Latest Posts:

Mostrando las entradas con la etiqueta particulas. Mostrar todas las entradas
Mostrando las entradas con la etiqueta particulas. Mostrar todas las entradas

29 de enero de 2013

El protón es más pequeño de lo establecido

No es fácil medir el radio del protón, porque los quarks que lo componen no dejan de interaccionar. Aun así, la comunidad científica ha fijado unos valores con los datos de complicados métodos de medición, pero los resultados difieren si se usan otras técnicas. Un equipo europeo ya apuntó hace unos años que el protón es más pequeño de lo establecido y ahora lo vuelve a confirmar con un nuevo estudio que publica Science.

“El electrón es una partícula como un punto, cuyo tamaño se ha medido en menos de 10-20 m, pero el protón, por el contrario, es una partícula compuesta de otras más pequeñas y fundamentales: los quarks”, recuerda Aldo Antognini, del Instituto Max Planck de Óptica Cuántica (Garching, Alemania).


Protón Crédito: Patrick Spiers

“Los quarks –dos up y un down por cada protón– se mueven e interactúan de forma muy dinámica entre ellos y el torbellino que forman es el que da lugar al tamaño del protón”, explica a SINC el investigador.

Antognini y otros colegas europeos y de EE UU presentan esta semana en Science un estudio que señala que el protón es más pequeño de lo que se cree. Los resultados confirman lo que el mismo equipo ya publicó en Nature en 2010: “El protón parece ser 0,00000000000003 milímetros menor de lo que pensaban los investigadores”.

En concreto, el denominado Committee on Data for Science and Technology (CODATA) establece un radio de carga para el protón de entre 0,87 y 0,88 femtómetros (1 femtómetro son 10-15 m), mientras que los nuevos resultados lo reducen a 0,84 femtómetros. El radio de carga eléctrica es la extensión media de la ‘nube’ que generan los quarks –que están cargados– al moverse.

Las diferencias parecen insignificantes, pero pueden tener repercusiones físicas “serias”, según los expertos, ya que sugieren que quizá haya un vacío en las teorías actuales de la mecánica cuántica. Además, los protones, junto a los neutrones, forman el núcleo atómico de cada átomo que existe en el universo.
El estudio también determina por primera vez el radio magnético del protón –0,87 femtómetros–. Este otro radio es la media de la distribución magnética dentro del protón, que viene dada por los momentos magnéticos de los quarks y las corrientes que producen al moverse.

Para llevar a cabo esta investigación, el equipo ha empleado la espectroscopia láser del hidrógeno muónico. El hidrógeno es el elemento más simple que existe, con un protón y un electrón, aunque en el experimento se sustituye este último por un muón –con carga negativa como el electrón pero con una masa 200 veces superior–.

De esta forma se puede medir mejor el protón, analizando determinadas transiciones que se producen en los estados de este hidrógeno ‘exótico’. Antognini ha adelantado a SINC que su grupo tiene previsto investigar también con átomos de helio muónico.

Por su parte, los valores establecidos por CODATA se basan en otras técnicas: espectroscópica del átomo de hidrogeno –el normal, no muónico– y cálculos de electrodinámica cuántica (QED, por sus siglas en inglés) para analizar la dispersión de carga entre el protón y el electrón.

Algunos investigadores consideran que la interpretación de los resultados de cada método de medición puede estar detrás de las discrepancias. En cualquier caso, los científicos siguen debatiendo cuál de todas estas técnicas es la mejor para encajar las piezas del denominado ‘puzle del radio del protón”. El objetivo final, descubrir el tamaño exacto de esta partícula esencial en el funcionamiento del cosmos.


Referencia bibliográfica: A. Antognini, M. Diepold, T.W. Hänsch, T. Nebel, J. Vogelsang, R. Pohl et al. “Proton Structure from the Measurement of 2S−2P Transition Frequencies of Muonic Hydrogen”. Helen S. Margolis. “How big is the proton?” Science, 24 de enero de 2013.
Fecha Original: 24 de enero de 2013 Enlace Original

Fuente:

Ciencia Kanija

14 de enero de 2013

Una roca es un reloj

Investigadores de la Universidad de California en Berkeley (EE UU) han creado un nuevo reloj atómico que puede medir el tiempo con la masa de un átomo, y viceversa. El desarrollo de este dispositivo, cuyo mecanismo se presenta esta semana en la revista Science, puede ayudar a definir mejor el concepto de kilogramo.


“Por así decirlo, una roca es un reloj”, señala Holger Müller, un profesor de la Universidad de California-Berkeley (EEUU) preocupado desde niño por saber lo que realmente es el tiempo. Ahora, junto a otros colegas de su universidad, acaba de fabricar un reloj que asocia el tiempo a la masa de una partícula.


Usar la masa para medir el tiempo y viceversa

Medir el tiempo usando la masa, y viceversa Crédito: Pei-Chen Kuan.


Los investigadores han materializado la hipótesis del físico francés Louis-Victor de Broglie, que ya en 1924 planteó que la materia, además de su característica corpuscular, también puede actuar como una onda.


Construir un reloj de materia parecía imposible, ya que la frecuencia –denominada de Compton– de esas ondas de materia se consideraba casi imposible de observar, o aunque se pudiera, las oscilaciones serían demasiado rápidas para medirlas.


“En un reloj de pared hay un péndulo y un mecanismo que puede contar sus oscilaciones, pero no había manera de hacer un reloj de ondas de materia, ya que su frecuencia de oscilación es 10 000 millones de veces más alta que, incluso, las oscilaciones de la luz visible”, comenta Müller.


Sin embargo, el equipo lo ha conseguido gracias a los dos aparatos con los que ha construido su reloj: un interferómetro –instrumento que usa la interferencia de las ondas para medir las longitudes de onda– y un ‘peine’ de frecuencias. Con ellos han podido jugar con las variables de la frecuencia de Compton (w=mc2/h, donde m es la masa, c la velocidad de la luz y h la constante de Planck) en un átomo de cesio.


Como, según la teoría de la relatividad, el tiempo se ralentiza para los objetos en movimiento, el átomo de cesio que se aleja y vuelve es más ‘joven’ que el que se queda parado. Es decir, la onda de materia del cesio viajero oscila menos veces. Así, midiendo las ínfimas diferencias de frecuencia –del orden de 3×1025– se puede calcular el tiempo.


“Nuestro reloj tiene una precisión de siete partes por cada mil millones”, explica Müller, quien reconoce que esto todavía es cien millones de veces menos de lo que ofrecen los mejores relojes atómicos actuales, que usan iones de aluminio.


Mejores relojes y patrones atómicos


“Pero las mejoras en nuestra técnica pueden impulsar la precisión de los relojes atómicos, incluidos los de cesio que hoy se emplean para definir el segundo”, añade el investigador.


Además de poder medir el tiempo con la masa, el estudio plantea lo contrario: deducir la masa conociendo el tiempo de las oscilaciones. Es otra de las ventajas de utilizar la ecuación de Compton.


De esta forma, el trabajo –que publica Science esta semana– también puede ayudar en el futuro a definir mejor el concepto de kilogramo, que se podría relacionar con una unidad de tiempo como el segundo.

En la actualidad la masa de referencia del kilogramo es un cilindro de platino e iridio que se custodia en una caja fuerte en Francia, con copias exactas repartidas por todo el mundo. La de Reino Unido se hecho popular recientemente porque se ha detectado que ha ‘engordado’ unos microgramos. Para evitar desviaciones como esta, la Conferencia General de Pesos y Medidas trata de sustituir este kilogramo estándar por otro basado en una medida física de mayor precisión.


En este sentido se plantea la propuesta del equipo para hacer un nuevo patrón de masa en función del tiempo, junto a otras alternativas como el uso de la denominada esfera de Avogadro, un cristal muy puro de silicio del que se conoce con precisión su número de átomos.


“Nuestro reloj y las mejores esferas de Avogadro actuales pueden facilitar la nueva definición de kilogramo”, dice Müller, que resume: “Conocer el tictac de nuestro reloj es equivalente a conocer la masa de la partícula, y una vez que sabes la masa de un átomo, puedes relacionarla con las masas de los demás”.


Referencia bibliográfica: S.-Y. Lan; P.-C. Kuan; B. Estey; D. English; J.M. Brown; M.A. Hohensee; H. Müller; H. Müller. “A Clock Directly Linking Time to a Particle’s Mass”. Science, 10 de enero de 2013.
Fecha Original: 10 de enero de 2013 Enlace Original

Tomado de:

Ciencia Kanija

21 de diciembre de 2012

La derecha, la izquierda y el verdadero origen de la masa

Imagina que hay 2 observadores, uno en frente del otro que están mirando un reloj (con la cubierta trasera transparente) que se encuentra entre ellos. Uno de ellos le dice al otro: "Que reloj tan bonito, lástima que gire al revés", a lo que el otro responde: "¿Qué estás diciendo?, el reloj gira correctamente".

¿Cual de ellos tiene razón? Pues los 2 tienen razón, la respuesta depende del sistema de referencia que utilicemos. En este caso el sentido de giro del reloj (horario o anti-horario) es claramente una convención humana y depende de la posición del observador. 

Sin embargo, como Albert Einstein demostró en su teoría de la relatividad no pueden existir sistemas de referencia privilegiados, las leyes y magnitudes fundamentales del Universo deben ser las mismas para todos los observadores. Vamos a comprobar este principio de forma bastante sorprendente en una de las más fundamentales propiedades de las partículas elementales: el spin. 

Helicidad

Todas las partículas que forman la materia (llamadas fermiones) tienen un momento ángular intrínseco: el spin. El spin es un fenómeno intrínsecamente mecánico cuántico, es decir, no existe una analogía clásica totalmente correcta para definirlo, sin embargo, para nuestro propósito, se puede usar la analogía de la bola que gira sin incurrir en errores fundamentales: 

                                                                        

La flecha gris indica el sentido de movimiento y la roja el sentido de giro del spin de la partícula. Esta partícula se denomina partícula de helicidad derecha (por convención si ponemos el pulgar en el sentido de la flecha gris, el movimiento producido al plegar los dedos nos indica el sentido de giro del spin). En las partículas de helicidad derecha el sentido de giro del spin coincide con la dirección de movimiento (es decir, cuando proyectamos el vector spin sobre el vector impulso el resultado es positivo). A continuación representamos la misma partícula de helicidad derecha moviendose en sentido contrario:

                                                                        

Ahora el sentido del spin cambia pero la partícula sigue siendo la misma partícula de helicidad derecha (puedes comprobarlo poniendo el pulgar de la mano derecha en la nueva dirección de movimiento). Las partículas de helicidad izquierda son entonces las que giran en el sentido siguiente: 

                                                        

Todas las partículas que forman la materia (electrones, quarks, etc) se presentan en dos tipos: de helicidad izquierda (L) y de helicidad derecha (R).

Helicidad, relatividad y masa

Las partículas sin masa como el fotón viajan siempre, bajo cualquier sistema de referencia a la velocidad de la luz. Esto quiere decir que ningún observador puede "adelantar" a un fotón y "observar" que sucede con el sentido de giro de su spin. Por esto, en partículas sin masa, un fotón con helicidad R será siempre, bajo cualquier sistema de referencia un fotón con helicidad R y lo mismo sucede para un fotón L. 

Sin embargo, en las partículas con masa un observador puede en principio desplazarse a mayor velocidad que dicha partícula de forma que puede adelantarla y observar que sucede con el sentido de giro del spin. ¿Qué sucederá entonces? ¿Cambiará la partícula su sentido de giro dependiendo de donde se encuentre el observador?

Si así fuese entonces el spin no sería una propiedad intrínseca de la partícula. Lo que sucede es lo siguiente: el observador que adelanta a la partícula ve que esta se aleja de el en sentido contrario, por tanto observará que (para el) ha invertido su sentido de movimiento y por tanto su helicidad, sin embargo, el sentido de giro del spin no cambia, lo que cambia es su helicidad. Debemos darnos cuenta de que la partícula no ha cambiado en absoluto, se trata de la misma partícula. Esto se entiende mejor en la siguientes figuras:


                                       

En la primera figura el observador antes de adelantar a la partícula observa una partícula de helicidad R. Al adelantar a la partícula, el observador ve una partícula que se desplaza hacia atrás, osea de helicidad L, pero el sentido de giro del spin, que es la magnitud fisicamente medible no cambia, en las partículas con masa la helicidad no es medible por los experimentos, los experimentos no distinguen entre por ejemplo un electrón R o un electrón L, sin embargo, el sentido de giro del spin si es medible (por ejemplo observando si el electrón se desvía hacia un lado u otro en un campo magnético). 

Por tanto, no es posible distinguir entre un sistema de referencia u otro tal y como establece la relatividad, incluso puede interpretarse que la naturaleza ha duplicado (pero solo a efectos matemáticos) la naturaleza del electrón para que los principios de la relatividad sean válidos, es decir, para que no haya ningún sistema de referencia privilegiado. Visto esto, podemos afirmar que la masa es algo que nos permite decir si la helicidad de una partícula es algo fundamental e intrínseco de esta o no: en las partículas sin masa sí lo es pero en las partículas con masa no, en éstas últimas la propiedad relacionada que sí es intrínsica de la partícula y por tanto independiente del observador es la quiralidad.

La quiralidad

En las partículas sin masa la quiralidad y la helicidad son la misma cosa. Una partícula será R o L en cualquier sistema de referencia. Sin embargo, las partículas con masa tienen helicidad R o L y una quiralidad independiente también R o L, solo que esta última es independiente del observador.

La quiralidad es un concepto más abstracto que el de helicidad y más difícil de definir. En los fermiones por ejemplo, que son los constituyentes de la materia, la quiralidad está relacionada con el hecho de que si giramos por ejemplo al electron 360º invertimos el estado cuántico del mismo (es decir lo encontramos multiplicado por -1) y solo cuando lo volvemos a girar otros 360º volvemos a obtener el electrón en el estado cuántico original. La quiralidad nos dice en que sentido se desplaza la fase de la función de onda cuando rotamos el electrón, en los electrones de quiralidad R al girar el electrón la fase de la función de onda se desplaza hacia la derecha y en los de quiralidad L hacia la izquierda: 



Al contrario que con la helicidad una partícula puede tener quiralidad R o L y no tener su contrapartida R o L. Las partículas con quiralidad R y L son partículas distintas, de hecho, en el caso del electrón, la partícula de quiralidad L es la que comunmente llamamos electrón mientras que la partícula con quiralidad R se denomina anti-positrón. Por tanto, dentro del "grupo electrón" se pueden distinguir 4 partículas diferentes: 

1- El electrón: Quiralidad L, carga eléctrica -1, con carga débil
2- El anti-electrón: Quiralidad R, carga eléctrica +1, con carga débil
3- El positrón: Quiralidad L, carga eléctrica +1, sin carga débil
4- El anti-positrón: Quiralidad R, carga eléctrica -1, sin carga débil


                     
 electrón                   anti-electrón (representado en verde)             positrón (con mostacho)     anti-positrón (en verde y con mostacho)

La carga débil es a la fuerza nuclear débil lo que la carga eléctrica es al electromagnetismo. La fuerza electromagnética se produce por el intercambio de fotones mientras que la fuerza débil por el intercambio de partículas W y Z, por tanto, ni el positrón ni el anti-positrón sienten la fuerza débil ya que no tienen carga débil. Esto significa que la naturaleza discrimina entre partículas de quiralidad R y partículas de quiralidad L.

Quiralidad, el Higgs y la masa

Aunque parezca increíble estos 3 elementos están intimamente relacionados. Si nos fijamos en el electrón y el anti-electrón nos damos cuenta de que para casi cualquier experimento físico, ambas son partículas muy parecidas: tienen la misma masa y la misma carga eléctrica aunque tienen distinta carga débil.

Las partículas con propiedades muy similares pueden experimentar un fenómeno cuántico denomiando "oscilación", es decir, pueden oscilar la una en la otra, formando una especie de superposición cuántica de ambas partículas (vease la oscilación de los neutrinos por ejemplo). Esto es exactamente lo que le sucede al electrón: lo que nosotros denominamos electrón es una mezcla de un electrón y un anti-positrón. 


El electrón es realmente la mezcla de un electrón y un anti-positrón. NOTA: En los libros de texto normalmente se los denomina electron "left-chiral" y electrón "right-chiral" respectivamente. Aquí hemos alterado ligeramente la notación por razones pedagógicas.

Sin embargo, como dijimos, el electrón tiene carga débil y el antipositrón no. ¿Que pasa con la conservación de esta carga? Aqui es donde entra el campo de Higgs. El campo de Higgs se encuentra "condensado" en el vacío cuántico, es decir, es un campo que permea todo el espacio. La partícula de Higgs es la vibración del campo de Higgs (al igual que el electrón es la vibración del campo electrónico) y es una partícula de spin 0 (por tanto es un bosón) y con carga débil. Este campo interacciona con todas las partículas (excepto las partículas sin masa como el fotón), cuando un electrón se desplaza por el espacio interacciona con el campo de Higgs lo que intercambia la carga débil (y la quiralidad) del mismo con la del Higgs, haciendo posible la oscilación entre el electrón y el anti-positrón. Esta interacción produce un retraso o un desfase temporal en el movimiento de la partícula y es precisamente esta interacción lo que "crea" o produce lo que nosotros llamamos masa. Cuanto mayor es esta interacción, más lentamente se mueve la partícula lo que se traduce en que nosotros medimos una masa mayor y viceversa.




El electrón al desplazarse por el vacío cuántico interacciona con el campo de Higgs (las cruces en la figura) produciendo la oscilación electrón-antipositrón. Esta oscilación puede entenderse como un grado de libertad extra de la partícula lo que se traduce a efectos físicos en que la partícula se mueve más lentamente: la partícula tiene masa.

NOTA: Como hemos señalado repetidamente esta explicación es válida solo para los electrones, otras partículas adquieren masa de una forma diferente.

Fuente:

Revolución Científica

20 de diciembre de 2012

La 'máquina del Big Bang' suspende su actividad en el CERN hasta 2015


El acelerador de partículas del CERN. | EM 
El acelerador de partículas del CERN. | EM
 
El acelerador de partículas elementales más grande del mundo, el Gran Colisionador de Hadrones (LHC, por sus siglas en inglés) de la Organización Europea de Investigación Nuclear (CERN, por sus siglas en inglés), ha suspendido las operaciones por 20 meses para un proceso de modernización que le permitirá incrementar su potencia de 8 a 14 teraelectronvoltios.

La noticia ha sido anunciada por el propio equipo del LHC en su página web, en donde han dejado el mensaje: "concluidas las operaciones de 2012. Volveremos a vernos pronto para las colisiones p-Pb (protones contra núcleos de plomo), en 2013. Las colisiones de alta energía protón-protón se reanudarán en 2015".

El LHC se despide tras haber cumplido su objetivo, detectar rastros de una partícula elemental con características similares a las del Bosón de Higgs, el pasado verano. Se trata del último elemento que faltaba en el modelo estándar de física de partículas.

El acelerador es un anillo de 27 kilómetros ubicado en la frontera entre Francia y Suiza y valorado en más de 6.000 millones de euros. Se puso en marcha en 2008 y, con una que otra pausa técnica, estuvo operativo durante unos tres años generando choques de protones de energía cada vez mayor.

El CERN ha señalado que, en este tiempo, el LHC ha realizado 6.000 billones de choques y, de estos, 400 produjeron resultados compatibles con partículas similares al bosón de Higgs. "El trabajo del LHC ha superado todas las expectativas en los últimos tres años y ha hecho logros fantásticos", ha señalado en un comunicado el director del acelerador, Steve Myers.

Los choques se iniciaron en 2008 a bajas energías y fueron aumentando paulatinamente, hasta la actualidad, cuando los dos haces circulaban a una energía de 4 teraelectronvoltios, por lo que los choques se produjeron a una energía de 8 Teraelectrovoltios.

Con las nuevas mejoras técnicas y el aumento de energía, se espera poder observar otro tipo de fenómenos que confirmen definitivamente la existencia del Bosón de Higgs.

Fuente:

El Mundo Ciencia

18 de diciembre de 2012

Descubrimiento del bosón de Higgs: El Hito Científico del año 2012


Ganador mejor logro cientifico FayerWayer_1000x530

Finalmente, este año los científicos encontraron la última pieza del Modelo Estándar: El bosón predicho por Peter Higgs y otros cinco físicos en 1964, y que posibilita el mecanismo por el cual las demás partículas como quarks y electrones ganan su masa, mientras que los fotones no.

Hasta el logro de este año del colisionador de hadrones del CERN, ningún experimento había sido capaz de encontrar evidencia de la existencia del bosón de Higgs, por lo que cuando anunciaron una partícula compatible con las propiedades del bosón el 4 de julio de 2012, todo el mundo científico celebró el anuncio, el que posteriormente fue corroborado en la revista científica Physics Letters B, tras ser revisado y aprobado por sus pares.

Ahora sólo queda esperar cuáles serán los próximos descubrimientos del colisionador de hadrones, aunque para eso tendremos que esperar hasta el 2015 cuando vuelva a estar operativo, pues el CERN lo someterá a un proceso de modernización para duplicar la energía de las colisiones de los actuales 8 TeV (tetraelectronvoltios), a 13 TeV.





Fuente:

FayerWayer

10 de diciembre de 2012

El neutrino está de cumpleaños

 
neutrino electrónico de ParticleZoo

Neutrino electrónico de ParticleZoo

Durante la década de 1920 la física vivía años dorados: Hubble descubrió que nuestra galaxia era sólo una de miles, se descubrió la expansión del universo, la teoría de la relatividad era verificada experimentalmente, y grandes genios del siglo XX incluyendo a Bohr, Born, Heisenberg, Schrödinger, Dirac y Planck develaron uno de los grandes misterios de la naturaleza desarrollando la física cuántica. Experimentos alrededor del mundo confirmaban uno tras otro cómo esta nueva y extraña descripción del mundo subatómico funcionaba a la perfección. 


Sin embargo, a fines de esa década la física de partículas todavía en pañales enfrentaba una importante crisis. La radioactividad ya tenía un par de décadas y su descubrimiento le había significado el Premio Nobel a Henry Becquerel, Pierre y Marie Curie en 1903, sin embargo había un detalle que tenía a los teóricos de la época sin dormir tranquilos. El llamado decaimiento beta ocurre cuando un núcleo atómico espontáneamente se transforma en otro emitiendo un electrón. Los físicos notaron que el nuevo núcleo atómico tenía un protón más que el original por lo que la carga eléctrica se conserva (protón y electrón tienen cargas de igual magnitud pero signo opuesto). Esto es muy importante ya que las leyes de la física funcionan en base a principios de conservación. Otra cantidad importante que debe conservarse es la energía. Todos hemos aprendido desde niños que la energía no se crea ni se destruye, sólo se transforma. Y justamente aquí estaba el problema con el decaimiento beta, ya que los cálculos mostraban que si la energía se conserva entonces el electrón siempre sería emitido con la misma energía E_0; sin embargo todos los experimentos mostraban que al decaer el núcleo atómico, el electrón salía emitido con cualquier valor entre cero y E_0. Tanto era desconcierto de los teóricos que el mismo Niels Bohr consideró que sería necesario abandonar el principio de conservación de la energía.

El nacimiento del neutrino

Desde siempre, las conferencias de física han servido no sólo como una reunión para debatir acerca de recientes descubrimientos y resultados sino que principalmente para discutir nuevas ideas (esto en realidad justamente por eso vamos a conferencias). Así ocurrían las famosas discusiones entre Einstein y Bohr sobre física cuántica durante las Conferencias Solvay, cuya versión en 1927 permitió reunir a las lumbreras de la física teórica y experimental de la época en esta famosa imagen:

Solvay_conference_1927_crop

Cuarto de derecha a izquierda de pie aparece Wolfgang Pauli, distraído junto a Werner Heisenberg, parece estar enfocado en uno de sus rivales públicos Paul Ehrenfest (tercero de izquierda a derecha), con quien protagonizaron varias peleas verbales públicas. Era sabido que uno asistía a las charlas del otro sólo para fastidiarlo.

Pauli tenía 30 años en 1930 cuando no pudo asistir a una conferencia en Tubingen (Alemania) en la que se debatiría el problema del decaimiento beta.


Pauli en su cumpleaños 1945

Pauli celebra su 45° cumpleaños en medio de una charla en Princeton (1945)

Pauli tuvo una idea que resolvería el problema y salvaría al principio de conservación de la energía de una forma elegante pero radical. Pauli propuso que en el decaimiento beta de un núcleo atómico no sólo se crea un protón y un electrón, sino que también se emitiría una tercera partícula que compartiría su energía con el electrón, de esta manera el electrón sería emitido a veces con mucha energía, otras veces con poca energía. Con esta hipotética partícula Pauli reconciliaría la teoría con los experimentos. Dado que la carga eléctrica ya era conservada, esta nueva partícula debería ser neutra por lo que Pauli la bautizó como “neutrón” (aunque lo que hoy llamamos neutrón fue descubierto en 1932 y no es el “neutrón de Pauli”). Como no pudo asistir a la conferencia, Pauli escribió el 4 de diciembre de 1930 una de las más famosas cartas en la historia de la física, dirigida a los participantes de la conferencia.

“Estimados y radiactivos damas y caballeros…” escribió, agregando un toque de humor a esta informal manera de expresar una nueva y genial idea. “He encontrado una medida desesperada para salvar la ley de conservación de la energía suponiendo que en el núcleo existen partículas sin carga eléctrica a los que llamaré neutrones. Las observaciones del decaimiento beta tienen sentido si además del electrón, un neutrón es emitido de tal manera que la suma de sus energías es constante” (E_0). Es interesante ver cómo una idea que salvó uno de los principios fundamentales de la física nunca fue publicado. Pauli explica que “por ahora no me atrevo a publicar los detalles de esta idea, les confío a ustedes mi querida gente radiactiva la pregunta de cuán probable sería encontrar evidencia experimental de tal neutrón”. Con estas palabras Pauli literalmente inventó una nueva partícula como una medida desesperada a la posibilidad de abandonar un principio tan fundamental (conservación de la energía). Pauli incluye en su carta detalles sobre las propiedad que “su neutrón” debería tener y concluye diciendo “Debo admitir que mi solución puede parecer casi imposible ya que si existiera ya deberíamos haber visto estos neutrones. Pero si no nos arriesgamos no avanzaremos. Querida gente radiactiva, examinen y juzguen”.

Pauli

“Certificado de nacimiento del neutrino”: Carta de Pauli a los participantes en la conferencia en Tubigen

En 1934, otro de los grandes físicos de la época, el italiano Enrico Fermi, postuló una teoría completa sobre los decaimientos radiactivos que hoy conocemos como interacción débil. Fermi incorporó la idea de Pauli en su teoría, sin embargo en 1932 James Chadwick había descubierto el neutrón, por lo que el “neutrón de Pauli” (todavía hipotético) necesitaba otro nombre. Según los cálculos de Pauli, “su neutrón” debería tener una masa una 100 veces menor a la de un protón, dado que el neutrón descubierto por Chadwick era un poco más pesado que el protón Fermi exclamó “este neutrón es muy pesado, el neutrón de Pauli es más liviano, más pequeño, debereríamos llamarle el pequeño neutro”. Así es como el neutrón de Pauli pasó a llamarse neutrino, que en italiano significa “el pequeño neutro”.

Búsqueda del neutrino

Cowan Reines

Cowan y Reines con su detector de neutrinos

Los años pasaban y no aparecía evidencia del neutrino. Pauli llegó a expresar “he hecho algo terrible, algo que ningún teórico debería hacer: he inventado una partícula que no puede ser observada”. Sin embargo los físicos experimentales son muy ingeniosos y basados en la teoría de Fermi sabían que grandes cantidades de neutrinos serían creados en reacciones nucleares. El Sol produciría neutrinos en grandes cantidades pero debido a la gran distancia sería muy difícil detectarlos. En 1945 Frederick Reines trabajaba bajo la supervisión de Richard Feynman en Los Alamos como parte del Proyecto Manhattan, el cual concluye con la creación de la primera bomba nuclear. Más que una terrible arma, Reines vio una copiosa fuente de neutrinos en la Tierra. Durante la guerra fría las dos potencias nucleares testeaban sus armas y Reines planeaba instalar un detector de neutrinos para intentar probar su existencia, sin embargo el detector debía estar tan cerca que la explosión destruiría el detector. En 1952 Reines junto a Clyde Cowan deciden usar una “fuente pacífica de neutrinos” por lo que instalan su detector junto a un reactor nuclear en Hanford, en el estado de Washington. La teoría de Fermi también mostraba lo difícil que sería detectar un neutrino ya que rara vez interactúan con la materia. Usualmente se dice que “atrapar un neutrino es como intentar atrapar una bala con una malla para mariposas”. Esta propiedad fantasmal del neutrino de casi no interactuar la convierte en una partícula muy elusiva. Reines y Cowan denominaron a su búsqueda del neutrino “proyecto Polstergeist”. Luego de meses recolectando datos deciden instalar su detector en una planta nuclear con mayor potencia, esta vez en Savannah River en Carolina del Sur. Mejorando sus mediciones, en 1956 luego de más de dos décadas como una partícula hipotética, Reines y Cowan demuestran que la “solución desesperada” de Pauli es la correcta y que el neutrino existe. El 15 de junio de 1956 Reines y Cowan le enviaron un telegrama a Pauli contándole la noticia. Reines recibió el Premio Nobel en 1995 por este decubrimiento (Cowan murió en 1974).

Luego de la confirmación de la existencia del neutrino, la siguiente meta fue detectar los neutrinos emitidos por el Sol así como los generados en la atmósfera por la colisión de rayos cósmicos con moléculas de aire. Esta nueva carrera causó nuevos misterios llamados “el problema de los neutrinos solares” y “el problema de los neutrinos atmosféricos”, lo que da para un post completo que espero publicar en el futuro.

En 1962 Leon Lederman (famoso por titular “La Partícula de Dios” a su libro sobre el bosón de Higgs), Melvin Schwartz y Jack Steinberger descubrieron que no sólo el neutrino es una partícula real, sino que hay dos tipos de neutrinos, lo que les dio el Premio Nobel en 1988. Recién en el año 2000 se confirmó que existe un tercer tipo de neutrino.

Neutrinos hoy

Hay muchas historias para contar sobre estos “pequeños neutros”, sin embargo en 2011 los neutrinos acapararon la atención de todo el mundo cuando el experimento OPERA anunció que sus neutrinos parecían viajar más rápido que la luz. Fue genial ver cómo los neutrinos se convertían en la partícula de moda, destronando al Higgs por unas semanas. Lamentablemente todo fue un error en la medición. Durante 2012 el Higgs ha recuperado su lugar en los medios, y todo parece indicar que podemos decir que el Higgs ha sido descubierto.

Hay mucho que no sabemos sobre los neutrinos lo que gatilla el interés en estudiarlos. Sin embargo existe otra razón más profunda: los neutrinos podrían responder la pregunta “¿por qué existimos?” ya que sus propiedades podrían haber permitido que hubiese más materia que antimateria luego del Big Bang lo que llevaría a la formación del univero en el que vivimos. Hay muchos otros motivos por los cuales estudiar a estos pequeñines (como se refirió a ellos Lederman en una conversación que tuvimos en 2011). 


Personalmente les he dedicado sólo los últimos 6 años de mi vida, pero espero seguir estudiándolos, una copia de la carta de Pauli adorna mi oficina como el “certificado de nacimiento” de mi partícula favorita. En mi investigación los uso como herramientas para comprender ciertas propiedades de la naturaleza ya que al ser tan pequeños son sensibles a los más pequeños defectos que el espaciotiempo pudiese manifestar (espero en el futuro contar más detalles).

Los neutrinos pudieron originar el universo en el que vivimos, son fantasmales,  65 mil millones de neutrinos provenientes del Sol atraviesan cada centímetro cuadrado de nuestro cuerpo cada segundo, llegan desde el cielo en el día y atraviesan la Tierra para aparecer desde el suelo en la noche, como una vez escribí estos pequeños neutros pueden ser bastante tenebrosos: “los neutrinos son partículas fantasmales observadas por primera vez gracias al proyecto Poltergeist, que durante la noche aparecen por debajo de tu cama”.


Fuente:

Conexión Causal

9 de diciembre de 2012

La Materia Extraña: Un apasionante viaje por la física de astropartículas



El vídeo que encabeza este post fue accésit en la modalidad de Audiovisuales en el I Concurso de Divulgación Científica del Centro Nacional de Física de Partículas, Astropartículas y Nuclear (CPAN) 2010.

Tal y como señalan sus propios artífices, David Héctor Cabezas Jimeno y Natalia Ruiz Zelmanovitch:
Con este vídeo de alrededor de diez minutos pretendemos solo “abrir el apetito”, hacer un viaje por las cuestiones abiertas que investiga la física de astropartículas, mostrar la instrumentación científica relacionada con estas investigaciones. Y, por qué no, iniciar una apasionante aventura que nos ayude a conocer mejor el mundo en que vivimos: un universo formado por materia que nos parece extraña, una materia que se mueve a escalas que pueden parecer muy diferentes pero que, en el fondo, no lo son tanto.

Fuente:

Xakata Ciencia

6 de noviembre de 2012

Peter Higgs: 'No me gusta nada que al bosón se le llame la partícula de Dios'

Peter Higgs en el CosmoCaixa de Barcelona. | Antonio Moreno
Peter Higgs en el CosmoCaixa de Barcelona. | Antonio Moreno
"No me gusta nada que al bosón se le llame la 'partícula de Dios' porque confunde a la gente, al mezclar ámbitos que no tienen relación alguna, como la ciencia y la teología". Con esta contundencia ha respondido este martes Peter Higgs en Barcelona, al ser preguntado por el apodo con el que se conoce popularmente a la partícula que lleva su nombre.

"En realidad fue una broma que nadie debía haberse tomado en serio", ha dicho el físico, recalcando que es absurdo intentar derivar implicaciones metafísicas o religiosas de su trabajo, como algunos han pretendido en los últimos meses. "En realidad, el nombre que propuso el físico Leon Lederman para titular el libro que da origen a este apodo era 'la maldita partícula', porque todo el mundo pensaba que era imposible demostrar su existencia, pero a su editor no le gustó y se inventó lo de 'la partícula de Dios'", recordó el científico.

Higgs, catapultado a la fama mundial este año cuando el CERN anunció en julio el descubrimiento del bosón cuya existencia él postuló hace casi medio siglo, se encuentra de visita en España invitado por el Instituto de Física de Altas Energías (IFAE) y el Museo CosmoCaixa de la ciudad condal, donde esta tarde impartirá una conferencia titulada Inventando una partícula elemental'.

La demostración de la existencia del bosón de Higgs, anunciada por los científicos del CERN con una probabilidad de acierto de más del 99.99%, es la pieza crucial que faltaba en el Modelo Estándar de Física para explicar por qué la materia tiene masa. Higgs propuso su existencia en un trabajo pionero publicado en 1964, y casi cinco décadas después, los experimentos realizados en el LHC, el mayor acelerador de partículas del mundo, le han dado la razón, convirtiéndole en un candidato firme para el premio Nobel.

En una rueda de prensa multitudinaria, el físico ha reconocido que el hallazgo del bosón en Ginebra le ha cambiado la vida, al colocarle delante de los focos de la prensa de manera abrumadora. "Es como una ola que a veces me supera", ha confesado Higgs, que a sus 83 años se ha convertido en el científico más mediático del planeta, con la excepción quizás de Stephen Hawking.

Fue el propio Hawking quien, poco después del anuncio del CERN, declaró que Higgs se merecía ganar el Nobel tras confirmarse la existencia de su bosón. Sin embargo, de momento este año la Academia Sueca no se lo ha concedido, quizás porque todavía falta la confirmación definitiva de algunos detalles del hallazgo.
"Obviamente soy consciente de la posibilidad de ganarlo, y en la Universidad de Edimburgo se organizó este año una especie de comité para planificar cómo reaccionar y gestionar la concesión del Nobel", ha reconocido Higgs. "Pero francamente, con toda la atención mediática que ya he tenido este año, casi prefiero tener un respiro", ha confesado el físico.

Fuente:

31 de octubre de 2012

Una de dos: O la información es mas rápida que la luz, o todo el Universo está relacionado entre sí

20120801012312I[1]

El entrelazamiento cuántico debe ser una de los fenómenos más sorprendentes de la física: Al enlazar dos o más partículas en un solo estado cuántico, cuando posteriormente se observa el estado de una de las partículas, uno puede prever el estado de la otra partícula sin importar la distancia que las separe. Es como si una supiera lo que hace la otra instantáneamente y se comunicaran entre sí.

Lo interesante es que numerosos experimentos han demostrado que las dos partículas ‘comunican’ su estado entre dos lugares de medición distintos a una velocidad que superaría a la de la luz. La explicación estándar a este fenómeno –la no-localidad– es considerar que las partículas entrelazadas son realmente un sólo sistema cuántico, aunque estén muy separadas. Es una idea que incomoda a muchos (incluso a Albert Einstein) pero que preserva el principio de la relatividad.

Para encontrar otra explicación, muchas ideas se han propuesto en las ultimas décadas, las que en su mayoría caían en la categoría de variables escondidas que no podemos observar directamente mediante experimentos, por lo que no habríamos podido ocupar este fenómeno para la comunicación.

Sin embargo, un nuevo análisis de un equipo de académicos que publicó la revista Nature Physics nos indicaría que cualquier explicación a este fenómeno inevitablemente nos abriría a la posibilidad de comunicaciones mas rápidas que la luz, pues el entrelazamiento cuántico no puede traspasar información, a cualquier velocidad –incluso si es inaccesible por medio de la experimentación porque es interna–, sin involucrar también otros tipos de interacciones que sí violarían la teoría de la relatividad.

Esto es debido a que hay dos opciones: O existen estas variables escondidas y el entrelazamiento cuántico implica intercambiar información a una velocidad mayor a la de la luz, desafiando a la relatividad; o no hay influencias invisibles por lo que las existentes pueden ser infinitamente rápidas, lo que implicaría que el Universo completo es no-local, o sea que todos sus puntos se pueden conectar entre sí instantáneamente.

Uno de los miembros del equipo de académicos, el profesor de la Universidad de Ginebra, Nicolas Gisin, asegura que “nuestros resultados nos dan la idea de que, de alguna forma, las correlaciones cuánticas surgen desde afuera del espacio-tiempo“. Algo nada menor.


Fuente:

FayerWayer

21 de octubre de 2012

¿Hay lugar para Dios en el Big Bang?

Big Bang

El descubrimiento del bosón de Higgs está tan fresco que la exhibición en el museo de la Organización Europea para la Investigación Nuclear (Cern) no se ha actualizado todavía.

En la obra expuesta -un cortometraje que proyecta imágenes del nacimiento del Universo en una enorme pantalla- el narrador pregunta: "¿Encontraremos el bosón de Higgs?" 

Ahora que finalmente ha sido visto -un descubrimiento científico que nos acerca más que nunca a los primeros momentos después del Big Bang- Cern ha abierto sus puertas a eruditos que toman un enfoque muy diferente hacia la pregunta de cómo se creó el Universo.

El 15 de octubre, un grupo de teólogos, filósofos y físicos se reunió dos días en Ginebra para hablar sobre el Big Bang.

¿Qué ocurrió cuando personas de tan distintas visiones del Universo se sentaron a discutir?

"Me di cuenta que era necesario discutirlo", dijo Rolf Heuer, director general de Cern.

"Necesitamos, como científicos ingenuos, discutir con filósofos y teólogos la época anterior al Big Bang".

clic Vea también: dentro de la máquina del Big Bang

Antes del Big Bang

Uno de los organizadores de Cern de esta inusual reunión fue Wilton Park, un foro global establecido por Winston Churchill.

Es una organización usualmente asociada con discusiones de alto nivel sobre política global e incluso intercambios confidenciales sobre asuntos de seguridad internacional, lo cual quizás enfatiza cuán seriamente toma Cern este encuentro.

Pero la misma idea de un "tiempo antes del Big Bang" es un territorio imposible para los físicos.
Es una zona de pura especulación; antes del tiempo y el espacio como los científicos los entienden, y donde las leyes de la física se rompen completamente.

Entonces ¿lo hace eso un ámbito en el que se puedan entender la ciencia y la religión?

Uno de los participantes más francos, Lawrence Krauss, un físico teórico y director del Proyecto Orígenes en la Universidad Estatal de Arizona, afirma que definitivamente no.

"Uno tiene la impresión de una reunión como esta que a los científicos les importa Dios; pero no", indica.

"No puedes refutar la teoría de Dios".

"El poder de la ciencia es incierto. Todo es incierto, pero la ciencia puede definir esa incertidumbre".

"Por eso la ciencia progresa y la religión no".

Pero la sugerencia de que ciencia y religión son fundamentalmente incompatibles fue un motivo de discordia durante la reunión.

John Lennox, profesor de matemáticas en la Universidad de Oxford, también se declara cristiano. Él piensa que le solo hecho de que los seres humanos puedan hacer ciencia es evidencia para Dios.

"Si los ateos tienen razón en que la mente hace ciencia... es el producto de un proceso no guiado sin sentido".

"Ahora, si supieras que tu computadora es producto de un proceso no guiado sin sentido, no confiarías en ella".

"Por eso, para mí el ateísmo socava la racionalidad que necesito para hacer ciencia".

Pero este debate aparentemente insoluble de Dios versus ciencia fue sólo una parte del encuentro.

Heuer expresó que deseaba que los participantes "desarrollaran un entendimiento común" de la visión de los demás.

Pero incluso intercambiar ideas fue por momentos engorroso; científicos y filósofos suelen hablar lenguajes muy diferentes.

Educarse mutuamente

Partícula de Higgs

El descubrimiento de una "partícula de Higgs" precedió este encuentro de religiosos y científicos.

Andrew Pinsent es director de investigación en el Centro Ian Ramsey para la Ciencia y la Religión de la Universidad de Oxford. También es un físico entrenado que alguna vez trabajó en Cern.
"Tenemos que educarnos mutuamente en los términos que usamos", dice.

Por ejemplo, explica, "los filósofos han estado discutiendo el significado de la [palabra] verdad durante siglos".

Pero para muchos físicos, usar esa palabra es un territorio incómodo cuando hablan de lo que sabemos sobre el Universo y el Big Bang.

Krauss afirma que la palabra está en el centro de "una de las diferencias fundamentales entre ciencia y religión".

"Quienes son religiosos creen que conocen la verdad", indica.

"Y saben la respuesta antes de que se haga la pregunta. En cambio, con los científicos es exactamente lo contrario".

"En la ciencia, aunque usamos la palabra verdad, lo que realmente importa es si funciona".

"Por eso es un asunto sensible, porque si sabes la verdad, no necesitas lidiar con esta preguntita de si algo funciona o no".

A pesar de la barrera de visiones opuestas del mundo y léxicos incompatibles, Pinsent cree que colaborar con la filosofía podría ayudar a la ciencia a enfrentar mejor las preguntas muy grandes.

"No ha habido nuevos avances conceptuales en la física en un cuarto de siglo", afirma.

Agrega que esto es en parte porque la ciencia en aislamiento "es muy buena para producir cosas" pero no para producir ideas".

Invoca a Einstein como ejemplo de un científico verdaderamente filosófico.

"Empezó formulando las preguntas que haría un niño", puntualiza Pinsent, "como '¿qué sería cabalgar sobre un rayo de luz?'"

Y Heuer acepta la idea de llevar filosofía al mismo Cern.

"No iría tan lejos como dejarlos hacer experimentos aquí", bromea, "pero no tendría ningún problema en tener un filósofo residente".

¿Demasiado especializado?

Big Bang

La misma idea de un "tiempo antes del Big Bang" es un territorio imposible para los físicos.

La principal conclusión del evento fue simple: seguir hablando.

"Enfrentamos un problema en nuestra cultura de hiperespecialización", señala Pinsent.

"Esta ignorancia de otros campos puede causar problemas, como una carencia de cohesión social".

Y aunque Krauss dijo que la reunión se sintió a ratos como "gente que no se puede comunicar al tratar de comunicarse", incluso ve algún valor en este intercambio algo esotérico.

"Mucha gente de fe ve la ciencia como una amenaza", indica.

"No creo que la ciencia sea una amenaza, así que es útil para los científicos mostrar que no lo ven necesariamente de esa manera".

Como dijo un colaborador durante el encuentro: "la religión no agrega a los hechos científicos, sino da forma a nuestra visión del mundo".

Y como Cern está buscando pistas sobre cómo existió el mundo para empezar, desea ver cómo sus descubrimientos encajarían en cualquier visión del mundo.

Fuente:

BBC Ciencia

Contenido relacionado

15 de octubre de 2012

¿Qué hay después del bosón de Higgs?

¿Es curioso y le gustaría saber cómo está hecho todo lo que vemos en el universo? El descubrimiento del bosón de Higgs es, si se confirman sus características, la pieza que faltaba para conseguirlo. Sin él no existiríamos. Pero ¿qué más sorpresas nos esperan?



El físico teórico Peter Higgs durante una visita en el detector CMS, del acelerador de partículas LHC en 2008. / CERN

“¿Por qué se emocionó la gente con la relatividad de Einstein, cuando yo era un niño, allá por los años treinta? ¿Por qué la gente adora las buenas fotos de Saturno? ¿Por qué tantas personas se preocuparon tanto cuando Plutón fue degradado como planeta? ¿Por qué fascina la materia oscura y la energía oscura del universo?”, comenta el premio Nobel de Física Sheldon Lee Glashow al plantearse la repentina popularidad, todo un exitazo mundial, de una nueva partícula elemental, minúscula, pero esencial para comprender de qué estamos hechos, bautizada con el extraño nombre de bosón de Higgs y recién descubierta, o casi. El hallazgo, anunciado el pasado 4 de julio en el Laboratorio Europeo de Física de Partículas (CERN), junto a Ginebra, culmina más de medio siglo de búsqueda científica con enormes esfuerzos de investigación en el mayor complejo de máquinas de experimentación científica que se ha construido jamás. Y ahora ¿Qué hay después Higgs? ¿Qué nuevos fenómenos de la naturaleza pueden surgir en el gran acelerador de partículas LHC y sus detectores, en los que el Higgs se ha hecho realidad por fin?

Los físicos, por supuesto, siguen en la brecha, intentado siempre desvelar los enigmas de la naturaleza. Y para ellos un descubrimiento es siempre un escalón más, nunca el final de la escalera. Pero a veces el hallazgo es tan importante que condiciona los siguientes pasos a dar. El bosón de Higgs no es una partícula cualquiera, dice Glashow, es la última pieza que faltaba en la teoría contemporánea que describe como están hechas las cosas, todo lo que vemos en el universo. “Y juega un gran papel”, añade, con su habitual entusiasmo este físico estadounidense de la Universidad de Boston.


Una colisión de partículas registrada en el detector Atlas en el que se ha producido un posible bosón de Higgs. / CERN / ATLAS

“Sin el Higgs no existiríamos”, apunta el director del CERN, el alemán Rolf Heuer. “Cuando estudiamos los componentes más pequeños de la materia, abordamos las mayores preguntas del universo, y el bosón de Higgs nos dirá cómo las partículas fundamentales de las que todos estamos hechos adquieren su masa y, por tanto, permiten la existencia de cosas complejos, como los seres humanos”, comenta.
Heuer fue quién presentó, el 4 de julio, en el auditorio del CERN y con transmisión por internet a todo el mundo, las charlas de Joe Incandela y Fabiola Gianotti, los portavoces de los dos enormes detectores Atlas y CMS en los que habían por fin aparecido las huellas del ansiado bosón de Higgs. Daniel Froidevaux dice que “fue un momento mágico”. Para este físico suizo que empezó a proyectar y trabajar en el experimento Atlas hace 25 años “ha sido una suerte inmensa, porque nadie te puede garantizar que en tu vida profesional vayas a presenciar un descubrimiento así”. Se emocionó, reconoce, hasta las lágrimas, el 4 de julio, pero ya mira hacia adelante, como todos los expertos, confiando en que el LCH proporciones señales de un universo desconocido. Ese es realmente el objetivo del gran acelerador, dice.
La idea básica de este tipo de máquinas (y el LHC es la más potente jamás construida) es hacer chocar frontalmente partículas –protones, en el acelerador de Ginebra- aceleradas hasta casi la velocidad de la luz de manera que en las colisiones y, siguiendo las leyes de la física, formen otras partículas, casi siempre conocidas, pero a veces, muy de vez en cuando, nuevas, como el bosón de Higgs.

Encontrar el famoso bosón ha sido muy difícil, “como dar con un tipo especial de copo de nieve en una gran nevada”, señala Heuer.

Pero pueden desvelarse más secretos de la naturaleza. Nuevas familias de partículas que ahora solo son hipótesis de los teóricos, incluso huellas de nuevas dimensiones espaciales que puedan existir además de las tres en las que vivimos (alto, ancho y largo) y que estén escondidas en el microcosmos, son algunas posibles piezas a cazar en el CERN en los próximos años.

Conviene hacer un somero repaso de cómo es y cómo funciona el microcosmos. La materia de nosotros mismos, de todo lo que nos rodea y lo que vemos en el cosmos, incluidos planetas, estrellas y galaxias, está formada por partículas elementales gobernadas por fuerzas fundamentales. Los átomos son objetos compuestos por un núcleo rodeado de electrones (que parecen ser partículas fundamentales, indivisibles), y el núcleo esta hecho de protones y neutrones (en muchos casos), a su vez formados por quarks, estos si indivisibles (por lo que ahora se sabe). Pues bien, los físicos, a lo largo del siglo XX y con la estrategia eficaz de combinar observaciones, experimentos y teorías que los expliquen, han logrado describir esas partículas y sus interacciones en el llamado Modelo Estándar (MS), verificado y comprobado con una precisión enorme.

“El bosón de Higgs nos dirá cómo las partículas adquieren su masa y permiten la existencia de cosas complejas”

El modelo estándar describe las partículas elementales y como funcionan. Es un poco como un kit con distintas piezas y las instrucciones para montarlas. Las piezas son las partículas que constituyen la materia y las instrucciones describen como funcionan, es decir las fuerzas entre ellas, que curiosamente, consisten en intercambios también de partículas. Las piezas son 12 partículas (como los quarks o los electrones) organizadas en tres familias, y las fuerzas de interacción del MS son también tres: el común electromagnetismo, la fuerza débil responsable de las desintegraciones radiactivas y la fuerza fuerte que mantiene unidos los quarks en los protones y neutrones del núcleo atómico.

Pero el MS no es perfecto y una de sus deficiencias importantes, además de no lograr acomodar en ella la cuarta fuerza, la gravedad, es su incapacidad de explicar por qué unas partículas tienen masa y otras no, y por qué las primeras tienen masas diferentes. Y aquí se incorporó el bosón de Higgs al MS como solución teórica, hace casi medio siglo. Esta partícula es la manifestación del denominado campo de Higgs con el que interaccionan más o menos intensamente las partículas que tienen masa, y nada las que no la tienen (como el fotón de la luz). Este mecanismo fue propuesto por varios físicos teóricos (el británico Peter Higgs, entre otros), pero ha sido muy difícil comprobar si era correcto, si la naturaleza funciona realmente así, y sólo con el descubrimiento experimental del bosón concreto empiezan a aclararse las cosas.
La partícula que los físicos de Atlas y CMS anunciaron el 4 de julio es un bosón (un tipo de partículas) y muy posiblemente el que se estaba buscando, pero los expertos no están aún seguros, así que lo primero es estudiarlo con más detalle y salir de dudas. “Determinar si es exactamente esa partícula o si hay más bosones de Higgs adicionales requerirá analizar los datos del LCH durante las próximas una o dos décadas y el estudio, probablemente, continuará en un futuro acelerador diseñado especialmente para medir con alta precisión sus propiedades”, dice Aurelio Juste Rozas, investigador del Instituto de Física de Altas Energías (IFAE, en Barcelona) y miembro del experimento Atlas.

También considera que la cosa llevará tiempo Marcos Cerrada, del Ciemat, físico del CMS. “Pero si se trata precisamente del bosón de Higgs, sabemos perfectamente qué características debe tener”, añade.

Igualmente pide paciencia Froidevaux: “A finales de ese año sabremos un poco más, pero bien podemos tardar diez años en caracterizar el nuevo bosón y verificar que sus propiedades son compatibles con el Modelo Estándar”. De manera que el camino inmediato a seguir con el LHC esta claro, no así lo que se puede descubrir.

“El LHC tiene mucho recorrido. La nueva etapa que aumentará la energía nos abre una región inexplorada”

Hay que tener presente que el descubrimiento “se ha alcanzado mucho antes de lo esperado inicialmente tras analizar tan solo un 1% de las datos que se esperan acumular con este acelerador, lo cual es prometedor de cara a unos futuros descubrimientos que puedan estar aguardándonos”, advierte Juste Rozas.

El LHC seguirá funcionando hasta diciembre; luego, a principios de 2013 se apagará para realizar, durante dos años, las adaptaciones necesarias antes de encenderlo de nuevo a finales 2014 con el doble de energía. “Yo no esperaría otro gran descubrimiento antes del próximo diciembre, pero yo no decido, decide la naturaleza, así que uno nunca sabe…”, reconoce Heuer.

“Después del Higgs, ¿El diluvio?”, se pregunta con ironía el físico teórico del CERN Luis Álvarez Gaumé. “Esperemos que sea un diluvio lleno de sorpresas y descubrimientos nuevos. El análisis de lo que podría ser la partícula de Higgs continúa y hay que poner mucha atención para ver si existen anomalías sistemáticas en los datos que indiquen de forma indirecta la existencia de una realidad más allá de la que conocemos”.

Lo interesante de la física de partículas a principios del siglo XXI es que si es asombroso lo mucho que conocen y entienden los científicos de cómo es el universo en sus componentes más elementales, más asombroso aún es lo muchísimo que desconocen y que intenta desvelar con teorías e hipótesis y, necesariamente, con experimentos que demuestren su veracidad. Se refieren a todo esto como “nueva física”, porque saben que el Modelo Estandar, por bien que funcione, no es la última palabra, no es perfecto, dejan cabos sueltos…. Luego no puede ser la descripción definitiva del mundo subatómico.

“Personalmente espero que si hay otro descubrimiento sea una sorpresa, algo que no esperamos, pero tengo muchas esperanzas de encontrar indicios, por ejemplo, de partículas supersimétricas”, dice Incandela. “La filosofía es no dejar ninguna piedra sin levantar: buscamos indicios de partículas supersimétricas, indicación de dimensiones extra, una cuarta generación de partículas, etcétera. Se busca sistemáticamente lo esperado por todo tipo de teorías, pero también lo inesperado, intentado simplemente observar desviaciones de las predicciones del modelo estándar”, apunta Martine Bosman, del IFAE.

De esas partículas supersimétricas no ha aparecido aún señal alguna en los experimentos, pero abundan en las discusiones entre los físicos teóricos, en los artículos científicos, los congresos y las charlas en las instituciones de física de todo el mundo, incluido el CERN. Se trata de un nuevo modelo teórico que engloba al Modelo Estándar y que supera en parte sus limitaciones. Y, según las predicciones de esas teorías supersimétricas, llamadas SUSY, debe existir todo un conjunto de nuevas partículas primas de las ya conocidas, pero con características propias, denominadas supersimétricas. Nadie sabe si realmente existen, ni siquiera aparecerían en los experimentos del gran acelerador de Ginebra, caso de existir. Pero se buscan con ahínco. “El LHC tiene mucho recorrido todavía: la etapa siguiente en la que se aumentará la energía, nos abre una nueva región inexplorada hasta ahora”, avanza Cerrada.

Lea el artículo completo en:

El País Ciencia
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0