Latest Posts:

6 de agosto de 2018

¿Por qué los buceadores se tiran de espaldas de la lancha?

Hay varias razones. 

La primera es que, si se lanzaran de frente, la inercia de la botella de oxígeno podría golpearles en el cuello, la cabeza o la espalda. Si se arrojaran de cabeza, como un nadador cualquiera, el primer impacto lo recibiría la cara, y así, el regulador (la boquilla) de respiración y la máscara podrían salirse. Eso obligaría a salir de nuevo a superficie para recolocarse todo el equipo. Aun así, si la zona de inmersión es poco profunda o desconocida, se aconseja tirarse de pie o sentados, para estar más “orientados” si se topan con obstáculos.

La técnica para tirarse de pie es conocida como “paso de gigante”, y como bien describe su propio nombre, lo que se ha de hacer es dar un paso muy grande desde la plataforma hacia el mar para evitar que la botella de oxígeno de la espalda choque contra el barco, a la vez que con la mano nos agarramos las gafas y el regulador.

La técnica tradicional


La técnica del "paso de gigante"


Fuentes: YouTube, QUO y la Vida Cotidiana

¿El cannabis tiene los mismos efectos masticado que fumado?


Cuando se inhala fumando, la sustancia que produce los efectos psicotrópicos de esta planta, el THC (delta-9-tetrahidrocanabinol), llega rápidamente al cerebro a través del torrente sanguíneo. Así que sus efectos se sienten en pocos minutos y duran hasta horas. 

Sin embargo, cuando se consume masticándolo, la cantidad de tetrahidrocanabinol que alcanza el cerebro es menor y tarda más en hacer efecto, pues se absorbe más lentamente. En cualquiera de sus formas, estudios recientes aseguran que su consumo afecta a la memoria a corto plazo.

Y además, el cannabis (y ninguno de sus derivados) puede inyectarse. Pero existen muchas otras maneras de consumirlo; así tenemos el horneado (panecillos y galletas de marihuana), acompañado de bebidas frías, en forma de pomada o por vía rectal. Más detalles AQUÍ.


5 de agosto de 2018

Ada Lovelace, la mujer que ideó el primer algoritmo de la historia (100 años antes de que llegaran las computadoras)

La programación parece un arte de principios del siglo XX, pero no es del todo cierto. Casi un siglo antes de que Alan Turing sentara las las bases de la computación moderna, una mujer escribió el primer algoritmo de la historia, un programa tan avanzado que la tecnología de la época no pudo hacerlo realidad.


Esa mujer se llamaba Augusta Ada King-Noel, condesa de Lovelace, aunque el mundo la recuerda como Ada Lovelace, escritora, matemática y la primera programadora de la historia.

Interesada desde joven en las matemáticas, la frenología y la física, la carrera de Lovelace dio un giro radical cuando trabó amistad con el matemático e inventor Charles Babbage, que le mostró su más reciente creación: la máquina de diferencia. En esencia se trataba de una calculadora mecánica capaz de tabular funciones polinómicas.

En 1840, Babbage fue invitado a la Universidad de Turín para dar una conferencia sobre su último diseño, un dispositivo llamado La máquina analítica. Un joven ingeniero italiano llamado Luigi Menabrea transcribió el seminario al francés y su transcripción terminó en la Biblioteca Universal de Ginebra. Dos años más tarde, un amigo común de Lovelace y Babbage pidió a la científica que tradujera el documento del inventor al inglés.

Pero Ada fue mucho más allá de la traducción

La elección de Lovelace no fue casual. Era de los pocos matemáticos capaces de entender los trabajos de Babbage. Sin embargo, su aportación fue mucho más allá de una mera traducción. Ada se percató de algo en la máquina que se le había pasado por completo a su creador: podía programarse.

Lovelace enriqueció el libro con sus propias notas entre las que se encuentra un completo diagrama que básicamente describe el primer algoritmo de la historia y que le valió ser considerada la primera programadora incluso cuando aún no existían los lenguajes de programación ni las computadoras.


Babbage ya esbozó algunos algoritmos propios, pero eran básicamente fórmulas. Ninguno de ellos tenía la complejidad que ideó Lovelace. El mérito de Ada Lovelace fue el darse cuenta de que la máquina analítica podía usarse para expresar entidades o símbolos con arreglo a unas normas y no solo números.

Pero la máquina no pudo ser construida

Nunca pudo ver en persona los resultados de su aportación. La máquina analítica de Babbage fue la primera computadora en términos de Turing. Tenía una unidad lógica aritmética y hasta un sistema de memoria integrado. En términos generales, compartía la misma estructura lógica que las computadoras actuales. Sin embargo, era tan compleja que Babbage no logró reunir el dinero necesario para fabricarla. El primer modelo completo de la máquina a partir de sus apuntes y siguiendo los mismos procesos de fabricación de la época no llegó hasta 1991 de la mano de los conservadores del Museo de la Ciencia de Londres.


Unos 100 años después de la creación de Babbage, el ingeniero alemán Konrad Zuse completaba la Z1, la primera computadora que se puede considerar como tal. El libro con la transcripción realizada por Lovelace con sus notas, su algoritmo y su nombre en la portada acaba de subastarse por la astronómica cifra de 125.000 dólares.

Fuente:

Gizmodo

Un científico ha calculado matemáticamente la fuerza de Thanos en Avengers: Infinity War

Si has visto Avengers: Infinity War sabrás que Thanos es el villano más bestia que ha aparecido en una producción de Marvel en la gran pantalla. Ahora bien, ¿hasta dónde llegaría esa fuerza? Esto es precisamente lo que ha averiguado un científico de la Universidad Northeastern, y es bastante impresionante.


El hombre que se embarcó en el proyecto fue Steven Cranford, profesor de ingeniería de la universidad, quién calculó hasta dónde llegaría la fuerza de Thanos. Para llegar a ese calculo el investigador realizó modelos moleculares reales del cubo ficticio Teseracto. Su trabajo se acaba de publicar (y revisar) en Extreme Mechanics Letters.

Para los profanos, el Teseracto en el mundo de Marvel es una gema en forma de cubo de un poder incomparable que una vez perteneció a Odín, una brillante caja azul que Thanos aplasta como si nada. Cranford, un aficionado a las películas de Marvel y científico de los materiales, vio en la escena una fórmula perfecta para adivinar la fuerza real del personaje.

Cuando Thanos demolió el cubo, Cranford activó un programa de dinámica molecular para descubrir cómo sería una caja tetradimensional. Si descifraba la geometría del cubo, podría calcular su fuerza material. Y si conocía la fuerza del cubo, podría calcular lo poderoso que debía ser Thanos para aplastarlo.

Se da la casualidad de que los teseractos no son solo imaginación del universo de Marvel, también existen en las páginas de libros de texto de geometría. De hecho, su definición es la de una figura formada por ocho cubos tridimensionales ubicados en un espacio donde existe un cuarto eje dimensional (considerando al primero longitud, el segundo altura y el tercero profundidad). Básicamente, en un espacio tetradimensional, el teseracto es un cubo de cuatro dimensiones espaciales.

Dicho de otra forma, es algo así como un cubo más pequeño suspendido perfectamente en el centro de un cubo más grande. Utilizando el software de modelado, Cranford comenzó a construir teseractos moleculares, uniendo átomos de carbono a átomos de carbono.


Si deseas leer el artículo mcompleto puedes hacer click AQUÍ.

Pero si deseas la respuesta a la pregunta inicial aquí la tienes:

Conclusión final

El investigador concluyó que exprimir un cubo Teseracto hasta dejarlo en polvo requería una fuerza equivalente a 42.000 toneladas, o la fuerza de agarre combinada de 750.000 hombres promedio de Estados Unidos.

¿El resultado final? Suponiendo una relación proporcional entre la fuerza de agarre y lo que puede levantar un estadounidense promedio, las matemáticas del científico sugieren que Thanos podría arrojar 54 millones de kilogramos, 4.5 millones de kilogramos más que el peso de el Titanic. Una auténtica barbaridad. 

Suerte que el tipo no está entre nosotros.

Fuente:

Gizmodo
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0