Latest Posts:

Mostrando las entradas con la etiqueta particulas. Mostrar todas las entradas
Mostrando las entradas con la etiqueta particulas. Mostrar todas las entradas

26 de septiembre de 2012

¿Como se “pesa” una partícula?

En física de partículas hay partículas ligeras y partículas pesadas, un electrón con 0.5 MeV/c2 sería una partícula ligera, el bosón de Higgs con 126 GeV/c2 (126 000 MeV/c2) sería una partícula bastante pesada. Al protón lo encontraríamos en la mitad de estos dos con alrededor de 1 GeV/c2. Pero, ¿de que masas estamos hablando, cuanto es en kilogramos? y más aun ¿cómo se miden?


Veamos el extremo inferior ¿cuanto ‘pesa’ un electrón? Si cogiéramos una balanza y consiguiéramos medir su masa veríamos que esta es de 9 10-28 gramos o lo que es lo mismo 0.0000000000000000000000000000009 kg. Podéis ir a comprobar vuestra balanza en casa que seguro que no llega a esta precisión (si el manual dice lo contrario esta mintiendo). La medición más precisa que se ha realizado midió hasta los yoctogramos (un yoctogramo es 10-24 gramos) y fue realizada por un equipo del Institut Català de Nanotecnologia. Por medio de un sensor formado por nanotubos consiguieron medir la masa de un átomo de Xenón (54 protones y 77 neutrones). Consiguieron medir su masa con precisión de un protón (1.7 yoctogramos). Esto es realmente impresionante, pero es aun mucho mayor que el electrón. 

Entonces, ¿cómo conseguimos medir el electrón que es mil veces menos pesado?

Para ello tenemos que recurrir a la más famosa ecuación de Einstein, la que nos dice que energía es igual a masa E=mc2. Bueno, en realidad no ha esta ecuación sino a la más general:


E^2 = (\vec{p} c)^2 + (m c^2)^2


donde E es la energía de la partícula, \vec{p} es el momento m \vec{v}, m es la masa y c es la velocidad de la luz.  Si para una partícula conocemos cada uno de los valores (energía y momento) podemos usando la ecuación calcular su masa. Esto es lo que se hace en los detectores de partículas. Como ya vimos en la entradas anteriores (event displays I y event displays II) los detectores están diseñados para conseguir medir con gran precisión estos dos valores de forma que podemos calcular la masa como : 


m = \displaystyle\frac{1}{c^2} \sqrt{ E^2 - (\vec{p} c)^2}


para mayor información en como se miden E y \vec{p}, ver las entradas. Pero pondré un pequeño ejemplo de como se han medido las masas de la mayoría de los iones. Para ello lo más fácil sería utilizar un espectrómetro de masas (abajo). Este dispositivo se basa en el uso de campos eléctricos y magnéticos conocidos. Si introducimos una partícula cargada dentro de un campo eléctrico esta sufrirá una aceleración debido al campo. Si además suministramos un campo magnético su dirección se cambiará (física general). La curvatura de la trayectoria depende de la relación masa / carga, con lo que conocida su carga podemos obtener la masa con gran precisión.

 

Pero esto no funcionaría con una partícula como el bosón de Higgs o los bosones Z / W, estas partículas son inestables, viven muy poco tiempo y se desintegran rápidamente. No podemos producirlas y hacerlas pasar por un espectrómetro de masas a nuestra voluntad. Tampoco podemos utilizar la formula de arriba ya que su vida es tan corta que no permite medir su energía y momento. ¿Como se hace entonces? Bueno, para ello tenemos que aplicar las leyes de conservación. Sabemos que la energía y el momento se conservan en los procesos físicos. Buscaremos las partículas en las que se desintegró el bosón (o la partícula inestable que queremos medir). Estas partículas tienen que ser estables de otro modo nos encontramos con el mismo problema que antes. Para estos productos de desintegración, que llamaremos (1) y (2), mediremos su energía y momento.  Podremos entonces calcular la masa de la partícula inicial como :


m_Z^2=\Big(\displaystyle\frac{E_1}{c^2}+\displaystyle\frac{E_2}{c^2} \Big)^2-\Big(\displaystyle\frac{\vec{p_1}}{c}+\displaystyle\frac{\vec{p_2}}{c}\Big)^2


así pues hemos obtenido la masa de la partícula inestable, a este valor se lo conoce como masa invariante

Así se reconstruyeron y descubrieron los bosones Z y W por ejemplo. En la actualidad el bosón Z se crea en grandes cantidades en el LHC. Su masa es conocida con gran precisión y también los productos de su desintegración. Si observáramos al bosón Z desintegrarse veríamos que el 3% de las veces se desintegra a dos electrones. Si consiguiéramos aislar los sucesos donde el bosón se ha desintegrado en electrones y calculáramos la masa invariante obtendríamos el gráfico de abajo. En los datos de las colisiones no es posible aislar completamente del resto las colisiones donde se ha producido un bosón Z. Hay procesos que pueden dar también dos electrones sin ser el resultado de la desintegración del bosón. Esto significa que si utilizáramos datos reales de colisiones en vez de una simulación como es este caso, el pico sería más difícil de distinguir.



 

Fuente: 

19 de septiembre de 2012

Casi tan caliente como el Big Bang

El LHC utiliza plomo acelerado para estudiar el estado primordial de la materia

El experimento Alice explora el plasma a 100.000 veces la temperatura del Sol

 

Simulación de una colisión de núcleos de plomo en el detector Alice del acelerador LHC. / CERN / ALICE

Cuando la materia se calienta hasta temperatura extrema, tan extrema como 100.000 veces la del centro del Sol, suceden cosas raras. Los átomos dejan de ser átomos e incluso los núcleos atómicos se disgregan en sus componentes fundamentales para formar un nuevo estado de la materia, una sopa de partículas con propiedades exóticas. Así debió de ser el universo al principio, en los primeros instantes después del Big Bang, mucho antes de que al expandirse y enfriarse aquel cosmos primitivo pudieran formarse los átomos y luego las estrellas, las galaxias, los planetas...

¿Cómo reproducir en el laboratorio esas condiciones de altísima temperatura? El gran acelerador de partículas LHC, en el Laboratorio Europeo de Física de Partículas (CERN, junto a Ginebra), además de servir para cazar el famoso bosón de Higgs, sirve para generar minúsculas gotas de esa sopa supercaliente de partículas elementales (quarks y gluones). Pero, para ello, en lugar de acelerar y colisionar protones, hay que acelerar y hacer chocar plomo, o más bien, núcleos de plomo. Uno de los grandes experimentos del LHC, el Alice, está especializado precisamente en la exploración de ese microcosmos ardiente y cuenta con un mes al año de colisiones de plomo acelerado en el LHC o, como se ha ensayado hace unos pocos días, de plomo contra protones.

“El plasma de quarks y gluones debió de ser el estado de la materia más abundante, si no el único, durante las primeras milmillonésimas de segundo tras el Big Bang, pues la temperatura que reinaba por aquel entonces era de un billón de grados centígrados, lo que equivale a un 1 seguido de 12 ceros, es decir, un millón de veces la temperatura del interior del Sol, que no de la superficie, que está en unos 6.000 grados”, comenta Ginés Martínez, director de investigación del CNRS francés, que lidera el equipo de Alice de su laboratorio en Nantes. “En el LHC nos acercamos pues a esas temperaturas del principio del universo al crear microgotas de ese plasma de quarks y gluones que duran una billonésima de billonésima de segundo”, continúa.

En las colisiones del acelerador LHC se han alcanzado 5,5 billones de grados

“Con Alice tenemos la oportunidad de observar y estudiar las propiedades de ese estado primordial de la materia”, explica Despina Hatzifotiadou, física del experimento. De momento, continúa, en las semanas de colisiones plomo/plomo que ya se han hecho en el LHC, en 2010 y 2011, se ha observado cómo esta sopa de quarks y gluones se comporta como un líquido perfecto, prácticamente sin fricción, y opaco. “Además, hemos batido un récord al crear la mayor temperatura en el universo: unos 5,5 billones de grados kelvin”, añade. Es la temperatura que tendría el universo 10 milmillonésimas de segundo después de la gran explosión inicial, dice Carlos Pajares, que lidera el grupo español de la Universidad de Santiago que participa en Alice. “Se trata de estudiar precisamente la transición de fase entre el estado de las partículas elementales tal y como están en los componentes del núcleo atómico a esa sopa de quarks y gluones”, añade este físico teórico.

En el LHC estaba previsto que tras la fase actual de colisión de protones (hasta final de año) hubiera un mes de colisiones de plomo/plomo en enero. Pero han cambiado ligeramente los planes, explica Hatzifotiadou, y serán choques de haces de plomo contra haces de protones, lo que permitirá a los físicos hacer comparaciones de las propiedades del plasma con diferentes tipos de colisión.

Un millar de físicos e ingenieros de 31 países trabajan en Alice, uno de los cuatro gigantescos detectores de partículas del LHC (otros dos, el Atlas y el CMS, también aportan información en esta vertiente de la investigación de la sopa de quarks y gluones). No hay que olvidar que aunque Alice se sitúe en los récords de energía y temperatura, la instalación estadounidense RHIC avanzó mucho en este camino del nuevo estado de la materia en la última década, recuerdan los expertos. Allí se crearon, hace 10 años, las primeras gotas de la sopa de quarks y gluones, apunta Martínez.

Los quarks parecen prisioneros eternos confinados dentro de los protones

Es todavía un misterio sin resolver por qué los protones y los neutrones de los núcleos de los átomos tienen una masa cien veces superior a la de los quarks que los forman y por qué sus quarks parecen ser sus prisioneros eternos.

Para entender estos dos problemas hay que repasar un poco la composición del átomo, que está formado por un núcleo y electrones; el núcleo, a su vez, está formado por protones y neutrones y cada uno de estos, por tres quarks, unidos por la denominada fuerza fuerte, de la que se ocupan los gluones. Pues bien, los quarks no se pueden separar unos de otros, están confinados dentro del protón o del neutrón, y cuanto más fuerte intenta uno separarlos, más fuertemente se unen. Es como si estuvieran sujetos con una goma (los gluones), que resulta más y más difícil estirar cuanto más tensa está. Pero a partir de un momento, a muy alta temperatura, la goma se rompe y esas partículas elementas, en libertad, forman la famosa sopa, explica Pajares. ¿Cómo? ¿Por qué? ¿Qué reglas rigen esa transición y sus propiedades? Este es el terreno de los físicos de Alice.

Otro misterio pendiente es el de la masa del protón. Resulta que los tres quarks que lo forman “representan solo el 1% de su masa, esa cuyo origen se explica con el mecanismo del bosón de Higgs”, argumenta Martínez. ¿Y el resto? “El 99% restante de la masa se crea por el proceso de confinamiento de quarks”, añade.

Fuente:

El País Ciencia

25 de agosto de 2012

Si imaginas el electrón como una pequeña bolita, por qué no imaginas igual al bosón de Higgs


Me resulta realmente curioso que mucha gente imagine el electrón como una pequeña bolita cargada que gira sobre sí misma, pero que se imagine el bosón de Higgs como una “cosita” alargada, como un pequeño diagrama de Feynman. El bosón de Higgs es un partícula puntual, como lo es el electrón. ¿Por qué no se imagina la gente el bosón de Higgs como una pequeña bolita? No tengo ni idea, pero obviamente, ni el electrón es una bolita pequeña cuyo radio tiende a cero hasta hacerse puntual, ni el bosón de Higgs lo es. Permíteme un pequeño comentario al respecto.

Lo primero, qué es un electrón. No, no es una bolita pequeñita y cargada que gira sobre sí misma. Ni siquiera en el límite de radio tendiendo a cero. Los físicos creemos que el electrón es una excitación (fluctuación o vibración) localizada del campo electrón. El campo electrón permea todo el espaciotiempo (algunos físicos dicen que el vacío del campo electrón permea todo el universo, pero es lo mismo). Las excitaciones del campo electrón en las regiones donde no hay ningún electrón (el vacío) se llaman partículas virtuales (en ciertas circunstancias pueden convertirse en partículas, pero no son partículas). Como el electrón tiene una antipartícula llamada positrón, estas excitaciones virtuales son pares electrón-positrón virtuales. Sabemos que existen y hemos medido sus efectos (por ejemplo, afectan a los niveles atómicos de los electrones en los átomos). Ahora bien, por qué hay un número finito de electrones en el universo. Pues porque el Big Bang produjo un número finito de excitaciones localizadas tipo partícula electrón y como esta partícula es estable y no puede desintegrarse en nada, dichas excitaciones localizadas o partículas se han conservado hasta hoy en día.

Ahora podemos pasar al bosón de Higgs. ¿La gente se imagina el Higgs como una bolita pequeñita y neutra que no gira sobre sí misma? Mucha gente rehuye de esta imagen, pero como en el caso del electrón, no es eso. Los físicos creemos que el bosón de Higgs es una excitación (fluctuación o vibración) localizada del campo de Higgs. El campo de Higgs permea todo el espaciotiempo (algunos físicos dicen que el vacío del campo de Higgs permea todo el universo, pero es lo mismo). Las excitaciones del campo de Higgs en las regiones donde no hay ningún bosón de Higgs (el vacío) se llaman partículas virtuales; como el bosón de Higgs es idéntico a su antipartícula, estas excitaciones virtuales son bosones de Higgs virtuales. Sabemos que existen y resulta que las partículas masivas tienen masa porque interaccionan con estos Higgs virtuales (adquieren masa al interaccionar con el vacío del campo).

Por qué no hay Higgs por todos lados y su masa total no afecta a la densidad de masa-energía total del universo. Muy sencillo, el Higgs es una partícula con mucha masa y por tanto inestable, desintegrándose casi instantáneamente en partículas de menor masa (lo mismo le pasa al quark top y a las demás partículas con masa grande). Por ello, en el universo entero no hay ninguna excitación localizada estable de tipo partícula de Higgs. Para poder observar una partícula del campo de Higgs hay que excitar el campo con mucha energía (en una colisión protón-protón del LHC, por ejemplo) y la excitación resultante es inestable y se desintegra en unas billonésimas de billonésima de segundo en otras partículas (excitaciones de otros campos).

Desde el punto de vista de la teoría de campos no hay diferencia significativa en la relación entre la partícula llamada electrón y el campo electrón (que tiene cuatro componentes en dos parejas) y la relación entre el bosón de Higgs y el campo de Higgs (que a baja energía tiene una sola componente). Obviamente, uno tiene carga y el otro es neutro, uno es estable y el otro inestable. Pero conceptualmente tan partícula es uno como el otro. Si alguien afirma que “entiende” o intuye o se imagina qué es un electrón, debe también entender o intuir o imaginarse qué es un bosón de Higgs.

Yo sé que entender qué es un vacío cuántico y por qué es un “mar” repleto de partículas virtuales es difícil, pero no hay diferencia conceptual, repito, entre el vacío del campo electrón y el vacío del campo de Higgs.

El segundo no es más misterioso que el primero. Aunque ambos son muy misteriosos para quien quiere verlos desde un punto de vista clásico.

Espero haber ayudado algo. Pido perdón si lo he complicado aún más.

Fuente:

20 de agosto de 2012

La entropía no es desorden: La ordenación espontánea de poliedros



Hay ocasiones en las que un artículo científico, independientemente del interés intrínseco del hallazgo o comprobación que describe, pone de manifiesto cómo las simplificaciones que se hacen, incluidas las de los libros de texto, al intentar hacer comprensibles las ideas científicas tienen el efecto de que después sea mucho más difícil entender nuevos desarrollos. A éstos se les suele llamar contraintuitivos. Una de los conceptos más recurrentes entre los afectados es el de entropía y, por extensión, el de orden.

Un artículo publicado en Science por el equipo encabezado por Pablo Damasceno, de la Universidad de Michigan en Ann Arbor (EE.UU.), nos recuerda que ni la entropía, ni los procesos termodinámicos espontáneos, están relacionados per se con lo que intuitivamente entendemos por desorden. La entropía está relacionada con el número de “posibilidades” para un sistema, lo que muchas veces se traduce en “desorden” pero, como muestra esta investigación, no siempre.

Y es que la naturaleza no entiende de orden o desorden, que son conceptos puramente de la mente humana en su afán por hacer inteligible el entorno. La naturaleza entiende de minimización de la energía y maximización de posibilidades.

Pero vayamos por partes.

La organización espontánea de distintas unidades elementales en estructuras ordenadas se encuentra en todas las escalas. Ejemplos evidentes son los cristales a nivel atómico, los cristales plásticos y líquidos a nivel molecular o las superceldillas de nanopartículas o los coloides. En ciencia de materiales es crítico conocer la relación entre las ordenaciones y sus constituyentes ya que las propiedades físicas de aquellas dependen en gran manera de la estructura.



Lo que han conseguido Damasceno et al. mediante simulaciones por ordenador es poder predecir las estructuras que formarán partículas de distintas formas, en concreto 145 poliedros convexos distintos. De hecho, los autores demuestran que la forma en que se orientan depende sólo de su forma anisótropa. Pero, y esto es lo que consideramos interesante resaltar, este estudio demuestra también que existe una llamativa tendencia a la auto-organización y a la diversidad estructural. Es decir, que haciendo mediciones simples de la forma de la partícula y el orden local (orden a corto) en un fluido se puede predecir si esa forma se organizará espontáneamente como un cristal líquido, como un cristal plástico, como un cristal en sentido estricto o si no se organizarán en absoluto.

Pero, ¿cómo se forman estructuras ordenadas espontáneamente? Muy fácil, diréis algunos, el sistema se enfría, formándose las estructuras ordenadas y la entropía del universo aumenta aunque la del sistema disminuya. Pero, no. No existe variación de temperatura. Tal y como están planteadas las simulaciones, partículas sólidas que no interactúan más allá de su geometría, no existe variación energética, tan sólo maximización entrópica. Nos explicamos.

Sabemos por la segunda ley de la termodinámica que, todo lo demás constante, el sistema evolucionará espontáneamente hacia la configuración que consiga el máximo incremento en la entropía. Habitualmente, como decíamos más arriba, esto coincide con el máximo desorden. Así, un libro de texto puede decir que “los sistemas evolucionan espontáneamente en el sentido en el que aumenta el desorden”, en abierta contradicción con lo que vemos aquí.

La clave está en el espacio disponible. Si las partículas tuviesen todo el espacio del mundo no cabe duda de que se dispersarían tomando posiciones al azar. Pero si el espacio es muy limitado la cosa cambia. En estas circunstancias las posibilidades distintas de acoplamiento aumentan si las partículas se orientan cara a cara, lo que nosotros interpretamos como orden.

Dado que la eficiencia en el empaquetamiento aumenta con el área de contacto, la ordenación puede ser interpretada como el resultado de una fuerza entrópica efectiva, direccional y multicuerpo. Esta fuerza aparece a partir del mayor número de configuraciones disponibles para el conjunto del sistema, lo que trae como consecuencia que los poliedros con un número adecuado de caras se ordenen de determinada manera. Esta idea de fuerza entrópica direccional es la que sugiere que la forma de las partículas puede usarse para predecir las estructuras.

No es que el desorden (entropía) cree orden. Es una cuestión de opciones disponibles: en este caso las disposiciones ordenadas son las que producen el máximo número de posibilidades. Pero no hay que circunscribirse al mundo nanoscópico. Este fenómeno es conocido para cualquiera que haya trasladado una caja de naranjas (de esferas en general): si se agita tiende a ordenarse.

Por ello esta sería una buena ocasión para abandonar esa aproximación a la entropía como desorden y empezar a asimilar la definición estadística de la entropía, mucho más útil a la larga aunque menos intuitiva para algunos al principio: la entropía de un sistema es proporcional* al número de estados posibles en los que puede estar.



Volviendo a los resultados de Damasceno et al., de los 145 poliedros estudiados el 70 por ciento produjeron estructuras cristalinas de algún tipo. Algunas de estas estructuras eran realmente complejas, con hasta 52 partículas en el patrón que se repetía.

Como siempre con un hallazgo interesante, estos resultados nos sugieren muchas más preguntas. La más inmediata es ¿por qué el 30 por ciento no forma estructuras ordenadas quedándose con estructura vítrea (de vidrio)? ¿Por qué se resisten al orden? Un hilo misterioso del que tirar.

Fuente:

26 de julio de 2012

El CERN busca el origen del Universo, esta vez desde el espacio

Vista de la Estación Espacial Internacional. | Agencia Espacial Europea
Vista de la Estación Espacial Internacional. | Agencia Espacial Europea
Una de las primeras experiencias de todo astronauta es ver unos flashes que atraviesan su cuerpo incluso con los ojos cerrados. Son los rayos cósmicos, una radiación cuyo origen se desconoce pero que el detector de partículas AMS, instalado en la Estación Espacial Internacional, pretende desentrañar.

El 16 de mayo del 2011, Mark Kelly, el comandante que tripuló el último viaje del transbordador espacial Endeavour, de la NASA y sus cinco tripulantes, transportaron el Espectómetro Magnético Alpha (AMS), un detector de física de partículas, concebido por el CERN (Centro Europeo de Física de Partículas), y que fue instalado en la Estación Espacial Internacional (ISS).

Un año después, el AMS -construido con la colaboración de 600 científicos de 16 países distintos- ha transmitido 18.000 acontecimientos de flujos de rayos cósmicos del espacio al Centro de control y operaciones del CERN.

"Hace once años, cuando hice mi primer viaje espacial me sorprendí de seguir viendo unos flashes atravesando mis pupilas, mi cuerpo. Desde ese momento me interesé por los rayos cósmicos, y estoy muy feliz de haber participado en una experiencia para conocerlos un poco mejor", explicó este miercoles, en rueda de prensa, Kelly.

Ahora los tripulantes del Endeavour han visitado el Centro acompañados de sus familias para celebrarlo. "El AMS fue el último instrumento en ser instalado en la ISS, con él está completa. Para mí, el AMS es el experimento científico más importante con el que cuenta la estación", afirmó rotundo Kelly.

El AMS fue puesto en marcha hace justo cien años después de que el físico austríaco Victor F.Heiss descubriera los rayos cósmicos, y precisamente uno de los objetivos del aparato es medir las propiedades de la radiación cósmica.

La órbita de la ISS, entre 370 y 420 kilómetros de altitud, elimina los efectos de las colisiones con la atmósfera que enmascaran la naturaleza y las propiedades de la radiación cósmica.

"El proyecto proporcionará información muy valiosa acerca de la dosis de radiación a la que se expondrían las tripulaciones de futuros viajes espaciales de muy largo recorrido", explicó a Efe Manuel Aguilar, director del departamento de investigación básica del Centro de Investigaciones Energéticas, Medioambientales y Tecnológica de España (CIEMAT).

"Se calcula que sólo en la ida a Marte, los astronautas estarían expuestos a la mitad de la dosis de radiación letal para un ser humano. No les haría falta volver", agregó Aguilar.

Con los medios actuales, se tardaría 6 meses en llegar a Marte, mientras que para alcanzar la ISS sólo se demora 4 días y, eso teniendo en cuenta los periodos de adaptación de la tripulación y las exigencias de ajuste entre el transbordador y la estación espacial.

Otros objetivos del AMS

Otro de los retos científicos del AMS es tratar de determinar si existen restos de la antimateria que, según la teoría, debió existir para que se produjese el Big Bang, el momento del origen del Universo, hace 13.700 años.

"Lo que nosotros hemos explorado es una parte próxima a nuestra galaxia y ahí no hay trazos de antimateria. 

Pero no hay que olvidar que nuestra galaxia es una entre 100.000 millones, aún hay mucho espacio para explorar", recuerda Aguilar.

A pesar de que la ISS se encuentra a una distancia máxima de unos 420 kilómetros de la Tierra, los científicos esperan que el AMS detecte núcleos cósmicos de antimateria que vengan de muchísimo más lejos y que sean identificados gracias a su carga eléctrica negativa. "Y eso sólo se puede hacer creando un campo magnético, y esa es la principal dificultad en el espacio", apostilló el científico español.

Es por ello que el AMS cuenta con un imán permanente de grandes dimensiones para medir el signo de la carga eléctrica y la energía de cada una de las partículas que lo atraviesan.

La comunidad científica asume que el 25 por ciento del Universo está compuesto por materia oscura, la que no emite ni absorbe radiación electromagnética. El tercer objetivo del experimento AMS es detectar esa materia oscura.

"Se supone que en el espacio hay zonas con grandes densidades de partículas de materia oscura que se chocan entre si y se anulan. Pero los restos de esta anulación los podemos detectar y nos pueden dar pistas", afirmó, emocionado, Aguilar.

Consultado Samuel Ting, líder del proyecto AMS y Premio Nobel de Física en 1976, sobre cuándo se podrán obtener algunos resultados, contestó sin tapujos. "Lo más tarde posible, para poder estar seguros de lo que encontramos es válido".

 Fuente:

El Mundo Ciencia

9 de julio de 2012

Tres minutos poara entender el bosón de Higss

Bueno, pues aquí lo tenéis. Después de muchos días de trabajo y gracias al talento de David Tesouro (animación y la parte más importante del curro), Miguel Fernández Flores (grafismo) y Nicola Zonno (ilustraciones), estrenamos nuestro primer videográfico de ciencia en lainformacion.com. Después del éxito de "El bosón de Higgs explicado a mi abuela", queríamos hacer algo en nuevos formatos y nos pusimos a ello. Aún tenemos que mejorar mucho, pero creo que este primer videográfico os gustará :-)

* Podéis pillar el código del vídeo e insertarlo en vuestros blogs, si os gusta (Hacedlo!!)


Otras piezas de nuestra cobertura sobre el bosón de Higgs:


Fuente:

5 de julio de 2012

Lo que necesitas para entender el bosón de Higgs en cinco preguntas

1. ¿Por qué es tan importante encontrar el bosón de Higgs?
 
Porque podría contener la respuesta a la siguiente cuestión: ¿cómo decide la naturaleza a qué partículas les asigna masa y a cuáles no? Todas las partículas elementales que forman la materia (seis leptones y seis quarks) tienen masa. Sin embargo otras como el protón, responsable de la fuerza electromagnética, no tienen masa. La presencia o ausencia de masa podría venir dada por el bosón de Higgs, cuya existencia se propuso en los años sesenta. 

“Confirmar la existencia del bosón de Higgs en el modelo estándar supondría haber comprendido el mecanismo por el cual las partículas adquieren masa, un mecanismo que en su versión más simple predice la existencia de –al menos– un bosón que cuando interacciona con las otras partículas (quarks, leptones y otros bosones), hace que estas adquieran masa”, explica Teresa Rodrigo, investigadora del Instituto de Física de Cantabria que participa en los experimentos del CERN.

2. ¿Qué es el campo de Higgs?
 
Para explicar por qué unas partículas tienen masa y otras no, el físico británico Peter Higgs (y simultánea pero independientemente, también Francois Englert, Robert Brout, Gerald Guralnik, Dick Hagen y Tom Kibble) postuló en los años 60 del siglo XX un mecanismo que se conoce como el “campo de Higgs”. Al igual que el fotón es el componente fundamental de la luz, el campo de Higgs requiere la existencia de una partícula que lo componga, que los físicos llaman “bosón de Higgs”. El campo de Higgs sería una especie de continuo que se extiende por todo el espacio, formado por un incontable número de bosones de Higgs. La masa de las partículas estaría causada por una especie de “fricción” con el campo de Higgs, por lo que las partículas más ligeras se moverían por este campo fácilmente mientras que las más pesadas lo harán con mayor dificultad.

3. ¿Quién acuñó el nombre de “partícula de Dios”?
 
Fue el Premio Nobel de Fïsica Leon Lederman, en el libro “Si el universo es la respuesta, ¿cuál es la pregunta?”. Sin embargo muchos investigadores prefieren el apodo de "la partícula de la botella de champagne", haciendo alusión a la anécdota según la cual el físico David J. Miller ganó en 1993 una botella de champagne ofrecida por el ministro de ciencia británicoWilliam Waldegrave, que la ofreció como “premio” a quien fuese capaz de explicarle que era el bosón de Higgs.

4. ¿Por qué se usa el LHC para buscar el bosón de Higgs?
 
La confirmación o refutación de la existencia del bosón de Higgs es uno de los objetivos del Gran Colisionador de Hadrones (LHC, por sus siglas en inglés), el mayor y más potente acelerador de partículas del mundo que opera la Organización Europea para la Investigación Nuclear (CERN) en la frontera franco‐suiza, cerca de Ginebra (Suiza). En el interior del anillo del acelerador del CERN colisionan protones entre sí a una velocidad cercana a la de la luz. Según los cálculos los bosones de Higgs deberían producirse en choques frontales entre protones de energías del orden de 20 TeV. Al fin y al cabo, cuanto mayor sea la energía de las partículas que chocan más masa tendrán las resultantes, según la famosa ecuación de Einstein E=mc2. No obstante, el bosón de Higgs no se puede detectar directamente, ya que una vez que se produce se desintegra casi instantáneamente dando lugar a otras partículas elementales más habituales (fotones, muones, electrones…) que sí son detectadas en el LHC.

5. ¿Por qué se habla de probabilidades en lugar de hablar de descubrimiento del bosón de Higgs? ¿Qué significan los “sigmas” de los que hablan los físicos?
 
El bosón de Higgs no puede observarse directamente porque si tiempo de vida es demasiado corto. Al final de su vida, decae y se transforma en otras partículas que son las que los detectores observan. Por ejemplo, en dos fotones. Pero otros muchos procesos también generan dos fotones, de modo que los científicos tienen que comparar el número de “eventos de dos-fotones” y compararlo con lo que se espera para una determinada partícula.
 
Para reclamar la paternidad de un descubrimiento, los físicos necesitan tener un exceso de colisiones significativas, lo que precisa de otra magnitud: la desviación estándar o el “número de sigmas”, que establece la significancia estadística de ese descubrimiento. Al hacer el anuncio sobre el bosón de Higgs, Fabiola Gianotti ha dicho: "Hemos observado señales claras de una nueva partícula en el nivel de cinco sigma en la región de la masa alrededor de 126 gigaelectronvoltios (GeV)”. El valor cinco sigma es el nivel mínimo aceptado por la comunidad científica para confirmar el descubrimiento de una partícula, e indica que la probabilidad de que lo que estemos viendo sea fruto del azar es más pequeña que unas pocas partes en diez millones (o que la confianza es del 99,99994%).

Fuente:

Peter Higgs: 'Nunca pensé que esto ocurriría estando yo con vida' (informe completo)

Pero antes de leer el post queremos preguntarle... ¡sabe usted lo que es el bosón de Higgs? Sin no lo sabe vea el siguiente video: 


Y esta es la conferencia de prensa del día de ayer donde el CERN anuncia haber descubierto el bosón de Higgs. Véalo:

 

"Sorprendido". Así describe su estado de ánimo el hombre de momento, Peter Higgs. "Nunca pensé que esto ocurriría estando yo con vida". Nada le hacía presagiar hace cerca de 50 años que este momento llegaría tan pronto, "sobre todo porque al principio no sabíamos qué teníamos que buscar. Estoy sorprendido de que haya llegado tan rápido", confiesa.


En 1964, Higgs describió con la sola ayuda de un lápiz y un papel las ecuaciones que predicen la existencia de una partícula nunca vista, pero necesaria para que funcione el Modelo Estándar sobre el que se basa la física actual. Ahora se pregunta: "¿Podríamos decir que es suficiente para la declaración de un descubrimiento?". Parece que ser que sí.


El físico asegura que esta verificación de lo que parece ser la existencia del Bosón de Higgs, "es sólo el comienzo". Apunta a que el hallazgo podría ser "más interesante de lo que aparenta a simple vista".


No obstante, explica que "hay muchas cosas que faltan por medir. Eso será una forma de adentrarnos en la física más allá del modelo estándar y eso será lo verdaderamente importante".
Higgs se muestra emocionado por estar aquí en este momento y confiesa estar impaciente, esperando más noticias sobre ello.


Este miércoles, la Organización Europea para la Investigación Nuclear (CERN) dio a conocer el descubrimiento de una nueva partícula subatómica que confirma con más de un 99% de probabilidad la existencia del Bosón de Higgs (la 'partícula de Dios'), un hallazgo fundamental para explicar por qué existe la materia tal y como la conocemos.


Fuente:


El Mundo Ciencia

4 de julio de 2012

¿Y qué pasa si lo observado por el LHC no es el bosón de Higgs?

El descubrimiento anunciado por el CERN nos permite afirmar que se ha encontrado una partícula, un bosón, con las características esperadas, pero puede ser distinto del bosón de Higgs predicho por el Modelo Estándar. ¿Qué incógnitas quedan por descubrir y cuáles son los siguientes pasos? Los intentos por aclarar sus características pueden conducirnos hacia una nueva Física.


Lo que el CERN ha anunciado este miércoles es una noticia histórica. Las lágrimas del propio Peter Higgs y las ovaciones de los físicos asistentes a la conferencia son más que elocuentes. Pero no se puede decir con rigor que sea el bosón de Higgs. El propio director del CERN, Rolf Heuer, ha sido bastante explícito."Se ha encontrado un bosón tipo Higgs", ha explicado, "pero aún no sabemos si es "EL" bosón de Higgs".

¿Tiene importancia esta discusión? Depende de cómo se mire, pero puede ayudarnos a entender cuáles serán los siguientes pasos a dar en el LHC y qué es lo que hoy se ha descubierto. Pero sobre todo esconde la gran cuestión: si las características de la nueva partícula no se corresponden con las que predice Higgs, estamos ante una puerta a una Física más allá del Modelo Estándar.


Para empezar, la partícula detectada por el CERN responde a las características que concuerdan con el bosón de Higgs, pero para conocer si lo es se deben estudiar sus propiedades. "No se puede decir que es el bosón de Higgs ni muchísimo menos. Que es un bosón, sí", explica el catedrático de Física de la Universidad de Granada Fernando Cornet a lainformacion.com. "Que sea compatible no quiere decir que sea necesariamente el Higgs". Francisco Matorras, investigador del Instituto de Física de Cantabria (IFCA) que participa en el experimento CMS, pone un ejemplo que ha utilizado el propio CERN. "Esto es como ver a una persona de lejos y pensar que has encontrado a un amigo. Lo has reconocido entre la multitud, pero resulta que tu amigo tiene un hermano gemelo. Ya sabemos que no es un desconocido, ni tu tío o tu primo, pero aún no podemos decir cuál de los dos hermanos es". En otras palabras, matiza Cornet, sabemos que es "blanco y en botella", pero no sabemos cómo sabe ni como huele. Tenemos indicios compatibles con que sea leche, pero podría ser horchata.

"Necesitamos más datos", no se ha cansado de decir Fabiola Gianotti, directora del experimento ATLAS. Pero, ¿por qué necesitan más datos para afirmar que es el Higgs, se preguntan algunos, si estos resultados están confirmados al 99,99995% con un sigma 5? Ese 99,99%", aseguran los físicos consultados por lainformacion.com, se refiere a la certidumbre de que lo que se ha encontrado sea una partícula compatible con las características de Higgs y no una fluctuación de fondo. “Como estás buscando el Higgs, crees que es eso”, insiste Matorras, “pero hasta que puedas mirar mejor las propiedades no puedes asegurarlo".

"Lo que hemos visto tiene una significación estadística muy cercana a lo que se llama descubrimiento", indica el investigador español en CMS Javier Cuevas Maestro. "Ahora nos falta conocer el resto de propiedades. Si no es el bosón de Higgs genuino, lo que va a ocurrir es que el Modelo Estándar será correcto al 95% y va a haber que explicar un 5% con un modelo que lo extienda".

¿Qué sabemos del bosón hallado hoy? Sabemos que tiene espín entero (es un bosón), conocemos su masa (los famosos 125 Gigaelectronvoltios) y que se desintegra en algunos canales de una manera compatible con lo que se esperaba en el Modelo Estándar. En los próximos meses se realizaran más análisis en el LHC para conocer sus propiedades y estos nuevos datos pueden apuntar  varias vías que nos separarían de lo que es el bosón de Higgs tal y como estaba predicho en la teoría.
Para sorprender a los científicos podría ocurrir que el bosón encontrado no se desintegre como se espera. En los resultados anunciados hoy el experimento CMS ha encontrado señales claras en dos de los cinco canales principales en los que se desintegra el Higgs (fotón-fotón y ZZ) y ATLAS ha ofrecido resultados solo en esos dos canales. Si dentro de unos meses, cuando se hagan más pruebas, sigue sin aparecer en estos canales, se confirmaría experimentalmente que existe un bosón tipo Higgs pero no sería el del Modelo Estándar y tendría que haber alguna modificación. "Esto", sugiere Cornet, "daría lugar a modelos más complicados".

Una variante de esta anomalía es algo que ya se ha visto hoy, y es que en el canal fotón-fotón y de dos bosones Z la señal aparece con más frecuencia de lo esperado. El número de señales de este tipo en CMS es 1,7 veces por encima de lo esperado, explica Matorras. Y ATLAS presenta  un valor menor pero también por encima. "Esto puede significar que o has hecho mal las cuentas (lo cual es raro)", asegura, "o bien que hay alguna cosilla más". "Si se mantiene esa observación", apunta Cornet, "quiere decir que esa partícula no es el bosón de Higgs, es otra cosa".

Otra posibilidad es que tenga un espín distinto al esperado. Para que todo cuadre, debería tener espín cero (tiene que ver con el modo en que interacciona la partícula). La teoría pide que sea un escalar, espín cero y con paridad positiva, explican los físicos. Si no es así, dice Cornet, "entonces sería una partícula en una teoría absolutamente diferente, donde a lo mejor podría haber un montón de partículas con muchos espines". Esta puerta abriría la posibilidad, como ya ocurrió en su momento con protones y neutrones, de que algunas partículas que consideramos elementales en realidad no lo sean y que la masa se deba a su estructura interna que no conocemos.  

Otra de las propiedades donde se pueden encontrar "sorpresas" es en los modos de producción del Higgs, explica Javier Cuevas Maestro. Si reproducen los modos de producción a la inversa, puede que encuentren cosas que no coincidan. "Si la proporción que se produce no fuese correcta, tendríamos un problema", asegura, "eso querría decir que en ese modo de producción hay acoplamientos del Higgs que no son los esperados en el Modelo Estándar".

Estos nuevos datos son a los que se refiere el físico Peter Higgs cuando afirma, en una entrevista con el CERN (ver vídeo), que lo emocionante es que se abre un camino a una nueva Física más allá del Modelo Estándar. "Lo que se puede descubrir", explica  Cornet, "es que estamos ante un mecanismo de Higgs más complicado, ante formas más complicadas de dar masa a las partículas. O que los cálculos den lugar a un espectro nuevo de partículas".

En cualquier caso, estas incógnitas son las que empezarán a plantearse los físicos a partir de esta semana, pues "la obsesión" hasta el día de hoy era determinar si ésta era o no era la partícula que se buscaba. "Había una posibilidad de que no existiera el Higgs", confiesa Matorras. "Hoy podríamos estar anunciando que no existe el bosón de Higgs en absoluto y que no hubiéramos visto aparecer esas desintegraciones. Al estar excluido en el resto de rango de masas, podríamos haber descartado su existencia". Si hubiera sido así, la Física se habría encontrado ante una especie de callejón sin salida muy interesante. Los nuevos resultados  siguen en la línea esperada pero, como siempre en ciencia, el camino puede estar lleno de sorpresas.

Fuente:

Stephen Hawking pidió el Nobel para Peter Higgs tras evidencia de 'partícula de Dios'

Especial: Partícula de Dios

El astrofísico británico contó que perdió dinero, pues apostó con un colega a que nunca se encontraría el bosón de Higgs

Partícula de Dios, Bosón de Higgs, Física nuclear
 
Stephen Hawking. (AP)
  Con el anuncio de hoy del hallazgo casi seguro de las pruebas de la existencia del bosón de Higgs o ‘la partícula de Dios’, el astrofísico británico Stephen Hawking consideró que Peter Higgs debería ganar el Premio Nobel de Física.

Los resultados anunciados el miércoles por la Organización Europea para la Investigación Nuclear sobre la existencia de una nueva partícula “indican de manera contundente que hemos descubierto el bosón de Higgs”, ha dicho Hawking, en declaraciones a la BBC. “Es un resultado muy importante y Peter Higgs se merece el Nobel por este motivo”, asegura el autor de “Breve historia del tiempo”.

Perdió apuesta
 

Sin embargo, Hawking dijo estar algo amargo, pues apostó hace unos años con un colega en Estados Unidos que nunca se encontraría la partícula subatómica.
 
“Me parece que acabo de perder 100 dólares”, dijo Hawking en entrevista con el canal BBC. Aún así, el astrofísico saludó el “importante resultado”
 
Fuente:
 
El Comercio (Perú)

Ver más sobre la apuesta en los archivos de Conocer Ciencia

Todo lo que debe saber sobre el bosón de Higgs

Especial: Partícula de Dios 


           
   
           
   
           
   
           
   
           
   
           
           
           
   
       

Después de buscarlo durante más de 45 años, el bosón de Higgs está más cerca que nunca. Y, con él, dicen, las respuestas a muchas de las preguntas pendientes sobre la formación del Universo.

Por eso lo llaman "la partícula divina".

Este miércoles, los científicos del Centro Europeo de Investigación Nuclear (CERN, por sus siglas en francés) anunciaron haber hallado la más "sólida evidencia de su existencia".

Pero, ¿qué es exactamente el bosón de Higgs? Y, ¿por qué los físicos llevan más de 40 años tras él?
BBC Mundo le explica los elementos clave alrededor de uno de los grandes misterios de la ciencia.

¿Qué se anunció este miércoles?

Los científicos del CERN anunciaron el descubrimiento de una nueva partícula coherente con el bosón de Higgs.

Los dos equipos que investigan la partícula aseguraron haber obtenido un "golpe" en sus datos que correspondería a una partícula con un peso de entre 125 y126 gigaelectronvoltios (GeV), unas 130 veces superior al de un protón.

"Los resultados son preliminares, pero la señal 5 sigma a unos 125 GeV que hemos visto es crucial. Es realmente una nueva partícula", señaló Joe Incandela, vocero del CERN.

¿Cuál es la importancia de este descubrimiento?

Este anuncio es, en palabras de los científicos del CERN, la "más sólida evidencia de la existencia de la partícula de Higgs".

De momento, lo que se sabe con certeza es que se ha descubierto una nueva partícula que encaja en lo que se esperaba del bosón de Higgs.

Sin embargo, indican, si ésa es la partícula divina o una partícula más compleja es algo que no se sabe aún.
Una confirmación sería uno de los mayores descubrimientos científicos del siglo. El posible hallazgo del bosón de Higgs fue comparada por algunos físicos con el programa Apollo que llegó a la Luna en los 60.

Pero, ¿qué es el bosón de Higgs?

De forma completamente segura –al menos hasta que se confirmen los descubrimientos anunciados esta miércoles por el CERN- sólo existe en la mente de los físicos teóricos.

Por ahora existe una teoría casi completa sobre cómo funciona el Universo en un sentido amplio: desde las partículas que componen los átomos y las moléculas de la materia que vemos hasta las más extrañas.
Esa teoría se llama Modelo Estándar. Sin embargo, hay un enorme agujero en ella: no explica por qué las partículas tienen masa.

El mecanismo de Higgs –una explicación para justificar ese hueco en la teoría- fue propuesto por seis físicos en 1964, entre ellos el británico Peter Higgs.



El modelo estándar y el bosón de Higgs

¿Qué es un bosón?

Un bosón es uno de los dos tipos básicos de partículas elementales de la naturaleza (el otro tipo son los fermiones). La denominación "bosón" fue dada en honor al físico indio Satyendra Nath Bose.

¿Por qué importa?

El bosón de Higgs es la pieza que falta para comprender el funcionamiento de la masa y, por extensión, la forma cómo se cimenta el Universo.

La masa es, dicho de un modo sencillo, la medida de la materia que contiene algo: una partícula, una molécula o una vaca.

Si no fueran masa, todas las partículas fundamentales que componen los átomos y las vacas se desvanecerían a la velocidad de la luz y el Universo tal como lo conocemos no habría podido constituirse en materia.

El mecanismo de Higgs propone que existe un campo que atraviesa el Universo –el campo de Higgs- que permite a las partículas obtener su masa. La interacción con ese campo –con los bosones de Higgs que salen de él- otorgaría masa a las partículas.

¿Cómo buscan los científicos el bosón de Higgs?

Peter Higgs

El científico inglés Peter Higgs.

Irónicamente, el Modelo Estándar no predice la masa exacta del bosón de Higgs. Los aceleradores de partículas como el del CERN, situado entre Francia y Suiza, intentan buscar la partícula de forma sistemática en una serie de rangos de masa en los que podría situarse.

El acelerador funciona haciendo colisionar dos chorros de partículas subatómicas –protones- a una velocidad cercana a la de la luz.

Eso genera una enorme lluvia de partículas que sólo pueden crearse con altas energías. Los científicos del CERN han esperado largamente que el bosón de Higgs aparezca en algún momento en la maraña de esa lluvia de partículas.

Si se comportara como los investigadores creen que debería hacerlo, podría descomponerse entre las demás, pero dejaría un rastro que probaría su existencia.

Pero esta no es la primera máquina en intentar cazar la partícula. La máquina del LEP (Gran Colisionador de Electrones Positrones, por sus siglas en inglés) funcionó entre 1989 y 2000 y descartó que la partícula de Higgs se encontrara en un rango determinado de masa.

El acelerador Tevatron, en Estados Unidos, siguió buscando la partícula por encima de ese límite antes de que lo desconectaran este año.

Los datos generados por ese aparato aún se están analizando y podrían ayudar a confirmar o descartar la existencia de la partícula.

El Gran Colisionador de Hadrones del CERN –el acelerador de partículas más poderoso- es el experimento más potente que podría arrojar luz en la caza de la partícula de Higgs.

¿Cuándo sabremos si encontraron la partícula de Higgs?

CERN

El Gran Colisionador de Hadrones utiliza un túnel de 27 kilómetros de circunferencia.

Como con el resto de partículas físicas, este es un punto delicado. El bosón de Higgs podría aparecer en un rango de masas concreto y algunas señales –una especie de "golpe" en los datos como el anunciado este miércoles- podrían indicar que se encuentra ahí, entre el resto de partículas.

Asegurarse de que ese "golpe" se debe realmente a la partícula de Higgs es otra cuestión.

Si se lanza una moneda 10 veces y ocho veces sale cara, podríamos pensar que la moneda está trucada.

Pero eso sólo se puede afirmar con cierta seguridad después de haberla lanzado varios cientos de veces. Lo mismo sucede con los científicos antes de que anuncien un "descubrimiento" formal. Necesitan haberlo comprobado repetidas veces.

¿Cómo sabemos que la partícula de Higgs existe?

Hablando con rigor, no lo sabemos, y eso es lo que hace tan emocionante el trabajo del Gran Colisionador de Hadrones.

Simplificando, la teoría predice un "Modelo Estándar de Higgs", que es el principal hilo conductor de la investigación actual.

Pero la historia ha demostrado que las predicciones teóricas pueden equivocarse y la ausencia de la partícula de Higgs podría sugerir que se encuentra en niveles de energía diferentes, que se descompone en otras partículas o, quizá, que no existe.

¿Qué pasaría si no la encontramos?

Los físicos más estrictos dirían que encontrar una partícula de Higgs que cumpliera de forma exacta la teoría actual, sería una decepción.

Proyectos a gran escala como el Gran Colisionador de Hadrones fueron construidos para ampliar el conocimiento.

En ese sentido, confirmar la existencia de Higgs justo donde se espera –aunque sería un triunfo para nuestro entendimiento de la física- sería mucho menos excitante que no encontrarla.

Si estudios futuros confirman definitivamente que Higgs no existe, la mayor parte del Modelo Estándar debería ser revisada.

Eso lanzaría nuevas líneas de investigación que podrían revolucionar nuestro conocimiento sobre el Universo de una manera similar a como lo hicieron las ideas de la física cuántica hace un siglo.

Fuente:



Descubren la 'partícula de Dios' que explica cómo se forma la materia

Especial: Partícula de Dios 

Descubren la 'partícula de Dios' que explica cómo se forma la materia


  • Descubren una nueva partícula 'consistente' con el bosón de Higgs
  • Esta partícula explica cómo la materia obtiene su masa en el Universo
  • El director del CERN califica el hallazgo como un 'hito histórico'
La Organización Europea para la Investigación Nuclear (CERN) acaba de escribir un capítulo crucial en la historia de la Física, al descubrir una nueva partícula subatómica que confirma con más de un 99% de probabilidad la existencia del bosón de Higgs, conocido popularmente como la 'partícula de Dios', un hallazgo fundamental para explicar por qué existe la materia tal y como la conocemos.

Con los resultados presentados hoy, la existencia del bosón de Higgs -la partícula subatómica teorizada por el físico británico Peter Higgs en los años sesenta, y que supone el único ingrediente del Modelo Estándar de la Física que aún no se había demostrado experimentalmente- es prácticamente un hecho.

Si no fuera por el bosón de Higgs, las partículas fundamentales de las que se compone todo, desde un grano de arena hasta las personas, los planetas y las galaxias, viajarían por el Cosmos a la velocidad de la luz, y el Universo no se habría 'coagulado' para formar materia. Por ese motivo, el editor del físico Leon Lederman creyó oportuno cambiar el título de su libro llamado originalmente 'The goddamn particle' ('La puñetera partícula') por el de 'The God particle' (La 'partícula Dios', aunque popularmente se ha traducido como 'la partícula de Dios').

En 1964, Higgs describió con la sola ayuda de un lápiz y un papel las ecuaciones que predicen la existencia de una partícula nunca vista, pero necesaria para que funcione el Modelo Estándar sobre el que se basa la física actual. Es la partícula fundamental de lo que se conoce como el mecanismo de Higgs, una especie de campo invisible presente en todos y cada uno de los rincones del universo y que hace que las partículas inmersas en él tengan masa.

El bosón de Higgs es el componente fundamental de ese campo, de la misma manera que el fotón es el componente fundamental de la luz. Si la 'partícula de Dios' no existiera, tampoco existiría nada material en el Universo.

"Puedo confirmar que se ha descubierto una partícula que es consistente con la teoría del bosón de Higgs", explicó John Womersley, director ejecutivo del Consejo de Tecnología y Ciencia del Reino Unido, durante una presentación del hallazgo en Londres.

Joe Incandela, portavoz de uno de los dos equipos que trabajan en la búsqueda de la partícula de Higgs, aseguró que "se trata de un resultado todavía preliminar, pero creemos que es muy fuerte y muy sólido".

Tras terminar su presentación, el estruendoso aplauso en el auditorio no cesaba a pesar de que Incandela trataba de pedir la palabra para agradecer a toda la organización la colaboración y el ambiente científico donde ha podido desarrollar su investigación.

Nervios y emoción

En el auditorio estaba presente el propio Peter Higgs, con cuyo apellido se bautizó al mítico bosón, quien no pudo contener las lágrimas al escuchar los resultados que han confirmado su teoría. "Sólo quiero dar las gracias a todas las personas que han estado relacionadas con este trabajo. Es lo mas increíble que me ha pasado en toda la vida", aseguró el científico emocionado.

La presentación de estos resultados ha tenido lugar en la Conferencia Internacional de Física de Altas Energías (ICHEP 2012) que se celebra en Melbourne (Australia), donde se están exponiendo los resultados obtenidos por los experimentos ATLAS y CMS del Gran Colisionador de Hadrones (LHC) en 2012. El director del CERN, Rolf Heuer, ha comenzado la conferencia nervioso y ha afirmado que "hoy es un día muy especial en todos los sentidos".

ATLAS, uno de los dos experimentos del CERN que busca el bosón de Higgs, ha confirmado la observación de una nueva partícula a un nivel de 5 sigma (una forma de medir la probabilidad de que los resultados sean ciertos que ronda el 100%). Esta medición implica que la probabilidad de error es de tres en un millón, una cifra que, oficialmente, es suficiente para dar por confirmado un descubrimiento.

"Es dificil no estar emocionado con estos resultados", ha dicho Sergio Bertolucci, director de investigación del CERN. "Con toda la precaución necesaria, me parece que estamos en un punto rompedor".
"Es un hito histórico, pero estamos solo al principio", ha declarado por su parte Heuer, el director del CERN.

Muy cerca del objetivo

Los datos del CERN no son todavía tan concluyentes como para poder afirmar con total certeza que han encontrado la 'particula de Dios', pero están realmente cerca de alcanzar ese objetivo. "Hemos encontrado un nuevo bosón con una masa de 125,3 gigaelectrónvoltios (una medida usada por los fisicos para cuantificar masas muy pequeñas), con un grado de consistencia de 4,9 sigma. Estamos de acuerdo con el modelo estándar en un 95%, pero necesitamos más datos", explicó Icandela.

"Observamos en nuestros datos claros signos de una nueva partícula, con un nivel de confianza estadística de 5 sigma (superior al 99,99994%), en la región de masas de alrededor de 125 gigaelectrónvoltios. El excepcional funcionamiento del LHC y ATLAS, y los enormes esfuerzos de mucha gente, nos han llevado a esta emocionante etapa", asegura la portavoz del experimento ATLAS, Fabiola Gianotti, "pero se necesita un poco más de tiempo para preparar estos resultados para su publicación".

El portavoz del experimento CMS, Joe Incandela, explica: "Los resultados son preliminares, pero la señal de 5 sigma alrededor de 125 gigaelectrónvoltios que estamos viendo es dramática. Es realmente una nueva partícula. Sabemos que debe ser un bosón y es el bosón más pesado jamás encontrado". Para Incandela, "las implicaciones son muy significativas y es precisamente por esta razón por lo que es preciso ser extremadamente diligentes en todos los estudios y comprobaciones".

Gran expectación

El pasado mes de diciembre ya se habló de un posible anuncio del CERN. En aquella ocasión los expertos señalaron que se "había cerrado el cerco" en torno a la partícula, por lo que ya estaban más cerca de encontrarla.

Además, el director general del CERN, Rolf Heuer, señaló la semana pasada que ya podría haber datos "suficientes" para hallar el Bosón de Higgs. En un artículo en 'The Bulletin', Heuer indicó que "hallar el Bosón de Higgs es una posibilidad real y que, a menos de dos semanas para que se celebre la conferencia ICHEP, la noticias de los experimentos se esperado ansiosamente".

A pesar de estas palabras, Heuer ha pedido a la comunidad científica que tenga "un poco más de paciencia". En este sentido, recordó que aunque ATLAS o CMS muestren datos que supongan el descubrimiento de la partícula "siempre se necesita tiempo para saber si es el Bosón de Higgs buscado durante mucho tiempo -el último ingrediente que falta en el Modelo Estándar de física de partículas- o si se trata de una forma más exótica de esta partícula de que podría abrir la puerta a una nueva física".

Nivel de certeza

Los físicos de partículas mantienen un consenso general acerca de lo que se puede considerar un 'descubrimiento': un nivel de certeza de 5 sigmas. La cantidad de sigmas mide la improbabilidad de obtener un resultado experimental fruto de la suerte en lugar de provenir de un efecto real.

Se suele poner como ejemplo el lanzamiento de una moneda al aire y ver cuántas veces sale cara. Por ejemplo, 3 sigmas representarían una desviación de la media equivalente a obtener ocho caras en ocho lanzamientos seguidos. Y 5 sigmas, 20 caras en 20 lanzamientos.

La toma de datos para la ICHEP 2012 concluyó el lunes 18 de junio después de un "exitoso primer periodo" de funcionamiento del LHC durante este año, según ha explicado del CERN. Precisamente, Heuer ha señalado que es el "impresionante trabajo" que ha tenido el LHC en 2012 lo que "ha elevado las expectativas de cara a un descubrimiento".

El equipo de expertos que trabaja para la organización en Ginebra ha diseñado la actividad del LHC para el primer periodo de 2012 de manera que obtuviera la máxima cantidad de datos posibles antes de que se celebrara el ICHEP. De hecho, se han obtenido más datos entre abril y junio de este año que en todo 2011. "La estrategia ha sido un éxito", ha indicado el director general del CERN.

Fuentes:



google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0