Latest Posts:

Mostrando las entradas con la etiqueta silicio. Mostrar todas las entradas
Mostrando las entradas con la etiqueta silicio. Mostrar todas las entradas

21 de septiembre de 2015

IBM acaba de fabricar el primer procesador funcional de solo 7 nanómetros

IBM logra fabricar el primer procesador funcional de solo 7 nanómetros 

IBM ha anunciado hoy un avance que marcará un momento histórico en la industria de la computación: la fabricación del primer procesador con transistores de 7 nanómetros, unas 1,400 veces más pequeño que el grosor de un cabello humano. El chip tiene 4 veces la capacidad de los procesadores actuales. La Ley de Moore sigue de momento más vigente que nunca.
 
La compañía ha confirmado hoy jueves el avance, adelantado en medios como el NYT, y ha asegurado que es fruto de su inversión de 3.000 millones de dólares durante 5 años en investigación en procesadores y computación. En dicha inversión participan otras compañías como Global Foundries (a quien IBM vendió su negocio de fabricación de chips el año pasado), Samsung y otras firmas privadas y organismos públicos.


El anuncio se produce justo cuando se comenzaba a dudar que la fabricación de procesadores pudiera pasar la barrera actual de los 14 nanómetros y la futura, pero ya posible, de los 10 nanómetros. Ir más allá comenzaba a suponer importantes barreras de pura física. IBM ahora se ha adelantado incluso a Intel en la creación del primer chip con transistores de 7 nanómetros (por comparación, un glóbulo rojo mide unos 7.500 nanómetros de diámetro). Para conseguirlo, la compañía ha utilizado silicio-germanio en lugar de puro silicio en determinadas zonas del chip, lo que le ha permitido la reducción de tamaño manteniendo la estabilidad del procesador y multiplicando por 4 su capacidad.


IBM logra fabricar el primer procesador funcional de solo 7 nanómetros


El avance, según IBM, permitirá construir microprocesadores con más de 20.000 millones de transistores. La reducción del tamaño de estos chips no solo permitirá concentrar mayor poder de computación en el mismo espacio, también debería dar lugar a mejoras en el consumo de energía (y, por extensión, en la duración final de las baterías de los equipos).


IBM asegura que aún deberá pasar aún un tiempo hasta que estos procesadores estén disponibles comercialmente, aunque no especifica cuánto. Desde luego será difícil verlos en equipos y sistemas antes de los próximos dos o tres años. Aún así, ahora ya sabemos que llegar a la barrera de los 7 nanómetros es posible. Eso supondrá un nuevo y gran salto en la computación. Aunque la pregunta sigue ahí: ¿qué ocurrirá después? [vía NYT y VentureBeat]

Tomado de;

Gizmodo

Lea también:
50 años de la Ley de Moore: ¿qué ocurrirá cuando ya no se cumpla?

Acaban de cumplirse 50 años de la Ley de Moore, enunciada en 1965 por Gordon Moore, uno de los… Seguir leyendo 

11 de agosto de 2013

40 minutos para simular un segundo de actividad cerebral

Simular el cerebro humano es algo tan complicado, que incluso uno de los superordenadores más poderosos del planeta apenas pudo hacerlo después de haber procesado datos por un espacio de cuarenta minutos, con un resultado equivalente a un solo segundo de actividad cerebral. El superordenador en cuestión es el Fujitsu K, un “ex primer puesto” en la lista TOP500, y la tarea requirió de casi 83 mil procesadores.


El silicio ha registrado avances espectaculares en los últimos años, pero desde varios puntos de vista, el mejor ordenador sigue estando entre nuestras orejas, de allí surge el enorme interés asociado a estudiar su funcionamiento. Si bien los expertos ya saben cómo enfrentar un proyecto de simulación cerebral, lo cierto es que el poder de procesamiento para hacerlo no está disponible, un dato llamativo si tenemos en cuenta que hay superordenadores que ya tienen como meta superar la barrera de los cien petaflops. Tomemos por ejemplo al superordenador K, creado por Fujitsu. En su momento, K se quedó con el primer puesto de la lista TOP500, y gracias a sus diez petaflops, aún se mantiene en el cuarto lugar. Sin embargo, al ser enfrentado a este proyecto de simulación, el superordenador K apenas logró reproducir el equivalente a un segundo de actividad cerebral… después de masticar números por cuarenta minutos.

Lea el artículo completo en:

NeoTeo

11 de septiembre de 2011

Cristal de silicio guarda datos… para siempre


"Si algún día encuentro un para siempre, lo compartiré contigo”, canta Tim Fite en su canción, "Forever" (Para siempre). Bueno, en la búsqueda de la superioridad del almacenamiento de datos, un grupo de científicos de la Universidad de Southampton dicen haber encontrado ese “para siempre” y también desean compartirlo contigo.

Liderado por el profesor Peter Kazansky del Centro de Investigación de Optoelectrónica de la universidad, el equipo de investigación está desarrollando un nuevo tipo de cristal nanoestructurado capaz de almacenar datos para siempre. Lo que lleva a la pregunta: ¿Para siempre? ¿Para siempre jamás? ¿Por siempre jamás?

Para lograrlo, el equipo alteró la manera en la que la luz pasa a través del cristal mediante la creación de dispositivos del tamaño de un milímetro, llamados convertidores de cristal monolítico con polarización variante en el espacio. Además de que su nombre resulta muy difícil de pronunciar, estos pequeños dispositivos alteran la polarización de los rayos láser de emisión ultracorta pasando a través de ellos, cuando se imprimen en un cristal de silicio. Los pulsos imprimen pequeños puntitos llamados “voxels”, que son como pixeles 3D en el cristal.

Como el cristal es leído por el láser, los “voxeles” producen remolinos de luz nanoscópica, que realmente son fragmentos de información que puede ser escrita, borrada y re-escrita en la estructura molecular del cristal.

Los investigadores mantienen que este nuevo método para almacenamiento de información microscópica es 20 veces más barato y compacto que los métodos ya existentes.

“Antes de esto hemos tenido que utilizar un módulo de luz espacial basado en cristal líquido que cuesta aproximadamente 20.000 libras”, manifestó el profesor Peter Kazansky. “En lugar de ello, hemos puesto un pequeño dispositivo en el rayo óptico y obtuvimos el mismo resultado”.

El equipo publicó sus hallazgos en un artículo para Applied Physics Letters.

“Hemos mejorado la calidad y el tiempo de fabricación y hemos desarrollado esta memoria en cinco dimensiones, lo que significa que la información puede ser almacenada en el cristal para siempre”, declaró Martynas Beresna, en un comunicado de prensa de la universidad. "Nadie ha hecho esto antes”.

[Vía GizMag]Enlace

Tomado de:

Discovery Channel Noticias

28 de marzo de 2011

La primera hoja artificial

Una célula solar que simula el proceso de fotosíntesis de las hojas para convertir la luz y el agua en energía de forma muy barata y limpia. Esta “hoja artificial” se ha dado a conocer en la 241 Reunión Nacional de la Sociedad Química Americana, según un artículo publicado en Science Daily.

"Una hoja artificial ha sido uno de los santos griales de la ciencia durante décadas, y nosotros creemos haberlo logrado", asegura su responsable, Daniel Nocera, un químico del Instituto Tecnológico de Massachusetts (MIT) de EEUU.

El dispositivo, del tamaño de una carta de póquer, pero más delgado, se basa en el silicio, la electrónica y los catalizadores, unas sustancias que aceleran las reacciones químicas. Asimismo, necesita para funcionar unos tres litros y medio de agua y la luz del sol. Las reacciones dividen el agua en sus dos componentes, hidrógeno y oxígeno, que se almacenan en una pila de combustible para producir electricidad.

Según Nocera, su hoja artificial podría producir electricidad suficiente para abastecer una casa en un país en desarrollo durante un día, dijo Nocera. En este sentido, el experto del MIT señala que el objetivo de su equipo es que cada hogar se convierta en su propia central eléctrica: "Uno se puede imaginar aldeas de India y África dentro de no mucho tiempo comprando un sistema asequible de energía basado en esta tecnología."

El concepto de “hoja artificial” se creó hace más de una década por John Turner en el Laboratorio Nacional de Energía Renovable de EE.UU. en Boulder, Colorado, pero sus materiales eran muy caros e inestables. Nocera asegura haber superado estos inconvenientes.

Fuente:

QUO

24 de febrero de 2011

La definición de la vida: El debate aún gira alrededor del arsénico

La vida en la Tierra está compuesta por un puñado de elementos esenciales de la tabla periódica. Recientemente, un grupo de investigadores afirmó que esta lista de ingredientes debería ampliarse, al haber encontrado una bacteria que, presumiblemente, intercambia fósforo por el venenoso arsénico.

Otros científicos se muestran escépticos, pero aún así consideran la idea de cambiar las reglas del libro de la bioquímica.

El cuerpo humano contiene alrededor de 60 elementos, pero sólo un tercio de ellos se consideran necesarios para la supervivencia. Mirando a través de todas las especies, los elementos más fundamentales son el carbono, hidrógeno, oxígeno, nitrógeno, fósforo y azufre, ya que estos forman las moléculas básicas de la vida terrestre: ADN, proteínas e hidratos de carbono.

Por esto es por lo que el pequeño microbio GFAJ-1, ha causado tanto revuelo. Fue aislado del Lago Mono, rico en arsénico, de California por Felisa Wolfe-Simon, del Instituto de Astrobiología de la NASA, y sus colegas. En un reciente artículo de la revista Science, los investigadores informaron de que GFAJ-1 parece que puede construir su ADN y proteínas con arsénico en zonas en las que, por lo general, tiene fósforo.

El arsénico se encuentra justo debajo del fósforo en la tabla periódica, debido a que sus composiciones químicas son similares. Pero esta es exactamente la razón por la que el arsénico es tan mortal: sustituye al fósforo en las reacciones químicas, pero los compuestos de arsénico resultantes son un pobre sustituto.

La afirmación sobre GFAJ-1 “parece ser incompatible con 150 años de comprensión de la química del arsénico”, dice William Rufus-Bains de la Rufus Scientific en Cambridge, Reino Unido y el MIT.

Muchos científicos, al igual que Bains, sostienen que GFAJ-1 sobrevive en condiciones ricas en arsénico secuestrando el elemento en algún lugar de su célula. No creen que haya suficientes elementos de juicio aún para decir si la bacteria está en realidad codificando sus genes en ADN unido por arsénico.

“El ADN de arsénico es excepcional, por lo que exige pruebas excepcionales”, dice Steve Benner de la Fundación para la Evolución Molecular Aplicada.

Sin embargo, Benner y Bains no son inmunes a la idea de una vida escrita con una fórmula química diferente. Simplemente creen que es probable que ocurra en un mundo completamente diferente.

La bioquímica en Titán

Benner, por su parte, ha tratado de fabricar ADN de arsénico en el laboratorio, pero sin suerte. Culpa al hecho de que los ésteres de arsénico se rompen mil billones de veces más rápido que los ésteres de fósforo. (Estos ésteres son necesarios para la columna vertebral del ADN.)

Sin embargo, esto no descarta completamente el papel del arsénico en la biología. En la luna Titán de Saturno, donde las temperaturas rondan los -180 grados Celsius, el arsénico podría hacer una buena sustitución.

“Las moléculas que contienen fósforo serían muy estables en Titán”, dice Benner. “La reactividad del arsénico, en este caso, se convierte en una virtud.”

Titán tiene otras propiedades que lo convierten en un interesante banco de pruebas para las teorías alternativas sobre la vida. Dirk Schulze-Makuch de la Universidad Estatal de Washington ha considerado los lagos de metano y etano líquido que salpican el paisaje de Titán.

“Podemos preguntarnos: ¿qué podría vivir allí?” dice Schulze-Makuch. “¿Cómo de diferente puede ser la vida?”

El metano a menudo ha sido considerado como un posible sustituto para el agua como líquido para mantener la vida. Las grandes moléculas complejas a menudo se desintegran en el agua, pero eso es un problema menor en el metano y otros solventes hidrocarburos, explica Schulze-Makuch. Otra diferencia es que el carbono podría no ser el único elemento a elegir.

“El silicio funciona muy bien con el metano”, comenta Schulze-Makuch.

El silicio se encuentra por debajo del carbono en la tabla periódica, por lo que puede formar muchas de las mismas estructuras moleculares complejas por las que es famoso el carbono.

El silicio es el segundo elemento más abundante en la corteza de la Tierra (superando en número a los átomos de carbono en un factor de 1000), y sin embargo ninguno de nuestros vecinos son formas de vida basadas en el silicio. La razón es que el silicio normalmente forma óxidos de silicio en el agua, y con el tiempo estos óxidos se convierten en roca, que es un callejón sin salida para la bioquímica del silicio.

Sin embargo, en un paisaje frío donde el agua se congela, se pueden imaginar análogos de silicio de nuestros productos bioquímicos surgiendo a partir de una sopa primordial de metano o nitrógeno líquido. Bains está actualmente estudiando esta posibilidad.

Extremos de habitabilidad

Todo esto es terreno conocido para los fans de Star Trek. En el episodio de 1967 “Devil in the Dark”, el Dr. Spock se hace amigo de una forma de vida basada en silicio llamada Horta.

Un intento aún anterior de imaginar los límites de la bioquímica alienígena fue la novela de 1953 de ciencia ficción Iceworld de Hal Clement, en la que un planeta súper-caliente alberga vida que respira azufre gaseoso y bebe cloruro de cobre.

Ahora tenemos la prueba de que existen planetas súper-calientes como éste y son, tal vez, muy comunes. El primer exoplaneta rocoso confirmado, Kepler 10b, orbita tan cerca de su estrella madre que las temperaturas de la superficie se estima que se elevan por encima de 1000 grados Celsius, lo suficiente como para fundir el hierro.

“¿Es razonable buscar vida en el lado diurno de Kepler 10b?”, pregunta Bains. Él no cree que lo sea, pero evaluar la vida en ambientes aparentemente imposibles puede ayudar a los astrobiólogos a reducir su búsqueda.

“Si gente como yo puede gastar unas cuantas personas-año tratando de averiguar si es imposible o no la vida en Plutón, y ahorrar a los astrónomos observacionales años de trabajo y cientos de millones de dólares a la NASA en nuevos satélites que la busquen, parece un esfuerzo que vale la pena hacer”, comenta Bains.

Remodelando la cubierta de la química

Además del silicio, también se han considerado otros intercambios de elementos. Una combinación de nitrógeno y el fósforo pueden formar un conjunto diverso de moléculas de cadena larga y, por lo tanto, podrían reemplazar al carbono en, por ejemplo, un planeta con una atmósfera de amoniaco. El boro, también tiene propiedades similares a las del carbono, pero hay relativamente poco de este elemento ligero en el universo.

El papel del oxígeno en la química orgánica podría ser llenado por el cloro o el azufre. De hecho, algunos microbios se sabe que reemplazan de vez en cuando un de oxígeno de su ADN con azufre. Lo que es aún más común es que el propio azufre pierda su lugar por el selenio en algunas proteínas en particular.

Sin embargo, Bains y Schulze-Makuch hacen hincapié en que el intercambio que los científicos han observado en la biología de la Tierra sólo es ocasional. Ninguno de estos organismos podría sobrevivir a una sustitución completa. Como cuestión de hecho, los experimentos han demostrado que la sustitución del hidrógeno por su isótopo el deuterio enfermaría a un microbio e incluso mataría a un animal más grande. Esto es algo sorprendente, ya que el deuterio tiene esencialmente las mismas propiedades químicas que el hidrógeno.

“Cualquier intercambio de elementos tiene que venir acompañado de cambios importantes en todo lo demás”, dice Benner.

Así que si vas a soñar con su hipotética bioquímica, tienes que empezar de cero y demostrar cómo pueden unirse los ingredientes elementales para hacer un conjunto diverso de moléculas grandes con las que la evolución pueda jugar.

“Debemos tener la mente muy abierta dado que sólo conocemos un tipo de vida”, señala Schulze-Makuch. “No vamos a sacar nada fuera de la lista todavía”.


Autor: Michael Schirber
Fecha Original: 18 de febrero de 2011
Enlace Original


Fuente:

Ciencia Kanija

7 de octubre de 2010

Así se fabrican las obleas de silicio para hacer microchips


En el suelo, por todo el planeta, la arena está constituida fundamentalmente de sílica u óxido de silicio (IV). También conocido como cuarzo, en su forma cristalina. Por supuesto, el proceso para pasar de esta arena:

a tener una oblea de silicio:

hay un interesante proceso químico por medio que no es del todo trivial. Pero primero, pongámonos un poco en antecedentes.

¿Qué es el silicio y por qué es importante en electrónica?

Un tercio del peso de la corteza terrestre es debido al silicio. Es el segundo elemento más abundante en ella después del oxígeno.

En la naturaleza, el silicio se compone en un 92.2% de Silicio 28, 4.7% de Silicio 29 y 3.1% de Silicio 30, todos ellos estables. El silicio puro es un semi-metal y sus propiedades son similares a las del germanio, siendo su característica de semiconductor la que más interesante lo hace para la fabricación de circuitos electrónicos. Pero de eso hablaremos más adelante. En la corteza terrestre, el silicio representa un 27.7% del total de elementos, solo por detrás del oxígeno (que es un 46.6%) y por delante del aluminio (un 8.13%).

Por sus características químicas el silicio es capaz de formar compuestos con 64 de los 96 elementos estables aunque los más frecuentes son con el oxígeno, hidrógeno y carbono.


Normalmente en la corteza terrestre los encontramos formando parte de silicatos y de óxido de silicio, que es el cuarzo. En esta forma el silicio tiene una estructura de red cristalina transparente con cristales en forma de prisma hexagonal.

En esta forma, el dióxido de silicio, presenta propiedades muy interesantes. El cuarzo es piezoeléctrico, es decir, produce una diferencia de potencial eléctrica al aplicarle una tensión mecánica y viceversa. Además, se da la circunstancia de que si la tensión que se le aplica es alterna el cristal de cuarzo es capaz de resonar con el campo eléctrico y oscila de acuerdo a la frecuencia de éste con una precisión extraordinaria. Esto fue lo que permitió desarrollar el reloj de cuarzo que siendo más sencillo era más preciso que los demás contemporáneos a su desarrollo en los años 60 cuando se consiguió fabricar el primer reloj de cuarzo de pulsera, 40 años más tarde de la fabricación del primero.

La estructura atómica del silicio es lo que lo hace tan interesante por poder combinarse con multitud de otros elementos para formar compuestos. De acuerdo con el modelo de capas, el silicio posee 4 electrones en su última capa. Los elementos tienden, según la regla empírica conocida como “regla del octeto” a tener 8 electrones en su última capa a fin de alcanzar la mayor estabilidad posible.

Como tiene 4 electrones en su última capa puede tanto ganarlos como perderlos en enlaces químicos con otros elementos, de ahí que pueda combinarse con tantos de ellos.

Aunque tiene muchas otras aplicaciones, como por ejemplo formando parte del vidrio, cerámica y también de polímeros más complejos como la silicona aquí vamos a hablar de su comportamiento como semiconductor.

Un semiconductor es un material que se comporta como dieléctrico a la temperatura del cero absoluto, es decir, no tiene electrones libres que puedan hacer que circule la corriente eléctrica pero que sin embargo a temperaturas más elevadas la agitación térmica permite que algunos electrones se liberen y circulen con libertad entre la red cristalina. No hay tantos electrones libres, ni mucho menos, como hay en un metal y por tratarse de un caso intermedio se le llama semiconductor.

Los semiconductores se pueden “dopar” con sustancias químicas que añadan electrones libres o los quiten, dependiendo de la aplicación en particular. Esto permite fabricar multitud de dispositivos electrónicos.

El silicio es un semiconductor intrínseco. Es decir, no necesita impurezas para ser semiconductor. históricamente fue utilizado después del germanio, que era mucho más caro de obtener.

¿Cómo se produce el cristal de silicio?

Pues bien, para poder obtener el silicio apropiado para fabricar materiales electrónicos hace falta un proceso químico que permita obtener a partir de la arena de silicio un silicio muy purificado y hacerlo crecer en la forma apropiada para trabajar con él.

El inventor del proceso que se utiliza para hacer crecer monocristales de silicio fue el químico polaco Jan Czochralski en 1916. Lo descubrió, según cuentan, por accidente. Supuestamente se equivocó al dejar su pluma en un crisol de estaño fundido en vez de en el tintero y al sacarla observó que de la punta de la pluma colgaba un hilo de metal solidificado. Con este método primitivo era capaz de generar filamentos de un milímetro de grosor y de más de un metro de longitud.

El proceso se perfeccionó cuando en los años 50 los Laboratorios Bell lo emplearon para hacer crecer monocristales de germanio. Era cuestión de tiempo que se empleara con otros semiconductores, como el silicio.

El esquema es el siguiente:

- Se dispone un contenedor con silicio altamente purificado (más de un 99.9999%) en polvo, con las impurezas.
- Se introduce una “semilla” en el silicio fundido, lo cual sucede a unos 1500ºC.
- Se genera el monocristal a partir de la semilla, que rota, creando un lingote cilíndrico.

El esquema, en imágen es así:


La semilla es una pequeña muestra de monocristal de silicio que se coloca sobre una sonda, que va a rotar. Esta parte es clave puesto que tal como sea la semilla así será el monocristal que crezca a partir de ella. Una vez se introduce en el crisol de silicio fundido se va elevando muy lentamente mientras rota, a la vez que se va formando el monocristal a partir de la punta.

Después de este proceso perfeccionado en la actualidad se habrá obtenido un monocristal cilíndrico de entre 200-300 mm de diámetro (aunque se espera alcanzar los 400 mm en el futuro) y hasta dos metros de longitud.

Finalmente con el monocristal enfriado se puede proceder a su laminado en obleas de 100 a 300 micras de grosor si son, por ejemplo, para fabricar paneles solares. Si se emplean en circuitería una vez fabricada la oblea, sobre ésta se puede imprimir el circuito deseado. La impresión de los circuitos puede hacerse por deposición química.

Y finalmente os dejo con un video sobre el proceso de Czochralski.



y este otro extraído de un documental de Discovery Channel sobre cómo se hacen los paneles solares. ¿Podéis adivinarlo? :)



Fuente:

Migui.com

5 de octubre de 2010

¿Qué es el grafeno?

Hasta hace unos días, prácticamente nadie había oído hablar del grafeno. Esta situación ha cambiado después de que la Real Academia de las Ciencias sueca premiara con el Nobel de Física a dos científicos rusos por sus investigaciones sobre este material.


.En la imagen, estructura de una membrana de grafeno realizada por la Universidad de Berkeley. Geim y Novoselov son los creadores del material que podría destronar al silicio.

El grafeno es un material biodimensional que cuenta con sólo un átomo de grosor. Su estructura laminar plana de grafito está compuesta de átomos de carbono que forman una red hexagonal. Elsa Prada, investigadora del Instituto de Ciencia de Materiales del CSIC, destaca que es la membrana más fina creada hasta el momento.

Su apariencia puede parecer frágil y delicada ya que a simple vista el grafeno es como una tela transparente y flexible. Sin embargo, se trata de un material extremadamente resistente que además sirve de conductor de la electricidad.

Las aplicaciones del grafeno aún estar por determinar aunque algunos expertos ya apuntan sus usos en el campo electrónico –dadas sus extraordinarias propiedades conductoras y semiconductoras–, la futura construcción de ascensores espaciales, pasando por la fabricación de corazas humanas de seguridad (un chaleco antibalas, por ejemplo).

Uno de los campos donde el material parece ser más prometedor es en la industria de semiconductores. Este sector tiene la intención de construir ordenadores mucho más rápidos que los de hoy en día gracias al desarrollo de microprocesadores con transistores de grafeno.

El principal impedimento en la construcción de microprocesadores es la presión. Los materiales usados para fabricar los transistores no sólo deben tener excelentes propiedades eléctricas, sino que también deben ser capaces de sobrevivir a la tensión a que se ven sometidos durante el proceso de fabricación y al calentamiento generado por repetidas operaciones.

El proceso utilizado para estampar conexiones eléctricas metálicas en los microprocesadores, por ejemplo, ejerce una tensión que puede provocar el fallo de los chips. Precisamente, el grafeno ha sido el material que mejor ha soportado todo este procedimiento.

Fuentes:

RPP Noticias (Perú)

La Razón (España)

google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0