirtió que la zona sur de Lima es la más golpeada por el frío. Así, uno de los distritos afectados es Villa María del Triunfo, donde las temperaturas fluctúan entre los 12 y los 14 grados.


Las personas que residen en esta jurisdicción soportan, además, una densa neblina que reduce la visibilidad a menos de 10 metros.


En el asentamiento humano conocido como Ticlio Chico, los termómetros descienden a menos de 10 grados. Pese a ello, la única posta de salud del lugar no cuenta con vacunas contra la influenza (estacional o AH1N1).


Villa El Salvador también es otro distrito que sufre los embates del clima. De esa manera, los habitantes del pueblo joven Lomo de Corvina deben soportar una temperatura de entre 10 y 11 grados.


Un factor que agrava la situación de los moradores es que viven en situación de extrema pobreza.

El Senamhi recomendó a los ciudadanos que se mantengan abrigados y que manejen con prudencia.

Fuentes:

Terra Noiticias

Peru21

Lea también:

¿Por qué en Lima hace tanto frío?

¿Por qué la humedad incrementa la sensación de frío?


 

15 de julio de 2013

¿Por qué en Lima hace tanto frío?

Se dice que este invierno será uno de los más crudos en décadas. Y la verdad es que este frío nuestro de todos se nos cala hasta los huesos, todos lo sentimos, pero...¿a qué se debe el frío del invierno limeño el cual este año podría llegar a temperaturas de 11 grados?
 


La causa del invierno limeño se debe a que es una ciudad cercana al mar. Y nuestro mar es frío pero en los meses de invierno se torna aún más frío. Este video, del programa "Cuarto Poder", lo explica mejor, aunque la calidad de imagen sea bastante baja:


Las temperaturas mínimas se registran de noche en la costa peruana siempre.

Si usted vive en la capital y siente que el frío es especialmente inclemente este año, su percepción es correcta. 

El mar frío nos está pasando una dura factura climática. 

En tanto dure el enfriamiento del mar frente a la costa, seguiremos en este periódico dando cuenta de un invierno especialmente frío y, consiguientemente, húmedo.

Ahora, otra cosa es la sensación térmica. Expliquemos, si los termómetros registran 16°C de temperatura es porque hace frío pero usted puede sentir frío como si estuviera a 14°C, ¿a qué se debe esto? En el próximo post lo explicaremos.

1 de abril de 2013

"Energía y Potencia" para dummies

Energía y potencia son dos conceptos que hemos utilizado infinidad de veces en Nergiza, aunque parecen dos definiciones sencillas, nos hemos dado cuenta que incluso los medios de comunicación las confunden, así que vamos a tratar de explicarlos de forma que todo el mundo los pueda entender.


energiaypotencia


Lea el artículo completo en:



27 de marzo de 2013

Hacer una o muchas colas en el supermercado: ¿qué nos dice la estadística?

Acostumbrado a las colas "tradicionales" en los supermercados, donde cada caja tiene su propia cola, hace años me sorprendió ver que algunas cadenas usaban un método novedoso: la cola única para todas las cajas. Fue en UK, y hasta hace poco no han empezado a adoptar ese modelo algunas grandes superficies españolas.
A primera vista no es trivial decir qué sistema es mejor. En el post de hoy haremos un análisis estadístico (incluyendo simulaciones) con el que dejaremos bien claro que el sistema de única cola es mucho mejor desde el punto de vista del cliente.




Los dos competidores: (izquierda) las colas tradicionales, (derecha) la cola única (Créditos imagen)

Los que hayan estudiado teleco ya sabrán que el modelado de este tipo de problemas forma un campo de las matemáticas en sí mismo: la Teoría de Colas. Piensa que además de en la cola del super, nos encontramos problemas muy parecidos en redes de telecomunicaciones (e.g. paquetes de datos esperando entrar o salir por un router), en programas informáticos (e.g. peticiones a un servidor), etc. por lo que hay mucha gente que lleva décadas estudiando todo esto a fondo. De hecho podemos remontarnos a hace un siglo, cuando Erlang calculó cuándo se saturarían las líneas telefónicas de una ciudad. En su honor se definió la unidad de carga en redes de telefonía.

Básicamente lo que nos interesa en el caso del supermercado es un único estadístico que mide directamente el nivel de cabreo del cliente: cuánto tiempo tiene que esperar antes de que le atiendan. Las dos alternativas de sistema son:


  1. Una única cola y un número M de cajas para atender a clientes (1 cola / M cajas).
  2. M cajas, cada una con su cola (M colas / M cajas).

En este tipo de estudios estadísticos no tenemos ni idea de cuándo llegarán los clientes, pero la sincronización es importante porque si llegan muchos a la vez se formarán colas más largas. Para modelar esto matemáticamente se asume que existe una distribución de probabilidad uniforme y constante de que aparezca un cliente, lo que lleva a una distribución exponencial de los períodos desde que llega un cliente hasta el siguiente.

Aunque parezca un modelo un poco rebuscado y artificial, es el mejor posible cuando se asume que cada persona va a su bola y llega a una hora que es independiente (estadísticamente) de lo que hacen los demás.



Distribución exponencial para distintos valores del parámetro (lambda), relacionado con el número medio de llegadas por unidad de tiempo.
Asumiremos que los clientes llegan a un ritmo de [Math Processing Error] por minuto, y que las cajas son capaces de atenderlos a un ritmo de [Math Processing Error] cada una. Así, el modelo de M cajas queda:




Para hacer una comparación justa, en el modelo de cola única asumiremos que llegan el mismo número de clientes por minuto, y por tanto entrarán en la cola con frecuencia de  [Math Processing Error] por minuto:




Desde el punto de vista del número de clientes atendidos por minuto, los dos sistemas son equivalentes. Es más, el tiempo medio que transcurre desde que un cliente llega hasta que se le atiende también son iguales, dividiendo el tiempo total de funcionamiento entre el número total de clientes que pasan por el sistema.

Pero desde el punto de vista del cliente, es mejor el sistema de cola única debido al sesgo de muestreo: si por lo que sea se forma un pequeño retraso en una de las M colas, ese retraso será "notado" por muchos clientes al haberse formado más cola. Que en ese mismo momento haya otros pocos clientes que encuentren cajas libres no es suficiente para bajar la media del tiempo de espera subjetivo.

Se pueden sacar fórmulas teóricas que dan la distribución de tiempos de espera para cada caso, pero hoy me apetecía más hacerlo experimentalmente, así que he programado un simulador de eventos discretos para estimar cuánto afecta la elección del sistema de cajas (si alguien deriva las fórmulas, ¡le agradecería que las dejase en los comentarios!).

La siguiente gráfica resume muy bien el resultado: son los tiempos medios que los clientes esperan hasta ser atendidos en cada uno de los sistemas (negro: cola única), para distintos valores de número de cajas abiertas (M=2, 5, 10 y 20).



(clic para ampliar)
Se ve claramente que ya desde sólo dos cajas se nota una disminución de hasta el 33% en el tiempo de espera. ¡Con los mismos recursos materiales y de personal, sólo cambiando la organización de la cola!

Aunque en el mundo real existan complicaciones que no se tienen en cuenta en este modelado matemático, como horas punta, creo que merecería la pena que todas las grandes superficies que físicamente puedan implementar este sistema se lo plantearan seriamente.


NOTA (25/MAR, 9:50am): El modelo de cola empleado cada vez que llega un cliente es el siguiente:


  • Si hay una caja libre y sin cola delante, va a esa caja.
  • En caso contrario, se va a la caja que no tenga cola. 
  • Y en caso de no existir ninguna cola vacía, se elije una cola al azar con distribución uniforme.


Para los de gustos matemáticos: Os dejo algunos histogramas (en escala logarítmica) para M=2, M=10 y M=20, donde se ve que la diferencia se va haciendo cada vez más grande al aumentar el número de cajas (M):








Nota: En las simulaciones se ha usado Período_llegada_clientes=1, Período atención en cada=M * Período_llegada_clientes * 0.9, para modelar el hecho de que si hay más cajas abiertas en un estado de equilibrio es porque se tarda más con cada cliente.

Fuente:

Ciencia Explicada

21 de marzo de 2013

Cómo calcular la fecha del Domingo de Resurrección

Introducción

Se inicia la Semana Santa planteo la siguiente pregunta: ¿sabéis qué criterio se sigue para asignar la fecha del Domingo de Resurrección cada año?

Yo me he hecho esa pregunta en más de una ocasión viendo que la variedad de fechas para ese día es relativamente grande. ¿Hay algún criterio para asignar fecha a ese día? En el caso de que lo haya (que por otra parte era lo más lógico), ¿en qué se basa ese criterio? ¿Su base es meramente religiosa o hay algo más?

Pues parece que hay algo más. Y, cómo no, lo que hay son matemáticas. Sí, matemáticas, aquí también están. Veámoslo.

Historia

A principios del siglo IV habían surgido varios grupos que calculaban a su manera la fecha del día de la Pascua de Resurrección. No había consenso, cada uno de ellos daba una fecha distinta, por lo que la confusión que rodeaba este asunto era grande. 
En el Concilio de Arlés (año 314) se obligó a todos los cristianos a celebrar la Pascua el mismo día (que sería fijado por el Papa), aunque no todos los grupos estuvieron de acuerdo en ello. Fue en el año 325, en el Concilio de Nicea, donde se alcanzó un principio de acuerdo.

Las normas que debía cumplir el día de Pascua de Resurrección eran las siguientes:
  • La Pascua debía celebrarse en domingo.
  • No podía coincidir con la Pascua judía (que conmemora la salida del pueblo judío de Egipto) para evitar confusiones entre ambas religiones.
  • Que los cristianos no celebrasen la Pascua dos veces el mismo año.
Pero con todo esto seguía habiendo diferencias entre la iglesia de Roma y la iglesia de Alejandría (principalmente relacionadas con el equinoccio de primavera y el cálculo de la edad de la Luna).

La solución final no llegó hasta el año 525, en el que Dionisio el Exiguo (cuyo nombre proviene de su pequeña estatura) sentó las bases del cálculo de la fecha de Pascua (que eran las del método alejandrino). Las premisas iniciales del método son las siguientes:
  • La Pascua ha de caer en domingo.
  • Este domingo ha de ser el siguiente a la primera luna llena de la primavera boreal (si esta fecha cayese en domingo, la Pascua se trasladará al domingo siguiente para evitar la coincidencia con la Pascua judía).
  • La luna pascual es aquella cuyo plenilunio tiene lugar en el equinoccio de primavera (vernal) del hemisferio norte (de otoño en el sur) o inmediatamente después.
  • Este equinoccio tiene lugar el 21 de marzo.
  • Llamamos epacta a la edad lunar. En concreto nos interesa para este cálculo la epacta del año, la diferencia en días que el año solar excede al año lunar. O, dicho más fácilmente, el día del ciclo lunar en que está la Luna el 1 de enero del año cuya Pascua estamos calculando. Este número (como es lógico) varía entre 0 y 29.
Con estas condiciones la Pascua quedaba encuadrada entre el 22 de marzo y el 25 de abril.

Durante el Renacimiento se construyeron tablas de cálculo para esta fecha, algunas de ellas relacionadas con el número aúreo. En la actualidad el método más sencillo para realizar este cálculo se debe a nuestro admirado Gauss.

Cálculo del Domingo de Resurrección

Como hemos dicho antes, el método más sencillo para el cálculo de esta fecha se lo debemos a quien da nombre a este blog, Carl Friedrich Gauss (como podéis consultar en el extra que encontraréis más adelante, éste no es el método oficial, pero siempre da el mismo resultado). La base del mismo es la aritmética modular. Vamos a explicar en qué consiste:

Definimos diez variables que denotamos así: a,b,c,k,p,q,M,N,d,e. Siendo A el año del que queremos calcular la fecha del Domingo de Resurrección, veamos cómo se define cada una de ellas:
  • a es el resto de la división de A entre 19, es decir, a \equiv A \pmod{19}.
  • b es el resto de dividir A entre 4, es decir, b \equiv A \pmod{4}.
  • c es el resto de la división de A entre 7, esto es, c \equiv A \pmod{7}.
  • k es el resultado de redondear por defecto el resultado de la división de A entre 100, es decir, k= \lfloor \textstyle{\frac{A}{100}} \rfloor.
  • p es el resultado de redondear por defecto el resultado de la división de 13+8k entre $25$, esto es, p=\lfloor \textstyle{\frac{13+8k}{25}} \rfloor.
  • q es el resultado de redondear por defecto el resultado de la división de k entre 4, es decir, q=\lfloor \textstyle{\frac{k}{4}} \rfloor.
  • M es el resto de la división de 15-p+k-q entre 30, esto es, M \equiv 15-p+k-q \pmod{30}.
  • N es el resto de la división de 4+k-q entre 7, es decir, N \equiv 4+k-q \pmod{7}.
  • d es el resto de dividir 19a+M entre 30, o lo que es lo mismo, d \equiv 19a+M \pmod{30}.
  • e es el resto de la división de 2b+4c+6d+N entre 7, es decir, e \equiv 2b+4c+6d+N \pmod{7}.
Calculando el valor de cada una de las variables para el año en cuestión, la fecha del Domingo de Resurrección será la siguiente:
  • Si d+e < 10, la fecha de Pascua de Resurrección será el día d+e+22 de marzo.
  • Si d+e > 9, la fecha de Pascua de Resurrección será el día d+e-9 de abril.
Para esta regla existen dos excepciones:
  • Si obtenemos el 26 de abril (nos salimos del rango establecido), la Pascua será el 19 de abril.
  • Si obtenemos el 25 de abril con d=28, e=6, a > 10, entonces la Pascua será el 18 de abril.
Para ejemplificar el método vamos a calcular la fecha del Domingo de Resurrección de este año 2009 (que como sabemos es el día 12 de abril).
Para el año A=2009 los valores de las variables son los siguientes (como los cálculos son sencillísimos os dejo a vosotros la comprobación):
a=14,b=1,c=0,k=20,p=6,q=5,M=24,N=5,d=20,e=1 Como d+e =21 > 9, entonces la fecha es el d+e-9=21-9=12 de abril, como en realidad es.
Lea el artículo completo en:

Gaussianos
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0