Latest Posts:

Mostrando las entradas con la etiqueta einstein. Mostrar todas las entradas
Mostrando las entradas con la etiqueta einstein. Mostrar todas las entradas

28 de enero de 2014

La historia del término fotón


Dibujo20140103 troland paper 1917 on experimental psychology - origin term photon

Hoy en día todo el mundo asocia el término fotón al bosón gauge del campo electromagnético, sin embargo, su uso no fue generalizado hasta después de la Segunda Guerra Mundial. El término fotón fue usado por los físicos L.T. Troland (1889-1932) en 1916, J. Joly (1857-1933) en 1921 y G.N. Lewis (1875-1946) en 1926 con tres significados diferentes, ninguno de ellos como sinónimo del cuanto de luz que A. Einstein (1879-1955) introdujo en 1905 para explicar el efecto fotoeléctrico. Hoy en día, dichos significados del término fotón han sido olvidados. Nos los recuerda el danés Helge Kragh, “Photon: New light on an old name,” arXiv:1401.0293 [physics.hist-ph].


El cuanto de luz fue introducido por Einstein en su famoso artículo de 1905 publicado en Annalen der Physik que le llevó a obtener el Premio Nobel de Física (“Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt,” Annalen der Physik 17: 132-148, Mar 1905; pdf gratis). En dicho artículo propuso que la radiación electromagnética monocromática de frecuencia ν está compuesta de “cuantos de energía” dados por E = hν. Gracias a ello pudo explicar el efecto fotoeléctrico y la regla de Stokes de la fotoluminiscencia. El cuanto de energía fue tratado como una partícula cuando Einstein en 1917 le asignó un momento lineal p = hν/c. Por ello, expertos en historia de la física como Abraham Pais afirman que Einstein introdujo el concepto de  fotón en 1917.

La nota completa en:

La ciencia de la mula Francis

30 de septiembre de 2013

¿Qué fue primero, el tiempo o el espacio?

reloj

Según Albert Einstein, el tiempo y el espacio eran sencillamente diferentes aspectos de la misma entidad que ahora se conoce como "espacio-tiempo".

Por ende, parece plausible que ambas empezaron a existir simultáneamente.

Habiendo dicho lo cual, investigaciones recientes que combinan el trabajo de Einstein y la teoría cuántica ha llevado a algunos teóricos a concluir que el espacio podría haber generado el fenómeno que experimentamos como tiempo.

Fuente:

BBC Ciencia

27 de mayo de 2013

¿Cuál es diferencia en el cerebro de la gente inteligente?

Albert Einstein

Cuando Albert Einstein murió, en 1955, los doctores no pudieron resistir la tentación de examinar su cerebro, en busca de lo que le había permitido ser tan brillante. Lo que encontraron respaldó la teoría de que el cerebro de las personas muy inteligentes es distinto.

Un estudio reciente, publicado en noviembre de 2012 por un equipo liderado por el profesor Dean Falk de la Universidad del Estado de Florida, indica que la corteza prefrontal del cerebro de Einstein era relativamente grande -la región vinculada con las funciones más especializadas de la consciencia, como la imaginación-.

Además, la forma de sus lóbulos parietales era inusual, lo que se sabe está vinculado con habilidades matemáticas y visuales/espaciales. Esas características estaban combinadas con una alta densidad de las llamadas células gliales, que alimentan a las neuronas necesarias para pensar.

Así que el cerebro de Einstein parece idóneo para hacer descubrimientos asombrosos.

Los resultados de otros estudios que han buscado diferencias similares en la población en general también han sido interesantes. Por ejemplo, una investigación con escáneres del cerebro mostró una correspondencia entre la inteligencia y la cantidad de materia gris.

Fuente:

BBC Ciencia

9 de abril de 2013

La Relatividad está en las cosas que nos rodean...



Al hablar de la relatividad especial siempre nos da la impresión, al menos a mí me pasa, de que estamos tratando con una teoría que explica fenómenos que difícilmente tendrán una influencia directa en cosas tangibles para nosotros. Siempre tenemos a mano efectos chulos de partículas que “viven” más porque van a velocidades cercanas a la de la luz, los gemelos se hacen un lío con los años, las llaves no entran en las cerraduras, etc. Pero la pregunta es

¿Hay algo que nos rodee que manifieste características relativistas?
 
Y la respuesta está en la química.

En esta entrada no pretendo ser exhaustivo, tan solo quiero dar una lista de fenómenos, cotidianos, que no podrían darse de no verificarse las leyes de la relatividad especial. Como siempre, la naturaleza es maravillosa :)

Núcleos, electrones y orbitales

Generalmente nos dicen que las propiedades químicas de los elementos vienen determinadas por sus configuraciones electrónicas. Los átomos están compuestos por núcleos (con un número dado de protones y neutrones por allí) y electrones atraidos por este mediante la interacción eléctrica. Para entender estos hechos tenemos que recurrir a la mecánica cuántica. Muy brevemente (para una información más extensa: Orbitales Atómicos):
  1. Los electrones se disponen en orbitales.
  2. Estos orbitales vienen determinados por la energía del electrón (que solo puede tomar determinados valores), su momento angular, y su espín.
  3. En los orbitales encontramos la información de con qué probabilidad encontraremos al electrón con una determinada energía y momento angular a una distancia R del núcleo y en una determianda dirección.
Con esta información se pueden dar cuenta de las propiedades químicas y físicas de los elementos y se puede entender la organización de los mismos en la tabla periódica.



Si le preguntamos a un físico o un químico, nos dirán que esto viene descrito esencialmente por la ecuación de Schrödinger. Esto implica que los efectos relativistas (que serían necesarios si los electrones se movieran a fracciones apreciables de la velocidad de la luz) no se consideran necesarios para un buen entendimiento de la química. Y esta es la opinión más generalizada, de hecho, se estudia poco de esto en las carreras de física o química (por no decir nada).

Así pues, la relatividad especial parece algo que solo tiene importancia en cuestiones que involucran a partículas de alta energía que se mueven a muy alta velocidad. Pero no siempre es así.

Ahora presentaremos el argumento por el cual la relatividad influye en la química de algunos elementos muy usuales en nuestras vidas y hablaremos de algunos ejemplos.

La relatividad y su influencia en los átomos

Cuando uno estudia los orbitales atómicos puede calcular cual es la velocidad promedio de los mismos.  Según los cálculos esta velocidad media tiene la siguiente dependencia:

\langle v\rangle \approx Z

Es decir, la velocidad aumenta con el número atómico (número de protones en el núcleo). Esto implica que la química de los elementos pesados de la tabla periódica dependerá de características relativistas.
Uno de los principales efectos que tiene esto es lo siguiente:
  • Para núcleos con número atómico alrededor de 70 las velocidades de los electrones son superiores a 0.5c. A estas velocidades los efectos relativistas ya son apreciables.
  • Dado que a estas velocidades las energías de los electrones se pueden asociar a un incremento de su masa efectiva (y esto solo es un truco matemático, lo que se llama la masa relativista).  Ocurre que los orbitales de tipo s y p “disminuyen su tamaño” y bajan sus energías.
El radio promedio de un orbital se puede asociar a lo que se llama como radio de Bohr:

r_{Bohr}=\dfrac{Ze^2}{mv^2}

Así pues, se produce una contracción orbital si consideramos una masa relativista en vez de una masa no relativista.
  • Además se producen cambios en los niveles de energía:


En un mundo relativista, como el nuestro, los orbitales s y p tienen menor energía y los orbitales d y f tienen mayor energía que en los respectivos casos no-relativistas.

Mira tu anillo y verás la relatividad

Si la química está en lo cierto, todos los elementos de un grupo tienen que tener propiedades parecidas. Sin embargo, cuando uno mira la plata y el oro los podemos distinguir a simple vista sin más que ver su color.
¿Por qué la plata tiene color metálico plateado y el oro es amarillo?

Esta cuestión solo se puede responder en un contexto relativista. El color de estos metales es debido a una transición entre el nivel 5d y el 6s. Para la plata esta transición es muy poco probable porque la separación energética de estos niveles es grande. Pero el oro, con un Z=79 la relatividad obliga a que esos niveles estén más cercanos y la transición energética está en el rango óptico y es lo que explica su color característico.
En un mundo no relativista el oro tendría el color de la plata.

El mercurio



El mercurio es ese metal líquido. ¿Un metal líquido? ¿Un metal con un punto de fusión tan bajo que es líquido a temperaturas usuales?

Pues sí, este metal tiene las características que tiene por culpa de la relatividad.

La temperatura de fusión del oro es de unos 1000ºC y la del mercurio -39ºC. La diferencia no es poca, lo cual es sorprendente, porque están muy cerca el uno del otro en la tabla perdiódica, de hecho están al lado.

La diferencia entre el oro y el mercurio está en que el mercurio tiene su orbital 6s (contraido relativisticamente) lleno (el del oro tiene un hueco libre). Esto hace que las uniones Hg-Hg sean muy débiles y esencialmente sean uniones de Van der Walls. Eso le confiere las propiedades tan típicas a este elemento.

Abre tu coche



Las baterías que generalmente llevan los coches son las de Plomo/Ácido. Estas baterías producen corriente a través de unas reacciones de oxidación/reducción (mueven electrones de un átomo a otro). El caso es que las reacciones típicas involucran un ión del plomo, el Pb^{2+} y Pb^{4+}. Esto se consigue llevando electrones desde el orbital 6s contraido al 6p. Este proceso no es fácil de conseguir, está muy inhibido, y es lo que hace posible que estas baterías funcionen. Sin la relatividad no lo harían.

Lo obvio

Aparte de lo dicho, está claro que todas las características químicas de los elementos que involucran al espín, los acoplos espín-órbita, etc, son muestras de que vivimos en un universo donde operan las leyes dadas por la relatividad especial. El espín de las partículas es una consecuencia directa de la relatividad especial en la definición del concepto de partícula. Por lo tanto, cualquier fenómeno que dependa del espín es una muestra de la influencia de la relatividad, por poner un ejemplo, las resonancias magnéticas son una prueba palpable de que vivimos en un sitio relativista ;) .

Aquí solo hemos pretendido mostrar, muy por encima, que a veces las cosas que nos parecen más alejadas de nuestra experiencia en realidad tienen una influencia directa en nuestras vidas. Vivimos en el universo que vivimos y eso hace que podamos rastrear sus consecuencias hasta en las situaciones más insospechadas.

Desgraciadamente, no se suele puntualizar este hecho muy a menudo ni en las clases, ni en los libros de texto. Sin embargo, es interesante tener todo esto en mente, porque vivimos en un sitio sorprendente.
Nos seguimos leyendo…

Un artículo muy interesante sobre todos estos temas, para profundizar:

Fuente:

7 de abril de 2013

El telescopio espacial Kepler da la razón a Einstein… una vez más

PIA16885

Una masiva enana blanca curva la luz de su compañera (recreación)

El telescopio espacial Kepler ha sido testigo de como una estrella muerta curva la luz de la estrella que acompaña. El descubrimiento está entre las primeras detecciones de este fenómeno (predicho por la teoría general de la relatividad de Einstein)  en estrellas binarias.

La enana blanca observada tiene aproximadamente el tamaño de nuestra Tierra, aunque una masa parecida a la de nuestro Sol. Su otra compañera de viaje es una enana roja que, aún siendo mayor de tamaño, orbita alrededor de la primera.

Las primeras observaciones llevaron a pensar que se trataba de un gigante gaseoso del tamaño de Júpiter eclipsando la luz de la enana roja. Posteriores mediciones con el telescopio Hale en San Diego descubrieron que la enana roja estaba moviéndose alrededor del supuesto planeta en un movimiento similar al de una peonza, ese movimiento era demasiado grande como para ser causado por un gigante gaseoso. Había que dar otra respuesta para explicar ese baile gravitacional, y la encontraron en forma de una enana blanca muy masiva.

PIA16886

El gráfico nos muestra las típicas curvas de brillo que usa Kepler para la detección de exoplanetas orbitando alrededor de su estrella madre. La curva de la izquierda es lo que primeramente se interpretó como el paso de un gigante gaseoso por delante de una enana roja, con la típica disminución en la curva de brillo. 
Realmente lo que se estaba viendo era el eclipse de una enana blanca por parte de su compañera, la disminución del brillo se debía a la gran masa de la estrella restando luz a su menos masiva compañera.

La gráfica de la derecha nos muestra que pasa cuando la enana blanca pasa por delante de la roja. La disminución del brillo es increíblemente sutil debido al pequeño tamaño de la enana blanca (recordemos comparable a nuestra Tierra). Los puntos azules marcan la disminución del brillo acorde con el tamaño de la enana blanca, la línea roja lo que realmente se observa en el tránsito, su masa es enorme, la gravedad curva y magnifica la luz de la enana roja, dando lugar a lo que predijo Einstein, una lente gravitacional.

Esta misión no deja de darnos sorpresas, además de ser una de las mayores fuentes a la hora del descubrimiento de exoplanetas, también nos ayuda a poner imágenes a teorías que hasta ahora solo se mostraban sobre el papel.

Y nos la querían suspender.

Fuente:

Miles de Millones

15 de marzo de 2013

Genial: Quince frases de Albert Einstein


El 14 de marzo de nacía en Ulm (Alemania) Albert Einstein, que fue elegido por la revista Time como el personaje más importante del siglo XX. Siendo un joven empleado en la Oficina de Patentes de Berna (Suiza), publicó su Teoría Especial de la Relatividad en 1905. Y en 1916 presentó la Teoría General de la Relatividad, en la que reformuló por completo el concepto de gravedad. Estas son algunas de sus mejores frases.

"La mente es como un paracaídas… Solo funciona si la tenemos abierta".

"Todos somos muy ignorantes. Lo que ocurre es que no todos ignoramos las mismas cosas".

"La imaginación es más importante que el conocimiento".

"El mayor misterio del mundo es que resulta comprensible".

"Todo debe simplificarse lo máximo posible, pero no más".

"El secreto de la creatividad es saber cómo esconder tus fuentes".

"Toda la ciencia no es más que un refinamiento del pensamiento cotidiano".

"La educación es lo que queda una vez que olvidamos todo lo que aprendió en la escuela".

"Lo importante es no dejar de hacerse preguntas".

"Nunca pienso en el futuro. Llega demasiado pronto".

"Dos cosas son infinitas: la estupidez humana y el universo; y no estoy seguro de lo segundo".

"No todo lo que cuenta puede ser cuantificado, y no todo lo que puede ser cuantificado cuenta".

"Locura es hacer la misma cosa una y otra vez esperando obtener diferentes resultados".

"Primero tienes que aprender las reglas del juego, y después jugar mejor que nadie".

"Hay una fuerza motriz más poderosa que el vapor, la electricidad y la energía atómica: la voluntad".


Tomado de:

Muy Interesante

21 de febrero de 2013

¿ El universo podría existir sin necesidad de Big Bang? Claro que sí...

universo-3d
GaleríaFotogalería: La imagen del día del espacio
Haz click aquí

Investigadores de la Universitat Politècnica de Catalunya · BarcelonaTech (UPC) han demostrado con modelos matemáticos que el universo se expande de forma acelerada debido a una pequeña constante cosmológica que actúa contra la gravedad, tal como evidencian experimentalmente las teorías cosmológicas de los últimos unos años.

En un artículo que publica la prestigiosa revista Physical Review Letters, los investigadores Jaime Haro y Jaume Amorós, del Departamento de Matemática Aplicada I de la UPC, retoman el modelo del universo introducido originalmente por Albert Einstein a finales de los años veinte en un intento de unificar la gravitación y el electromagnetismo, y aplicar esta teoría en cosmología. Los autores llegan a la explicación de dos de los principales dilemas de la cosmología actual: por qué el universo no presenta singularidades, a pesar de que la mayoría de modelos estándar predicen su existencia, y por qué la expansión del universo es acelerada, en lugar de ser decelerada como predice la cosmología basada en la teoría de la relatividad general de Einstein.

Para resolver el problema de la constante cosmológica de Einstein, los matemáticos españoles se han basado en la técnica matemática del teleparalelismo, que fue introducida en física por Einstein en los años 20. Los resultados de la investigación muestran un universo primitivo en el cual el Big Bang no existe y que evoluciona hasta nuestro universo actual, en el que una pequeña constante cosmológica actúa contra la gravedad para acelerar su expansión.

La teoría del Big Bang producido de acuerdo a la relatividad general, precedía que el universo tiene que ser de tamaño estático o expandirse con velocidad decreciente. Las observaciones astronómicas de los últimos años, cada vez más precisas, contradicen esta teoría clásica. Los astrónomos Perlmutter, Schmidt y Riess, que obtuvieron el premio Nobel de Física en 2011, ya descubrieron dicha contradicción en 1998. Las observaciones de estos científicos mostraban que el universo se expande con velocidad creciente. Ahora, los investigadores de la UPC han evidenciado esta última teoría con modelos matemáticos.


Fuente:

Muy Interesante 

4 de diciembre de 2012

Einstein y Mozart: dos genios unidos a través de un violín

Así como las travesuras de Mozart escandalizaron a sus contemporáneos, Albert Einstein llevó en su juventud una vida notablemente bohemia. Su estudiada indiferencia a la ropa y a su desgreñada melena oscura, junto con su amor por la música y la filosofía, lo hacían más semejante a un poeta que a un científico. Einstein también coincidía con la capacidad de Mozart de componer música magnífica...

El físico halló inspiración en el compositor

El año pasado, el centenario de E=mc2 inspiró una oleada de simposios, conciertos, ensayos y productos referidos a Albert Einstein. Este año, el mismo trato recibe otro genio, Wolfgang Amadeus Mozart, nacido el 27 de enero, doscientos cincuenta años atrás. Pero hay entre estos dos aniversarios más coincidencias de las que podríamos pensar.

En una oportunidad, Einstein dijo que, mientras Beethoven creó su música, la de Mozart "era tan pura, que parecía haber existido en el universo desde siempre, esperando a ser descubierta por su dueño". Einstein creía lo mismo respecto de la física, que más allá de las observaciones y la teoría se encontraba la música de las esferas... que, según escribió, revelaba "una armonía preestablecida", ya que expresaba asombrosas simetrías.

Las leyes de la naturaleza, tal como las de la teoría de la relatividad, estaban esperando que alguien con un oído atento las recogiera del cosmos. Así, Einstein no atribuyó tanto sus teorías a laboriosos cálculos, sino más bien al "puro pensamiento". Einstein estaba fascinado con Mozart y percibía una afinidad entre los procesos creativos de ambos, así como entre sus historias de vida. De niño, Einstein era un alumno mediocre en la escuela.

Una válvula de escape

La música era una válvula de escape de sus emociones. A los 5 años empezó a tomar lecciones de violín, pero muy pronto las prácticas le resultaron tan duras que le arrojó una silla a su profesora, quien salió huyendo de la casa hecha un mar de lágrimas. A los 13, el físico descubrió las sonatas de Mozart. El resultado fue una conexión casi mística, dijo Hans Byland, amigo de Einstein desde el secundario. "Cuando su violín empezó a cantar -le dijo Byland al biógrafo Carl Seelig-, las paredes de la habitación parecieron alejarse... Por primera vez apareció ante mí Mozart en toda su pureza, iluminado con las puras líneas de la belleza helénica, pícaro y travieso, poderosamente sublime."

Desde 1902 hasta 1909, Einstein trabajó seis días por semana en una oficina de patentes suiza, dedicando su tiempo libre a la investigación en el campo de la física, su propia "travesura". Pero la música también era su alimento, particularmente la música de Mozart, que se encontraba en el núcleo de su vida creativa. Y así como las travesuras de Mozart escandalizaron a sus contemporáneos, Einstein llevó en su juventud una vida notablemente bohemia. Su estudiada indiferencia a la ropa y a su desgreñada melena oscura, junto con su amor por la música y la filosofía, lo hacían más semejante a un poeta que a un científico.

Tocaba el violín con pasión y con frecuencia lo hacía en veladas musicales. Encantaba al público, particularmente a las mujeres, una de las cuales llegó a firmar: "Tenía esa clase de belleza masculina capaz de causar estragos". Einstein también coincidía con la capacidad de Mozart de componer música magnífica, aun en condiciones de gran dificultad y pobreza.

En 1905, el año en el que descubrió la relatividad, Einstein vivía en un diminuto departamento y debía enfrentarse a un matrimonio difícil y a dificultades de dinero. Esa primavera escribió cuatro trabajos que estaban destinados a cambiar el curso de la ciencia y de las naciones. Sus ideas sobre el espacio y el tiempo emergieron, en parte, del descontento estético: le parecía que las asimetrías del campo de la física ocultaban bellezas esenciales de la naturaleza; las teorías existentes carecían de la "arquitectura" y de la "unidad interna" que él hallaba en la música de Bach y de Mozart.

Contra la complejidad

En sus luchas con enormes grados de complejidad matemática, que lo condujeron a la enunciación de la teoría general de la relatividad, en 1915, Einstein recurría con frecuencia, en busca de inspiración, a la belleza simple de la música de Mozart.

"Siempre que se encontraba en un punto muerto o en un momento difícil en su trabajo, buscaba refugio en la música -recordó su hijo mayor Hans Albert-. Eso solía resolver todas sus dificultades." 


Al final, Einstein sintió que en su propio campo había logrado, como Mozart, desentrañar la complejidad del universo. Los científicos suelen describir la teoría de la relatividad como la más bella que se haya formulado nunca. El mismo Einstein siempre señaló la belleza de la teoría: "Es difícil que alguien que la haya entendido verdaderamente sea capaz de pasar por alto el encanto de esta teoría", dijo en una oportunidad. La teoría es esencialmente la visión de un hombre de cómo debe ser el universo. Y, sorprendentemente, el universo resultó ser muy parecido a como Eisntein lo imaginó.

Su audaz matemática reveló fenómenos espectaculares e inesperados como los agujeros negros. 


Aunque era un gigante clásico, Mozart contribuyó a sentar los fundamentos de los románticos con sus estructuras menos precisas. De manera semejante, las teorías de la relatividad de Einstein completaron la era de la física clásica y abrieron el camino para la física atómica y sus ambigüedades. Al igual que la música de Mozart, la obra de Einstein es un hito y un punto de partida.

En un concierto realizado en 1979 para celebrar el centenario del nacimiento de Einstein, Julliard Qartet recordó haber tocado para Einstein en su casa de Princeton, en Nueva Jersey (EE.UU.). 


Habían llevado cuartetos de Beethoven y de Bartók y dos quintetos de Mozart, según recordó el primer violinista Robert Mann, cuyos comentarios fueron grabados por el académico Harry Woolf. 


Después de interpretar a Bartók, Mann se dirigió a Einstein: "Nos complacería mucho hacer música con usted". En 1952, Einstein ya no tenía violín, pero los músicos habían llevado uno extra y Einstein eligió el inquietante quinteto en Sol menor de Mozart.

"El doctor Einstein casi no miraba las notas de la partitura -recordó Mann-. Aunque sus manos, fuera de práctica, eran frágiles, tenía una coordinación, un oído y una concentración extraodrinarios." Parecía, según su relato, extraer de la nada las melodías de Mozart.

Por Arthur I. Miller
De The New York Times 


El autor es profesor de Historia y Filosofía de la Ciencia en la Universidad de Londres, y escribió el libro "Empire of the Stars". 


Traducción: Mirta Rosenberg


Tomado de:

Hágasela Música

Ojo Científico
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0