Latest Posts:

2 de octubre de 2013

Algebra de Boole: Matemáticas del siglo XIX sin las que no funcionaría internet


Estamos inmersos en plena era digital, donde los aparatos electrónicos que funcionan, básicamente, a base de recoger ceros y unos, y tratarlos de forma lógica, haciendo cosas que hasta ahora solo eran posibles en los libros de ciencia ficción. Pero como para casi todo en ciencia, hay una base matemática: El álgebra de Boole.
Historia

George Boole, (2 de noviembre de 1815 - 8 de diciembre de 1864), fué  primer profesor de matemáticas del entonces Queen's College, Cork en Irlanda (en la actualidad la Universidad de Cork , en la biblioteca, lectura de metro complejo teatral y el Centro de Boole para la Investigación en Informática se nombran en su honor) en 1849. Pero fué antes, en 1847 cuando escribió un pequeño folleto llamado "The Mathematical Analysis of Logic" , que completo con otro libro " The Laws of Thought" publicado en 1854.
Pero esto quedó en poco más que una curiosidad matemática, hasta 1948, cuando Claude Shannon la utilizó para diseñar circuitos de conmutación eléctrica biestables, aunque ya el propio Alan Touring había utilizado este mismo álgebra de forma teórica, en su diseño de la máquina de Turing (1936). Y con ello, comenzó la era de la computación digital.

Bases

Basada en la teoría de conjuntos (Teoría de Conjuntos - Matemática Aplicada a la Ingeniería), el álgebra de Boole sirve para manejar operaciones lógicas en sistemas de numeración binarios, es decir, basados en ceros y unos. De esta manera se nos permite realizar operaciones matemáticas, como sumas, restas, multiplicaciones, divisiones u operaciones lógicas, como "no algo" ó "esto y lo otro", o "si y solamente si...", tal y como esperaríamos en cualquier sistema de lógica aristotélica. Esto nos permite utilizar tablas de decisión y diagrámas de flujo de datos en los circuitos lógicos.
Para cualquier sistema algebraico existen una serie de postulados iniciales, de aquí se pueden deducir reglas adicionales, teoremas y otras propiedades del sistema, el álgebra booleana a menudo emplea los siguientes postulados:
  • Cerrado. El sistema booleano se considera cerrado con respecto a un operador binario si para cada par de valores booleanos se produce un solo resultado booleano.
  • Conmutativo. Se dice que un operador binario " º " es conmutativo si A º B = B º A para todos los posibles valores de A y B.
  • Asociativo. Se dice que un operador binario " º " es asociativo si (A º B) º C = A º (B º C) para todos los valores booleanos A, B, y C.
  • Distributivo. Dos operadores binarios " º " y " % " son distributivos si A º (B % C) = (A º B) % (A º C) para todos los valores booleanos A, B, y C.

  • Identidad. Un valor booleano I se dice que es un elemento de identidad con respecto a un operador binario " º " si A º I = A.
  • Inverso. Un valor booleano I es un elemento inverso con respecto a un operador booleano " º " si A º I = B, y B es diferente de A, es decir, B es el valor opuesto de A.
Para nuestros propósitos basaremos el álgebra booleana en el siguiente juego de operadores y valores:
  • - Los dos posibles valores en el sistema booleano son cero y uno, a menudo llamaremos a éstos valores respectivamente como falso y verdadero.
  • - El símbolo ·  representa la operación lógica AND. Cuando se utilicen nombres de variables de una sola letra se eliminará el símbolo ·,  por lo tanto AB representa la operación lógica AND entre las variables A y B, a esto también le llamamos el producto entre A y B.
  • - El símbolo "+" representa la operación lógica OR, decimos que A+B es la operación lógica OR entre A y B, también llamada la suma de A y B.
  • - El complemento lógico, negación ó NOT es un operador unitario, en éste texto utilizaremos el símbolo " ' " para denotar la negación lógica, por ejemplo, A' denota la operación lógica NOT de A.
  • - Si varios operadores diferentes aparecen en una sola expresión booleana, el resultado de la expresión depende de la procedencia de los operadores, la cual es de mayor a menor, paréntesis, operador lógico NOT, operador lógico AND y operador lógico OR. Tanto el operador lógico AND como el OR son asociativos por la izquierda. Si dos operadores con la misma procedencia están adyacentes, entonces se evalúan de izquierda a derecha. El operador lógico NOT es asociativo por la derecha.
  • Utilizaremos además los siguientes postulados:
  • P1 El álgebra booleana es cerrada bajo las operaciones AND, OR y NOT
  • P2 El elemento de identidad con respecto a ·  es uno y con respecto a +  es cero. No existe elemento de identidad para el operador NOT
  • P3 Los operadores ·   y + son conmutativos.
  • P4 ·   y + son distributivos uno con respecto al otro, esto es, A· (B+C) = (A·B)+(A·C) y A+ (B·C) = (A+B) ·(A+C).
  • P5 Para cada valor A existe un valor A' tal que A·A' = 0 y A+A' = 1. Éste valor es el complemento lógico de A.
  • P6 ·   y + son ambos asociativos, ésto es, (AB) C = A (BC) y (A+B)+C = A+ (B+C).
(Fuente - http://www.monografias.com/trabajos14/algebra-booleana/algebra-booleana.shtml)

Porqué el álgebra de Boole

Obviamente, la respuesta es bastante sencilla. Todas las máquinas digitales funcionan con electricidad, a partir de diferencias de voltaje. Así que a cierto rango de voltaje le asignamos un cero y a otro le asignamos un uno (ceros y unos). De esta manera, gracias al álgebra de boole, podemos operar con estas diferencias de voltaje.
 


Tomado de:

Enamorado de la Ciencia

Criptografía: Entre el lenguaje y las matemáticas



Durante los últimos años, se ha hablado mucho sobre la seguridad en Internet y los peligros que tiene enviar tus datos. La solución que nos ofrecen: encriptar. Las páginas de los bancos, o de comercio electrónico, vienen encriptadas (lo distinguiréis porque en la barra de la dirección, en vez del típico http, veréis https). Pero ¿Sabemos realmente qué es la encriptación?¿En qué consiste?
Teoría clásica de la comunicación y encriptación
Una visita a la wikipedia ya nos deja una definición bastante exacta: "Criptografía (del griego κρύπτω krypto, «oculto», y γράφως graphos, «escribir», literalmente «escritura oculta») tradicionalmente se ha definido como la parte de la criptología que se ocupa de las técnicas, bien sea aplicadas al arte o la ciencia, que alteran las representaciones lingüísticas de mensajes, mediante técnicas de cifrado y/o codificado, para hacerlos ininteligibles a intrusos (lectores no autorizados) que intercepten esos mensajes."
Para entender bien la definición, primero hay que entender como se produce la comunicación de un mensaje:

Como vemos, en todo mensaje hay un emisor (emite el mensaje), un receptor (quien lo recibe), un canal por el que se envía el mensaje y un código. El código es el sistema común que hace que el receptor entienda el mensaje. Un ejemplo clásico es el propio idioma, que es comprensible por aquellos que lo hablan. En el código es donde entra en marcha la criptografía. De hecho, cuando alguien habla en un idioma que desconocemos, en cierta manera están hablando de forma "cifrada" para nosotros. Este no es un hecho menor, dados casos como el del ejercito norteamericano, que usaron Indios Navajos como operadores de radio, para que los Japoneses no se enteraran de las conversaciones. Pero el objetivo de la criptografía es obtener un método genérico de encriptado, independiente del idioma. Hoy en día, este sistema no tendría mucho éxito, dada la cantidad de buenos traductores que hay por Internet.
Imaginemos un Capitán que quiera enviar información a un General que se encuentre lejos, y teme que al mensajero le atrapen las tropas enemigas. Si leyeran ese mensaje, sería fatal para ellos, pues podrían enterarse de sus planes. Así que lo mejor es escribirlo cifrado.
Los principios: el cifrado de "El Cesar"
Ya los antiguos y belicosos romanos se dieron cuenta, como bien decíamos antes, de lo importante que era que el enemigo no pudiera interceptar sus comunicaciones. Pero como ésto era inevitable, crearon el primer sistema de cifrado, conocido como el cifrado de "El Cesar", por ser las tropas del ejercito romano en usarlo. Aunque el nombre técnico sería el de "Cifrado por Trasposición".
Este sistema de cifrado seguía una lógica muy simple: elegías un coeficiente de trasposición (vamos, eliges un número), por ejemplo el 2. Así que lo añadías a las letras del abecedario. De tal manera que sustituías las letras originales, por la letra que se encontraba dos posiciones más adelante. Por ejemplo, sustituías la A por la C, la B por la D, etc...  Para ver un ejemplo, supongamos el siguiente mensaje: "Saludos a todos". Le aplicamos un coeficiente de trasposición 2, con lo que quedaría: "Tcnwfqt c vqfqt". Algo totalmente ilegible e incongruente para alguien que no conozca dicho coeficiente.
Vulnerabilidades
Este sistema de cifrado se mostró altamente eficiente para textos cortos, pero daba problemas con textos largos. Entonces era más fácil descifrarlos. Esto se debía a que realmente seguía manteniendo la estructura propia del lenguaje. Es decir, la palabra "Saludos" siempre se escribiría "Tcnwfqt " con un coeficiente de trasposición = 2. De tal manera que, si el texto estuviera en español, sabremos que la letra que aparece en mayor número de ocasiones es la 'A' (ver Wikipedia: Frecuencia de aparición de letras). Entonces si vemos que en un texto la letra que más aparece es la 'C',  podemos deducir el coeficiente de trasposición. A este método se le llama "Criptoanálisis Estadístico".
Mediante este método, cuanto más largo es un texto, más fácil es obtener una estadística fiable, que con un texto corto. Aún así, conociendo el método, solo es cuestión de paciencia.

Métodos con Claves: Critografía Simétrica y Asimétrica

Dada la importancia de controlar el tráfico de datos, el cifrado ha ido cogiendo gran importancia hasta nuestros días. De esta manera, se ha buscado formas de encriptar que, aunque sean públicos y conocidos, no permitan hacer un simple criptoanálisis estadístico para obtener el mensaje deseado.
La idea inicial del cifrado es el uso de una palabra clave conocida solamente por el emisor y el receptor (deseado, claro. El que reciba el mensaje va a ser un receptor, pero éste sólo será informativo si es capaz de decodificar la información que el mensaje contiene). De esta manera la palabra clave serviría para encriptar y desencriptar la información.
Una forma sencilla usada en el siglo XVII, fué una variante del método de trasposición. Asignemos un número a cada letra del abecedario, de tal manera que la A = 001, la B = 002, etc... Ahora cojamos el texto: "Saludos". Y elegimos como palabra clave ABETO. Si en vez de escribirlo con palabras, lo pasamos a números, el texto quedaría: '022001013024005018022' y la palabra clave sería '001002006023018'.
Ahora cogemos ambos códigos numéricos y los ponemos uno encima del otro, en grupos de tres, sumando el primer código de la primera letra del texto a la primera letra de la clave, y así, sucesivamente. En caso de que la clave no llegue a cubrir la longitud del texto, la repetimos, hasta donde haga falta...
022 001 013 024 005 018 022
+
001 002 006 023 018 001 002
======================
023 003 019 047 023 019 024

Como vemos la suma de la letra U, sumada a la letra T, se escapa del alcance del abecedario. Que tiene un total de 29 letras (Ver Método DIMQV, que se está tomando como base en este ejemplo, aunque pudiera no ser del todo exacto). En este caso, lo más sencillo es restarle 29 a 47, que daría 18. De tal manera que el texto cifrado quedaria: "TCPOTPU". Cuando se recepcionara el texto, solo tendríamos que hacer la operación inversa para obtener la clave final. Este ejemplo es muy sencillo, dado que hemos asignado simplemente números a las diferenes letras y hemos hecho una simple suma. Los sistemas actuales usan complejas ecuaciones para que el cifrado sea más efectivo.
Este sería un ejemplo de lo que se conoce como Criptografía Simétrica, o de una sola clave. La mayor parte de los sistemas de encriptación actuales están basados en sistemas de Criptografía Asímetrica, de llave pública y llave privada, en la que el programa crea una clave privada (de forma autónoma) que no es conocida más que por él (mediante sistemas matemáticos de cálculo) y el usuario introduce una clave alfanumérica (es decir, formada por números y letras, así como caracteres especiales, como la @ o la #) que puede dar a otras personas (llave pública).
En todos los programas informáticos que se usan actualmente (en webs o en Windows), las contraseñas van encriptadas con Criptografía Simétrica, en ficheros, que después son leídos para hacer la comparación pertinente. En sistemas Unix usan sistemas que llaman de "one way encription", encriptación de una sola vía, que se trata de sistemas de encriptación que no se pueden desencriptar.
Fuente:

¿Por qué se forman las dunas?


Quizás, una tarde ventosa en la playa, nos hayamos fijado en el movimiento de la arena, y en la constitución de ésta. Son granos de silicatos, de muchos tamaños desde milímetros, a micras que no podemos ver, pero que podemos sentir en nuestros senos nasales y en los bronquios. El aire empuja esos granos de arena.

El catedrático de Física Aplicada de la UAH Antonio Ruiz de Elvira explica el fenómeno junto a una máquina de dunas de Cosmocaixa Barcelona, el museo de la ciencia Obra Social La Caixa.

Imaginemos una superficie plana y de algunos cientos de metros de longitud y anchura; toda ella cubierta de arena. El viento incide sobre de la misma, pero no sopla nunca por igual. Al variar localmente la presión la arena se acumula en algunos puntos.

El aire, al seguir pasando por los puntos de acumulación, eleva su velocidad y baja aún más la presión. En esos puntos se acumula mas arena, en un mecanismo acumulativo, lo que en física se llama 'mecanismo no lineal de realimentación positiva.

El resultado de esas fluctuaciones del aire sobre la arena es crear pequeños montículos que van creciendo lentamente. Las colinas de arena son asimétricas: De pendiente suave a barlovento, de pendiente fuerte a sotavento.

Al caer la arena y recibir nueva, la duna se desplaza en el sentido del viento. Las dunas, cómo las olas, son limitadas a lo ancho: no hay dunas más anchas que una cierta dimensión.

Fuente:

El Mundo Ciencia

Aviones supersónicos, una revolución en marcha

Un grupo de estudiantes de Aeronáutica de la Universidad de Stanford, al frente de dos profesores españoles, revoluciona el diseño aerodinámico y abre la puerta a los vuelos supersónicos.




El avion supersónico que basado en el diseño de la Universidad de Stanford está construyendo la empresa Lockheed Martin / Lockheed Martin via NASA

Volar entre Madrid y Nueva York, siempre y cuando todo vaya bien, supone ahora mismo entre siete y ocho horas, pero a no tardar mucho las barreras del tiempo y el espacio podrían comprimirse y reducir ese mismo vuelo a menos de cuatro. Los viajes supersónicos en aviones que desafían la velocidad del sonido, superándola en 1,5 veces, es decir volando aproximadamente a 1837 kilómetros por hora, están a punto de hacerse realidad.

De ello saben mucho un grupo de ocho estudiantes del Departamento de Aeronáutica y Astronáutica de la Universidad de Stanford, liderado por dos profesores españoles: Juan José Alonso, docente en esta Facultad desde hace 13 años, además de director del programa de aeronáutica de la NASA durante dos años, y Francisco Palacios, que desde Madrid aterrizó en este prestigioso centro dos años atrás con ganas de expandir sus ideas.

Hace 20 meses que empezaron a trabajar en el proyecto SU2, “un programa de diseño aerodinámico para optimizar los aviones, es decir, para lograr modelos que consuman menos combustible, que causen menos gases de efecto invernadero, menor ruido y que vuelen a más velocidad y altura”, explica Alonso. “Para ello creamos modelos por ordenador y los combinamos con optimizadores para que nos digan que forma del avión es preciso cambiar con objeto de conseguir un aparato mejor que los de hoy en día en un 20 o 30%”, añade en tono pedagógico.

Los ordenadores de los que habla Alonso y que utilizan en el proyecto no son unas computadoras cualquiera, sino las del centro de investigación de la NASA, unas máquinas gigantes, apodadas “sequoia” que analizan millones de datos en cuestión de segundos y que equivalen a la potencia de 10.000 ordenadores personales juntos, con la diferencia añadida de que estos tardarían años en procesar lo que los super-ordenadores hacen en cuestión de minutos.

Ellos introducen cálculos y fórmulas en la pantalla y el ordenador los traduce en diseños optimizados, abriendo así las puertas a la realidad de aviones supersónicos, coches y barcos más eficientes y cualquier mecanismo que se mueva por los principios de la aerodinámica.

Lea el artículo completo en:

El País Ciencia

1 de octubre de 2013

¿Por qué debemos querer a los buitres?

Buitre de El Cabo

Los buitres africanos son víctimas inesperadas de la caza furtiva de rinocerontes. 

No son las criaturas más entrañables del mundo: alimentarse de animales muertos no atrae muchos fans entre los humanos. Pero ahora un proyecto en Sudáfrica busca cambiar la imagen de estas aves en peligro.

Decenas de buitres de El Cabo surcan el cielo sudafricano, desde lo alto de los acantilados de Magaliesberg, y vigilan una pradera seca en busca de un banquete.
Bajo el sol yace un cadáver rodeado de moscas, cuervos y garzas. Una hembra valiente se acerca con cautela.

Buitre

La población de buitres en África occidental ha disminuido en un 90%.

Se mueve despacio, atenta a los peligros. Llegar hasta su presa le lleva más de una hora.

Pero una vez que da un primer picotazo a la carne, los demás se abalanzan. Lo que sigue es un festín frenético, y cada buitre empuja para obtener suficiente comida para sí mismo y para los polluelos que esperan en el nido.

Estamos en VulPro, a las afueras de Haartebeesport, a una hora de la capital, Johanesburgo.

Es un centro dedicado a la conservación de una especie cuya fama no es precisamente la del animal más adorable.

Pero Kerri Wolter, quien dirige esta organización, cree que el papel que juegan los buitres en la naturaleza es crucial: limpiar y hacer desaparecer la carne portadora de enfermedades.

"Tenemos que elevar el perfil de los buitres al mismo nivel de los rinocerontes, tenemos que hacer que la gente entienda que son importantes".

Víctimas de la caza furtiva

Esta especie de buitres figura como "vulnerable" en la Lista Roja de Unión Internacional para la Conservación de la Naturaleza (IUCN, por sus siglas en inglés).

Y quienes trabajan aquí para protegerla temen que pronto se una al buitre dorsiblanco africano, que está en peligro de extinción.

Pichón de buitre

Un proyecto de conervación busca cambiar la imagen de los buitres.

La IUCN ha observado un declive de 1.500 parejas de buitres de El Cabo en los últimos 20 años.

Ahora solo se encuentran en Botsuana y Sudáfrica, y recientemente se extinguieron en Namibia.

Entre las amenazas que los acechan están las electrocuciones y choques con estructuras eléctricas, los cambios del uso del área en la que viven, la disminución del alimento disponible y la exposición a drogas veterinarias tóxicas.

Cadáver de rinoceronte

Con cada rinoceronte envenenado, pueden morir unos 1.200 buitres.

Pero el peor de los peligros es más siniestro.

La caza furtiva de rinocerontes y elefantes aumenta cada año en el sur de África – más de 600 rinocerontes sudafricanos fueron cazados este año – y los buitres son sus víctimas inesperadas.

Como los cazadores clandestinos no quieren que los buitres llamen la atención de los guardas, algunos comenzaron a envenenar los cuerpos de los animales que acaban de matar por sus cuernos o colmillos.

"Con un rinoceronte o un elefante envenenado se puede acabar con 600 buitres", dice Wolter.

"Sin embargo, durante la temporada de crianza, no son solo los 600 buitres que consumen ese cuerpo. También pueden ser sus crías".

"Así que estamos hablando de 1.200 aves en un incidente de envenenamiento".

La amenaza, agrega, no es sólo para los buitres.

El artículo completo en:

BBC CIENCIA

¿Por qué tenemos cejas?

Originalmente, para evitar que la lluvia y el sudor entrara en los ojos. Como especie, los humanos confiamos en nuestra vista más que en cualquier otro sentido, y el agua puede empañar seriamente la visión.

Además, las cejas también pueden desviar los residuos y proteger nuestros ojos de la luz del Sol.

De modo que, aunque la tendencia evolutiva es ir perdiendo la mayor parte del vello corporal, las pestañas y las cejas se mantienen.

Una mujer pinta sus cejas.

Las cejas, no obstante, también cumplen otra función: comunicar.

La expresión facial transmite emociones de un modo que es difícil de falsificar; y las cejas exageran las expresiones.

Incluso en los dibujos animados, una simple línea sobre los ojos es suficiente para denotar enfado, miedo o sorpresa en la cara.

Existen experimentos que muestran que reconocemos una cara familiar con mayor facilidad cuando son los ojos los que están cubiertos y no las cejas.

Si está pensando en rediseñar sus cejas afeitándolas o depilándolas, recuerde sus múltiples usos.

Fuente:

BBC Ciencia
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0