Latest Posts:

Mostrando las entradas con la etiqueta kepler. Mostrar todas las entradas
Mostrando las entradas con la etiqueta kepler. Mostrar todas las entradas

28 de noviembre de 2015

BBC: ¿Cómo será el fin del mundo?



Los investigadores creen que el proceso está en su inicio. 
 
Por el momento, no es algo que deba preocuparnos. Para que ocurra faltan aún unos 5.000 millones de años.

¿Pero qué pasará con la Tierra cuando se apague el Sol?

Nadie lo sabe a ciencia cierta, pero la destrucción de un sistema solar captada
por primera vez por el telescopio espacial Kepler, de la NASA, nos permite hacernos una idea de cuál podría ser el destino de nuestro planeta en un futuro lejano.

Los investigadores a cargo de la misión descubrieron los restos de un mundo rocoso en vías de descomposición, girando en torno a una enana blanca (el núcleo ardiente que queda de una estrella cuando ésta ya consumió todo su combustible nuclear).

Esta estrella moribunda, del mismo tipo que nuestro Sol y bautizada WD1145+017, está en la constelación de Virgo, a 570 años luz de la Tierra.

Lea: ¿Cómo será el fin de nuestro universo?

Y, según el estudio publicado esta semana por la revista Nature, la disminución regular de la intensidad de su brillo -una caída del 40% que se repite cada 4,5 horas- indica que hay varios trozos de roca de un planeta en descomposición orbitando en espiral a su alrededor.

"Esto es algo que ningún ser humano ha visto antes", afirmó Andrew Vanderburg, investigador del Centro de Astrofísica Harvard-Smithsonian y autor principal del estudio

El artículo completo en:

BBC Ciencia

20 de noviembre de 2015

¿Por fin contactamos con extraterrestres?

Representación artística de una hipotética súper Tierra

Kepler es el nombre del telescopio espacial que la ha observado. La estrella tiene un nombre poco romántico, KIC 8462852, pero podría ser el Sol de nuestros primeros vecinos extraterrestres. Efectivamente, estos días, la noticia en torno a una misteriosa estrella en nuestra Galaxia, a unos 1.500 años luz de la Tierra, ha sido una de las más comentadas en las redes sociales. 

¿Qué tiene de extraño esta estrella? La misión Kepler estudia las curvas de luz de miles de estrellas próximas con el objetivo de detectar pequeñas disminuciones de brillo que se producen cuando un planeta que orbita la estrella pasa por delante de ella. Esto es lo que los astrónomos llaman un tránsito y hace que la luz de la estrella disminuya ligerísimamente mientras el planeta pasa entre ella y el telescopio que la observa. Desde la Tierra, este fenómeno se puede observar cuando Mercurio o Venus pasan por delante del disco solar. Los tránsitos, sobre todo el de Venus, han sido efemérides astronómicas muy populares y que han tenido un papel importante en las historia de la astronomía, por ejemplo para determinar con precisión las distancias a los planetas del Sistema Solar. La misión Kepler ha detectado centenares de exoplanetas desde que se empezara a observar hace seis años. Para analizar las curvas de luz que diariamente observa, además de potentes ordenadores y programas informáticos, se hace uso de la colaboración ciudadana. El programa "Cazadores de planetas" está formado por miles de voluntarios que con sus ordenadores desde sus casas analizan los datos de la sonda Kepler y, habiendo recibido el entrenamiento adecuado, tratan de interpretar las curvas de luz. De la de KIC 8462852 han dicho que es caprichosamente extraña e interesante y que presenta un tránsito gigante.

El equipo encabezado por la investigadora postdoctoral Tabetha Boyajian de la Universidad de Yale ha estudiado diferentes escenarios astrofísicos que podrían explicar la extraña curva de luz. Concluyen que una hipótesis plausible sería un enjambre de cometas catapultados hacia la estrella por el paso de otra estrella cercana. Nuevas observaciones astronómicas se hacen necesarias para comprobar esta hipótesis. Entre tanto, ha surgido la idea de si la extraña curva de luz es el resultado de gigantes estructuras llevadas a cabo por seres inteligentes de una sociedad tecnológicamente avanzada. Podrían haberse diseñado para aprovechar la energía de la estrella. Esta hipótesis es la que ha llevado a que la estrella salte a los medios de comunicación. Investigadores del programa SETI (Search for Extraterresrial Intelligence) quieren apuntar a la estrella con los radiotelescopios del VLA en Socorro (Nuevo México) para tratar de escuchar, como en la película Contact interpretada por Jodie Foster (y basada en una novela de Carl Sagan), la posible señal de una civilización extraterrestre. De hecho, ya han comenzado un intento de escucha con el radiotelescopio ATA del SETI Institute, de menor envergadura.

El artículo completo en:

El Mundo Ciencia

11 de septiembre de 2015

La raíz cuadrada de dos: El terror de los Pitagóricos

El primer intento serio de “hacer ciencia”, o por lo menos algo que nosotros, dudosos habitantes del siglo XXI, podamos considerar como ciencia, ocurrió en Mileto, una próspera colonia griega del Asia Menor, donde vivió Tales (de Mileto, obviamente) en el siglo VI a.C., del que cuentan que, basado en viejos datos babilónicos, predijo el eclipse total del 28 de mayo de 585 a.C. Verdadero o no, a veces la fecha de ese eclipse se pone como punto de arranque de la ciencia occidental.

Tales de Mileto y su escuela introdujeron una innovación absoluta en el pensamiento griego: separar lo natural de lo sobrenatural y establecer que los fenómenos naturales deben explicarse mediante causas naturales. Es la escuela de la physis. La escuela de Mileto dejó planteado un problema difícil: ¿por qué se debe aceptar tal o cual explicación (desde ya, los milesios estaban muy lejos de la idea de experimento)? Y ¿cómo podemos basar una teoría en la observación, sabiendo lo poco fiables que son los sentidos, y la empiria en general?

Problemas que fueron enfrentados por la escuela eleática (por Parménides de Elea, 540-470 a.C.), que frente al testimonio dudoso de los sentidos, opone un Ser permanente, inmóvil, continuo, eterno y sin atributos, al que sólo se puede acceder por la vía de la razón, olvidando los fenómenos, puramente contingentes (como quiere demostrar Zenón de Elea, discípulo de Parménides con la célebre paradoja de Aquiles y la tortuga). Pero un Ser sin atributos no puede darnos demasiado; el camino de Parménides no produce ciencia sino metafísica: en realidad, la escuela eleática lleva a la incipiente ciencia griega a un callejón sin salida. ¿Cómo salir del atolladero?

Los filósofos griegos siguieron: algunos tomaron un camino radical, como los atomistas (Demócrito y Leucipo), que fracturaron el ser en pequeñas partículas indestructibles y eternas: los átomos, infinitos, “increados”, tienen distintas formas y que se mueven permanentemente en el vacío. Y hubo, si se quiere, otra solución: las matemáticas, en las que la razón no tiene que discutir ni ocuparse de fenómenos, sino de relaciones puras. Ese es el camino que suscribió una escuela muy importante que se desarrolló a partir del siglo V en el sur de Italia, la escuela pitagórica. Los pitagóricos establecieron que la fuente de la realidad son los números. A la pregunta ¿cuál es el origen de las cosas?, respondieron: los números.


Es posible que esta idea haya partido del estudio de la música: descubrieron que hay relaciones numéricas precisas entre los sonidos; y estas relaciones, para nada evidentes, pudieron impulsarlos a dar el paso audaz de generalizar y proclamar que todas las cosas consisten en números. 

Así, la escuela pitagórica opta por el pensar y resuelve el problema milesio. Y fueron tal vez un poco más lejos de lo aconsejable: identificaron a la Justicia con el número 4 por tratarse del primer número cuadrado; al matrimonio con el 5, que representaba la unión del macho (3) con la hembra (2). Además, creían que todo el cielo era una escala musical, analizaron muchas propiedades de los números, trabajaron sobre los poliedros regulares, las medias aritméticas, geométricas y armónicas, acústica y astronomía, que era algo así como geometría aplicada. Desde ellos viene esa ligazón entre aritmética, música, astronomía y geometría que constituirá el quadrivium medieval. Propusieron un sistema, integrado por un fuego central alrededor del cual giraban veinte cuerpos envueltos en niebla, y dieron numerosas demostraciones; la más famosa es, desde ya, el teorema de Pitágoras).

Pero he aquí que el teorema de Pitágoras llevó a una conclusión asombrosa, que puso en jaque todo el sistema pitagórico. Al fin y al cabo, si uno construye un cuadrado de lado 1, se puede ver fácilmente que, como el cuadrado de la diagonal es la suma de los cuadrados de los catetos, es 1 al cuadrado + 1 al cuadrado = 2. Y entonces la diagonal mide la raíz cuadrada de 2.

Resulta que los pitagóricos descubrieron también que la raíz cuadrada de 2 no es un número, que no hay ninguna fracción que la represente: la raíz de 2 es “a-logos”, es inexpresable: es irracional. Y sin embargo, la diagonal de un cuadrado de lado 1 está ahí, de manera neta y tan evidente; tiene una longitud real y extremos fijos, puede construirse una varilla de esa longitud concreta, pero esa longitud concreta no parece ser nada, no parece pertenecer a la esfera de lo posible... y sin embargo, está allí. Pero además, es imposible negar la existencia de la raíz cuadrada de 2, que no se produce en el terreno de la empiria, sino en el mundo puro de los números.

Ahora, ¡hay que imaginar el efecto que este descubrimiento tuvo que tener en algunos de los primeros pitagóricos! Ellos suponían que todo consiste en números y que el conocimiento expresa relaciones entre números (enteros o fraccionarios). Pero he aquí que una entidad, que ciertamente pertenece a la ciencia, la diagonal de un cuadrado, no puede ser expresada con números enteros, no puede existir. Es decir, tenemos algo concreto y ese segmento, que está ahí no es un número, no es nada. Y la medida de la diagonal de un cuadrado de lado 1 tampoco es nada. ¡Pero la diagonal de ese cuadrado está ahí! ¿Cómo puede ser que a un segmento no corresponda ninguna longitud?

Un ejemplo del terror que produjo ver que algo tan simple como la raíz cuadrada de 2 era un irracional es la leyenda según la cual un pitagórico, Hipaso, divulgó el secreto y pereció ahogado como castigo divino por su acción. Y es que la escuela pitagórica se había embarcado en un callejón sin salida. Construyeron todo un edificio científico, místico, que les parecía muy sólido, y de repente aparece este asunto que amenaza con precipitar toda la escuela en el abismo. Los pitagóricos se enfrentan a este dilema y no lo pueden resolver. Han fracasado en su teoría de que todo está constituido por números, aunque la influencia que ejercieron siguió resonando a través de los siglos, y la encontramos aún en Kepler.

Y es que el problema con que se enfrentaron no es fácil de resolver, la raíz de 2, como descubrieron los pitagóricos, desde ya no es una fracción: no hay número entero ni fraccionario alguno que multiplicado por sí mismo nos reproduzca exactamente al 2. Actualmente escribimos raíz cuadrada de 2 como 1,14142135624 y agregamos una serie de puntos suspensivos que significan que la fracción decimal no tiene fin, que el número de decimales (no periódicos) es infinito. Es lo que ahora llamamos (quizás en homenaje a Pitágoras) un número irracional.

El terror de los pitagóricos ante la raíz de 2 es fácil de entender, porque nosotros, hoy, en el fondo, seguimos siendo pitagóricos. No creemos, como Pitágoras, que todo es número, pero sí que las matemáticas subyacen al mundo empírico; que de un modo misterioso organizan la empiria, que aquello que es matemáticamente posible es y que aquello que no es matemáticamente posible, no es.
Tomado de:
Bonus:
La biografía de Pitágoras, y detalles curiosos de los pitagóricos, en esta presentación:

30 de agosto de 2013

Esta es la canción de las estrellas

Vídeo: Science
Un equipo de científicos estadounidenses ha convertido las señales lumínicas que emiten estrellas distantes en sonidos. Según explican esta semana en la revista 'Science', analizando la cantidad de ruido pueden hacer estimaciones sobre la gravedad en su superficie y determinar en qué etapa evolutiva se encuentra, desde que son estrellas enanas a gigantes rojas.

La gravedad en la superficie de un objeto celeste es la aceleración gravitacional que experimenta en su superficie. Según recuerdan los autores de este estudio, es muy difícil medirla de una manera precisa. Gracias a esta propiedad, los astrofísicos pueden determinar si es una estrella enana, como el Sol, o gigante y más evolucionada.

Para realizar este estudio han aprovechado las mediciones que se habían realizado de las variaciones en el brillo de más de 150.000 estrellas. Así, gracias a los datos recabados por telescopio espacial 'Kepler' de la NASA, han desarrollado un método para determinar la gravedad superficial de las estrellas en pocos segundos.

Variaciones en el brillo

Las variaciones en el brillo de las estrellas similares al Sol están impulsadas por muchos factores, incluida la granulación, que es una consecuencia de la convección de calor por debajo de la fotosfera –la superficie luminosa que la delimita–.

Como la granulación está relacionada con la gravedad en la superficie estelar, ésta se podría medir observando las variaciones en el brillo de la estrella.

Un patrón del parpadeo de la estrella durante ocho horas sirve para determinar la gravedad de la superficie. Su procedimiento consigue una incertidumbre del 25% para estrellas enanas, similares al Sol.

"El 25% de incertidumbre está muy bien, ya que las otras técnicas que se utilizan normalmente tienen una incertidumbre mucho mayor, de hasta el 150%. Medir la gravedad de la superficie de una estrella es muy difícil y puede llevar horas o días de trabajo", declara a SINC Fabienne Bastien, coautora del estudio que publica la revista Nature e investigadora de la Universidad Vanderbilt (EEUU).

Se espera que el nuevo método desarrollado también servirá para ampliar el conocimiento sobre los exoplanetas (planetas fuera de nuestro Sistema Solar), de los cuales no se pueden medir masas ni dimensiones directamente, sino a partir de la información sobre de las estrellas que orbitan.

"Al mejorar la medida de la gravedad en la superficie estelar, que a su vez nos da el tamaño y la masa de la estrella, sabremos los tamaños y masas de los planetas que la orbitan con mucha más precisión", asegura Bastien.

Fuente:

El Mundo Ciencia

7 de abril de 2013

El telescopio espacial Kepler da la razón a Einstein… una vez más

PIA16885

Una masiva enana blanca curva la luz de su compañera (recreación)

El telescopio espacial Kepler ha sido testigo de como una estrella muerta curva la luz de la estrella que acompaña. El descubrimiento está entre las primeras detecciones de este fenómeno (predicho por la teoría general de la relatividad de Einstein)  en estrellas binarias.

La enana blanca observada tiene aproximadamente el tamaño de nuestra Tierra, aunque una masa parecida a la de nuestro Sol. Su otra compañera de viaje es una enana roja que, aún siendo mayor de tamaño, orbita alrededor de la primera.

Las primeras observaciones llevaron a pensar que se trataba de un gigante gaseoso del tamaño de Júpiter eclipsando la luz de la enana roja. Posteriores mediciones con el telescopio Hale en San Diego descubrieron que la enana roja estaba moviéndose alrededor del supuesto planeta en un movimiento similar al de una peonza, ese movimiento era demasiado grande como para ser causado por un gigante gaseoso. Había que dar otra respuesta para explicar ese baile gravitacional, y la encontraron en forma de una enana blanca muy masiva.

PIA16886

El gráfico nos muestra las típicas curvas de brillo que usa Kepler para la detección de exoplanetas orbitando alrededor de su estrella madre. La curva de la izquierda es lo que primeramente se interpretó como el paso de un gigante gaseoso por delante de una enana roja, con la típica disminución en la curva de brillo. 
Realmente lo que se estaba viendo era el eclipse de una enana blanca por parte de su compañera, la disminución del brillo se debía a la gran masa de la estrella restando luz a su menos masiva compañera.

La gráfica de la derecha nos muestra que pasa cuando la enana blanca pasa por delante de la roja. La disminución del brillo es increíblemente sutil debido al pequeño tamaño de la enana blanca (recordemos comparable a nuestra Tierra). Los puntos azules marcan la disminución del brillo acorde con el tamaño de la enana blanca, la línea roja lo que realmente se observa en el tránsito, su masa es enorme, la gravedad curva y magnifica la luz de la enana roja, dando lugar a lo que predijo Einstein, una lente gravitacional.

Esta misión no deja de darnos sorpresas, además de ser una de las mayores fuentes a la hora del descubrimiento de exoplanetas, también nos ayuda a poner imágenes a teorías que hasta ahora solo se mostraban sobre el papel.

Y nos la querían suspender.

Fuente:

Miles de Millones

3 de diciembre de 2012

No hay música sin ciencia

No se puede ver ni palpar, sin embargo, se siente. La música es una de las manifestaciones artísticas más universales y, a la vez, uno de los rasgos más singulares, junto con el habla, del ser humano. Pero el lenguaje musical tiene, también, mucho en común con otro lenguaje que la inteligencia ha inventado para describir la realidad: la ciencia. Ésta habla de espectros, frecuencias, resonancias, vibraciones y análisis armónico. No es una simple coincidencia, no hay música sin física.

El sonido es un fenómeno físico originado por la vibración de los cuerpos y que se trasmite por el aire en forma de ondas. El efecto estético de un sonido depende de la relación lógica y pautada de sus vibraciones. Es decir, que en el fenómeno musical existe una esencia matemática. Y si consideramos la música como una sensación auditiva cuyo propósito es invocar emociones, disciplinas como la fisiología, la psicología, la bioquímica y las neurociencias tienen mucho que decir.

Un Sistema Solar polifónico

La correspondencia entre la música y la ciencia se conoce desde hace mucho tiempo. Probablemente, hacia el siglo VI a.C., en Mesopotamia ya advirtieran las relaciones numéricas entre longitudes de cuerdas. Pero fue en la Grecia antigua cuando se trazaron las diferentes escaleras armónicas basadas en las proporciones numéricas. Para los pitagóricos el Universo era armonía y número. Las notas musicales se correspondían con los cuerpos celestes. Los planetas emitían tonos según las proporciones aritméticas de sus órbitas alrededor de la Tierra. Y los sonidos de cada esfera se combinaban produciendo una sincronía sonora: la "música de las esferas".

Esta armonía celestial fue descrita por muchos pensadores como Platón, que en La República, relata el mito de Er, un guerrero que en su muerte temporal ve el Universo y describe las órbitas de los planetas. "Encima de cada uno de los círculos iba una Sirena que daba también vueltas y lanzaba una voz siempre del mismo tono; y de todas las voces, que eran ocho, se formaba un acorde". También Cicerón, en El Sueño de Escipión, explica el fenómeno: "Es el sonido que se produce por el impulso y movimiento de las órbitas, compuesto de intervalos desiguales, pero armonizados (...) Porque tan grandes movimientos no podrían causarse con silencio, y hace la naturaleza que los extremos suenen, unos, graves, y otros, agudos".

La tradición que consideraba al Universo como un gran instrumento musical se prolongará durante la Edad Media y hasta el siglo XVII, cuando aparece la figura de Johannes Kepler. El astrónomo alemán intentó comprender las leyes del movimiento planetario y consideró que éstas debían cumplir las leyes pitagóricas de la armonía. En su libro Harmonices Mundi (1619) ilustra el orden del Universo según los sonidos producidos por las velocidades angulares de cada planeta. Cuanto más rápido era el movimiento, más agudo era el sonido que emitía.

Asumida esta creencia, Kepler escribió seis melodías, cada una correspondiente a un planeta diferente, e instó a los músicos de su época a asimilar su descubrimiento. Escribió: "el movimiento celeste no es otra cosa que una continua canción para varias voces, para ser percibida por el intelecto, no por el oído; una música que, a través de sus discordantes tensiones, a través de sus síncopas y cadencias, progresa hacia cierta predesignada cadencia para seis voces y, mientras tanto, deja sus marcas en el inmensurable flujo del tiempo".

Las estrellas se hacen oír

Las primeras evidencias de música originada en un cuerpo celeste, tal como habían imaginado los pitagóricos primero y Kepler más tarde, no se encontraron hasta hace varias décadas. Las estrellas no emiten melodías armoniosas, pero sí que están sometidas a perturbaciones que provocan una respuesta en forma de ondas. No podemos escuchar el sonido emitido por una estrella, ya que las ondas de sonido necesitan un medio por el que propagarse y el Universo está prácticamente vacío, aunque podemos observar cómo vibra. Y éste es el ámbito de estudio de la sismología solar, un campo de la astrofísica que, desde 1979, investiga en detalle la estructura interna invisible del Sol.

Como un complejo instrumento musical, nuestro astro oscila creando tipos de ondas (modos propios de oscilación) que se propagan por su interior y se reflejan en la superficie deformándola ligeramente, del mismo modo que las olas del mar. Observando esta alteración se pueden descubrir las frecuencias de las ondas que se propagan desde su núcleo y deducir, al igual que en una ecografía, las características físicas y los movimientos que se prolongan en el interior.

Que nuestro astro tenga ritmo no es una cualidad única, sino que cada estrella, como cada instrumento musical, posee su propio sonido. Actualmente, un astrofísico del IAC, Garik Israelian, ha convertido esta propiedad de los objetos celestes en un proyecto musical. "Detecto las ondas, las convierto en sonidos en el ordenador y, como resultado, obtengo una serie de notas precisas", describe. Con él colabora Brian May, otro astrofísico aunque más conocido como guitarrista y compositor del grupo Queen.

Y el Sol es, también, la repuesta a uno de los misterios que la ciencia llevaba años persiguiendo: el excelso sonido del violín Stradivarius. La última teoría sostiene que el secreto está en el "Mínimo de Maunder", un periodo de escasa actividad solar que entre los siglos XVII y XVIII, cuando se elaboraron los citados violines, provocó un acusado cambio climático. La temperatura en Europa descendió, en lo que se llamó la "Pequeña Edad de Hielo", causando un lento crecimiento en los árboles y dotando a la madera de unas singulares cualidades sonoras.

Con la música a otra parte

Para Leibniz, "la música es un ejercicio de aritmética secreta y el que se entrega a ella ignora que maneja números". Y Bertrand Russell consideraba que "el matemático puro, como el músico, es creador libre de su mundo de belleza ordenada". Descartes (Compendio musical), Galileo (Discurso), Mersenne (Armonía Universal), D’Alembert (la solución de la ecuación de ondas) y Euler (Nueva teoría musical), son algunos de los matemáticos que se han preocupado por la elaboración de teorías musicales. Si bien, también se conocen muchos compositores que han aplicado a sus creaciones principios de lógica y probabilidad matemática, como Debussy, Boulez, Messiaen, Varese, Stockhausen o Xenakis, precursores de la música electrónica actual.

Pero la música no solamente ha seducido a los matemáticos. Científicos de muchas disciplinas han recogido sus teorías en composiciones musicales. Como Clark Maxwell, descubridor de la existencia de las ondas electromagnéticas, que compuso una canción titulada "Rigid Body Sings" para explicar de forma cómica la ley de colisión entre los cuerpos rígidos, o el físico Georges Gamow, que en uno de sus libros sobre su simpático personaje de ficción Mr. Tompkins incluyó tres arias para ser cantadas por tres eminentes cosmólogos, Abbé George Lemaître, Fred Hoyle y él mismo, que explicaban diferentes teorías de la creación del Universo.

En contra de la creencia popular, emoción y razón se originan en el cerebro y están relacionadas. Por ello, han prosperado nuevos campos de estudio, en especial, desde las neurociencias, que analizan la conexión entre el sonido, la emoción y el pensamiento. Y aunque hace 20 años pocos creían que pudiera aportar nada, actualmente es un ámbito de gran interés académico y múltiples aplicaciones, sobre todo, terapéuticas.

Hoy sabemos, que la música y el lenguaje tienen un origen común, ya que en el ámbito neurológico han evolucionado juntas en los últimos dos millones de años. También conocemos que la música estimula la zona del cerebro que registra el placer, un mecanismo básico para la supervivencia. Y que no todos escuchamos del mismo modo: gracias a imágenes obtenidas por Resonancia Magnética Funcional, se ha observado que la actividad cerebral en un músico es diferente de la de una persona sin formación musical.

Resumiendo, la música es el arte de combinar sonidos armónicamente con el propósito de producir sensaciones. Pero la armonía no es sólo un elemento esencial de la música, sino que ha sido invocada frecuentemente por la ciencia para describir y comprender el mundo. Muchos científicos han confiado en la armonía del Universo y algunos músicos han utilizado la lógica y el cálculo en sus creaciones. La música integra con la ciencia un campo general del pensamiento que nos distingue como humanos. Preguntarnos por ella, es preguntarnos por nosotros mismos.

Fuente:

Ccaos y Ciencia

15 de octubre de 2012

Descubren un planeta con cuatro soles


El telescopio Kepler

  • Estudia a más de 155.000 estrellas.
  • Hasta el momento ha encontrado 2.321 posibles planetas.
  • Entre ellos, hay 207 del tamaño de la Tierra, de los cuales 10 se encuentran en "zona habitable", en donde podría haber agua en estado líquido

Planeta con cuatro soles

Un grupo de astrónomos descubrió un planeta cuyos cielos están iluminados por cuatro soles distintos.

Se trata del primero en su tipo que orbita un par de estrellas y también tiene un segundo par estelar girando a su alrededor. 

Aún se desconoce cómo el planeta -parecido a Neptuno- ha conseguido evitar ser arrastrado por las fuerzas gravitatorias generadas por sus cuatro estrellas.

El hallazgo fue realizado por dos voluntarios a través del sitio web Planethunters.org. Ellos mismos bautizaron el planeta con el nombre de PH1.

Se cree que se trata de un "gigante gaseoso", situado a menos de 5.000 años luz de distancia, ligeramente más grande que Neptuno pero más de seis veces el tamaño de la Tierra.

"No hace falta ir muy atrás para saber que hay muchos aspectos que hubiesen podido jugar en contra de este sistema", explicó a la BBC Chris Lintott, de la Universidad de Oxford. 
.
"Las cuatro estrellas que tiran de él crean un ambiente muy complicado. Y a pesar de ello, el planeta se encuentra en una órbita aparentemente estable".
"Es realmente confuso y eso es precisamente lo que hace que este descubrimiento sea tan divertido. No se parece a lo que podríamos haber esperado".

El trabajo de los voluntarios

Las estrellas binarias -sistemas con pares de estrellas- son comunes. Sin embargo, sólo un puñado de planetas han logrado orbitar en ellos. Y, además, no existe la certeza de que ninguno de ellos tenga otro par de estrellas girando alrededor.

Al ser cuestionado acerca de cómo el planeta sobrevive sin ser arrastrado, Lintott dice: "Hay otros seis planetas bien establecidos alrededor de estrellas dobles y todos están muy cerca de las estrellas. Creo que lo que esto nos está diciendo es que los planetas pueden formarse en el interior de los discos protoplanetarios (la nube de gas denso que da lugar a los sistemas planetarios).

"Los planetas se están formando de manera estrecha y son capaces de aferrarse a una órbita estable allí. Un hecho que probablemente tenga implicaciones sobre cómo se forman los planetas en otros lugares".

PH1 fue descubierto por dos voluntarios estadounidenses, a través de Planethunters.org: Kian Jek de San Francisco y Roberto Gagliano de Cottonwood, Arizona. 

Ambos identificaron leves disminuciones de luz generadas cuando el planeta pasaba por delante de sus estrellas madre. El equipo de astrónomos profesionales luego confirmó el descubrimiento utilizando los telescopios Keck en Mauna Kea, Hawaii.

Telescopio Kepler

El descubrimiento se apoyó en información recogida por el telescopio Kepler de la NASA.

Fundada en 2010, Planethunters.org intenta aprovechar los patrones de reconocimiento para identificar tránsitos, recogidos por el telescopio espacial Kepler de la NASA.

Kepler fue lanzado en marzo de 2009 para buscar planetas similares a la Tierra que orbitan otras estrellas.

Los visitantes de la página web tienen acceso a datos seleccionados de forma aleatoria, provenientes de una de las estrellas estudiadas por Kepler.

A los voluntarios se les pide que dibujen cuadros para marcar las ubicaciones de los tránsitos visibles: cuando un planeta pasa frente a su estrella madre. Desde diciembre de 2010, más de 170.000 internautas han participado en el proyecto.

Fuente:

BBC Ciencia

Contenido relacionado

22 de junio de 2012

Descubren los dos planetas más cercanos

Recreación artística del sistema planetario Kepler-36. | CFA
Recreación artística del sistema planetario Kepler-36. | CFA
  • La sonda Kepler de la NASA descubre una pareja de planetas que orbitan a la menor distancia jamás detectada entre dos mundos
Imagínese vivir en un mundo en el que un gigantesco planeta gaseoso como Neptuno, tres veces mayor que las lunas llenas que vemos en la Tierra, emergiera en el horizonte. Éste es el espectáculo cósmico que disfrutaríamos si pudiéramos viajar a Kepler-36, un sistema planetario recién descubierto en el que dos mundos orbitan una estrella a muy poca distancia.

"Estos dos planetas tienen encuentros muy cercanos", explica Josh Carter, un investigador del Centro Harvard-Smithsonian de Astrofísica que ha participado en este hallazgo, publicado esta semana en la revista 'Science'.

"Los dos mundos se encuentran a la distancia más cercana que hemos observado hasta ahora en todos los sistemas planetarios que se han descubierto", añade el coautor del descubrimiento, Eric Agol, de la Universidad de Washington.

Según sus observaciones, en su momento de máxima aproximación, los dos planetas se encuentran a tan sólo 1,9 millones de kilómetros, 20 veces más cerca que la mínima distancia entre los planetas de nuestro Sistema Solar.

Los científicos descubrieron este fascinante sistema planetario con la nave Kepler de la NASA, que es capaz de de detectar un planeta cuando pasa por delante de su sol, y por tanto reduce durante un breve periodo la luz que emite la estrella.

El nuevo sistema se compone de dos planetas que orbitan una estrella parecida a nuestro Sol, aunque varios miles de millones de años más antigua. El mundo más próximo a la estrella, llamado Kepler-36b, es un planeta rocoso 1,5 veces más grande que la Tierra y con una masa casi cinco veces mayor. Orbita su sol cada 14 días a una distancia media de casi 18 millones de kilómetros.

El mundo más lejano, Kepler-36c, es un gigante gaseoso 3,7 veces mayor que la Tierra y con una masa ocho veces mayor. Este planeta orbita su estrella cada 16 días, a una distancia de 19 millones de kilómetros.

Cada 97 días, los dos planetas se aproximan hasta tal punto que la distancia entre ambos es sólo cinco veces la que separa la Tierra de la Luna. Como Kepler-36c es mucho más grande que nuestra Luna, la vista que ofrece al aparecer en el horizonte del planeta vecino es impresionante.

Sus descubridores están intentando comprender ahora cómo es posible que estos dos mundos tan diferentes acabaron teniendo orbitas tan cercanas. El hallazgo resulta sorprendente, teniendo en cuenta que en nuestro Sistema Solar, los planetas rocosos orbitan cerca del Sol, mientras los gigantes gaseosos se mantienen lejanos.

Aunque Kepler-36 es el primer sistema planetario en el que se han observado estos encuentros tan cercanos entre dos mundos, probablemente no será el último. "Ahora nos estamos preguntando cuántos sistemas cómo éste existirán ahí fuera", afirma Agol.

Fuente:

El Mundo Ciencia
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0