Latest Posts:

Mostrando las entradas con la etiqueta combinatoria. Mostrar todas las entradas
Mostrando las entradas con la etiqueta combinatoria. Mostrar todas las entradas

6 de septiembre de 2018

¿Por qué estan colocados en ese orden los números de la diana de dardos?

Para penalizar la falta de puntería. Si nos fijamos, cerca del 20 (la máxima puntuación) hay dos números bajos: si fallas, el premio es escaso; y así, sucesivamente con los demás números. Esta idea se atribuye al fabricante de dianas Brian Gamlin, quien en 1896 decidió ordenarlos así, en vez de consecutivos. Lo que quizá no sabía es que hay 2.432.902.008.176.640.000 combinaciones, y resulta que esta es casi la mejor opción.

4 de junio de 2018

Combinatorio, dados y probabilidades

¿Cómo se puede hacer un calendario perpetuo con dos dados de seis caras?

Los datos del acertijo final de la semana pasada parecen muy insuficientes para sacar cualquier conclusión; sin embargo, hay pocos desarrollos del torneo de ajedrez imaginario que den lugar a un descenso del 5% en el porcentaje de victorias de Kaspárov. Reproduzco la acertada respuesta de nuestro “usuario destacado” Manuel Amorós:

Teniendo en cuenta que el 5% es 1/20, tendríamos que hallar dos fracciones propias que restadas dieran como resultado 1/20. Seguramente, el primer par de fracciones que cumplen son 1/4 y 1/5, ya que 1/4 – 1/5 = 1/20. Pero estas proporciones no se ajustan al hecho de que Kaspárov tenía ventaja inicial sobre su rival. El siguiente par de fracciones serían 4/5 y 6/8: 4/5 – 6/8 = 1/20
Es decir, que una posible respuesta es que Kaspárov empezó ganando 4 de 5 partidas (descontadas las tablas) y después ganó dos partidas y perdió una, reduciéndose de ese modo su porcentaje de triunfos en un 5% exacto.

El problema de las tres tarjetas (una con dos caras rojas, una con dos caras blancas y una con una cara roja y otra blanca) sigue propiciando un animado debate (ver comentarios de la semana pasada). Como señalé en el artículo anterior, es fácil pensar que si nos muestran una cara roja, la probabilidad de que la otra cara también sea roja es 1/2; pero en realidad hay tres posibilidades equiprobables: que nos muestren una cara de la tarjeta RR, que nos muestren la otra cara de RR o que nos muestren la cara roja de la tarjeta RB; en dos de estos tres casos la otra cara es roja, por tanto la probabilidad pedida es 2/3.

La combinatoria de los dados

La probabilidad de un suceso expresa la relación entre los casos favorables y los casos posibles. Decimos que la probabilidad de sacar un 5 al lanzar un dado es 1/6 porque el dado tiene seis caras (casos posibles) y solo en una de esas caras hay un 5 (casos favorables). Este es un ejemplo trivial, pero a menudo el cálculo de probabilidades implica la resolución previa de problemas combinatorios no siempre sencillos para determinar el número de casos posibles y de casos favorables.

La probabilística de un solo dado es trivial, pero con dos dados la cosa empieza a complicarse y es fácil incurrir en errores de apreciación. Al lanzar dos dados y sumar sus puntos podemos obtener las puntuaciones comprendidas entre 2 y 12: once posibilidades, por lo que podría parecer que la probabilidad de sacar una puntuación concreta, por ejemplo 7, es 1/11; pero este razonamiento es erróneo, pues las once posibilidades no son equiprobables; hay una sola forma de obtener 12 puntos (6-6) y seis formas de obtener 7 (6-1, 5-2, 4-3, 3-4, 2-5, 1-6). Cada una de las seis caras de un dado puede emparejarse con cada una de las seis caras del otro, por lo que hay 6 x 6 = 36 parejas posibles, de la que solo una da 12 puntos y seis dan 7 puntos; por tanto, la probabilidad de obtener 12 puntos es 1/36 y la de sacar 7 puntos es 6/36 = 1/6.

Si en vez de puntos en las caras de los dos dados figuraran los dígitos del 1 al 6, adosándolos podríamos formar los números 11 a 16, 21 a 26, 31 a 36…, 61 a 66. ¿Podemos numerar las caras de dos dados de manera que adosándolos convenientemente se puedan formar todos los días del mes? Hay que usar siempre los dos dados, expresando los números de una sola cifra de la forma 01, 02, etc.
Naturalmente, la cosa se complica a medida que aumenta el número de dados. ¿Cuál es la probabilidad de sacar un póquer a la primera con los dados de póquer (valga la redundancia)? ¿Y la de sacar un repóquer?

Fuente:

11 de agosto de 2015

Cinco problemas equivalentes al de Fibonacci

Voy a plantear en este post cinco problemas de combinatoria que son equivalentes al problema de los conejos de Fibonacci, en el sentido de que dan lugar a la misma sucesión (y a la misma recurrencia). La solución de cada uno de ellos se detiene en el modelo, es decir, en el razonamiento por recurrencia que conduce a plantearlo. 

1. Subconjuntos sin consecutivos

¿De cuántas formas se puede elegir un subconjunto de {1,2,,n} de manera que no contenga números consecutivos?
Solución
Sea un el número de subconjuntos de {1,2,.n} sin números consecutivos. Cada subconjunto aceptable según la restricción, ya sea que contiene el 1 o bien no lo contiene.

Si contiene el 1 entonces no puede contener el 2 y se ve que el número de subconjuntos que contienen el 1 es un2 --pues es el número de subconjuntos de {3,4,,n}.

Por otro lado, si el subconjunto no contiene el 1, entonces el número de subconjuntos de esta clase son un1 --dado que es el número de subconjuntos de {2,3,,n}.

En resumen, un=un1+un2. (Claramente, u1=1,u2=2 --se deja como ejercicio su justificación.)

2. n-Cadenas binarias con dos ceros consecutivos

¿De cuántas formas se puede construir una n-cadena de ceros y unos con dos ceros consecutivos?
Solución
Sea un el número de cadenas binarias de longitud n con dos ceros
consecutivos. Claramente, una cadena de longitud 1 no puede tener dos ceros consecutivos, y solamente hay una de longitud dos con dos ceros consecutivos. Es decir, u1=0,u2=1.

Consideremos ahora el caso general. Cada cadena de longitud n con dos ceros consecutivos es de una de tres clases: empieza con 00 o con 01 o con 1.

Si empieza con 00, el resto de la cadena es una cadena de longitud n2 sin restricción.

Por otro lado, si empieza con 01, el resto de la cadena es una cadena de longitud n2 con dos ceros consecutivos.

Finalmente, si empieza con 1, el resto de la cadena es una cadena de longitud n1 con dos ceros consecutivos.

En resumen, el modelo recursivo para este problema es:

un=2n2+un2+un1

con u1=0,u2=1


3. Sus dígitos son 1 y/o 2 y suman n

¿Cuántos números con 1 y 2 como dígitos son tales que éstos suman n? Ejemplo: 111, 12, 21 son los tres números que cumplen para n=3.
Solución
Sea un el número de números que cumplen para n. Claramente, u1=1,u2=2. En el caso de n mayor que 2, se puede razonar recursivamente como sigue:
Los números que cumplen se pueden clasificar en dos clases excluyentes y exhaustivas. Los que empiezan con 1 y los que empiezan con 2.
Si empiezan con 1, son un1 --pues el problema se reduce a contar los números con 1 y 2 como dígitos y tales que éstos suman n1.
Si empiezan con 2, son Un2 --siguiendo un razonamiento similar. Por tanto un=un1+un2.
Otra forma: Considerando el último dígito, éste puede ser 1 o bien 2. Los números que terminan en 2 son un2 y los que terminan en 1 son un2

4. n-Cadenas binarias sin unos consecutivos

¿De cuantas formas se puede formar una cadena de ceros y unos de longitud n sin unos consecutivos?
Solución
Los números ya sea que inician con cero o bien con uno. Los que empiezan con cero son un1 y los que empiezan con uno son un2 --porque en realidad deben empezar con 10. Por tanto, un=un1+un2.

5. Tiempo de espera hasta dos águilas consecutivas

En una secuencia de n volados ¿cuántos resultados no tienen dos águilas consecutivas, excepto al final?
Solución
Sea un el número buscado. Los resultados, ya sea inician con águila (A) o bien con sello (S). Si inician con águila son un2; si con sello, son un1. Por tanto, un=un1+un2


Tomado de:

Mate Mat

12 de noviembre de 2012

Dados de doce caras: ¡Aquí es imposible que exista un empate!

Imagínese que usted desea jugar un juego con 2-4 jugadores, y es necesario determinar aleatoriamente quién juega primero. Si cada uno de ustedes simplemente tirara un dado estándar, hay una buena probabilidad de que haya empates, ustedes tendrían que volver a tirar los dados y nadie quiere eso. 

Estos dados diseñados por Eric Harshbarger resuelven este problema:




Son dados de doce caras cada uno, los cuales entre los cuatro, tienen escritos los números del 1 al 48 y fueron diseñados para que cumplan las siguientes condiciones:


a - Nunca habrá un empate
 
b - Independientemente de que grupo de dados sean tirados, todos los jugadores tienen la misma chance de obtener el número mas alto y por lo tanto de ser el ganador. Dicho de otro modo, dos, tres, o cuatro jugadores pueden tomar cada uno de los dados, tirarlos, y cada uno tendrá siempre una probabilidad de 1/2, 1/3 o 1/4, respectivamente, de obtener el resultado más alto.

c - Finalmente, no sólo pueden usarse todos los dados (o cualquier subconjunto) para determinar el primer jugador, sino que los números obtenidos también se pueden usar para determinar todas las posiciones de partida (el segundo número más alto puede ser el segundo jugador, el tercero más alto el tercer jugador, etc) ya que la probabilidad de cada una de las permutaciones de cualquier subconjunto determinado de dados es la misma, por lo que nunca habrá la posibilidad de que un subconjunto particular favoreciera a algunos de los jugadores.

Aquí están los números de cada uno de los dados:


D1: 1, 8, 11, 14, 19, 22, 27, 30, 35, 38, 41, 48

D2: 2, 7, 10, 15, 18, 23, 26, 31, 34, 39, 42, 47
D3: 3, 6, 12, 13, 17, 24, 25, 32, 36, 37, 43, 46
D4: 4, 5, 9, 16, 20, 21, 28, 29, 33, 40, 44, 45


Si arrojamos dos dados cualesquiera, por ejemplo el 1 y el 3 , tenemos 144 resultados posibles, y en la mitad ellos gana el dado 1 en tanto que en la otra mitad gana el 3.


Si arrojamos tres de los dados, por ejemplo el D1, D2 y el D3, tenemos 12
3 = 1728 resultados posibles y el orden de los dados será  [D1,D2,D3] en 288 ocasiones, lo mismo para cualquiera de las otras cinco permutaciones [D1,D3,D2], [D2,D1,D3], [D2,D3,D1], [D3,D1,D2] y [D3,D2,D1

En tanto que al tirar los cuatro dados, hay 20736 resultados posibles, y cada dado ganará en  5184 ocasiones, y cada una de las 24 permutaciones [Da,Db,Dc,Dd] se da exactamente en 864 de las 20736.


Se puede ver todas las combinaciones y sus probabilidades
aquí.


Conocer Ciencia: Ciencia sencilla, ciencia divertida, ciencia fascinante...

Fuente:

15 de marzo de 2010

Matemática: La Paradoja de los 4 hijos

Lunes, 15 de marzo de 2010

Matemática: La Paradoja de los 4 hijos

Supongamos que un matrimonio tiene cuatro hijos. ¿Cual es la probabilidad de que dos de ellos sean niñas y dos niños? Asumiendo que la mitad de los nacimientos son de varones y la mitad de mujeres, el sentido común nos impulsa a creer que en un caso como éste la familia tendrá dos hijos y dos hijas. Pero puede demostrarse matemáticamente que tal cosa es bastante improbable. Es la paradoja de los cuatro hijos.

Nuestro cerebro tiende a jugarnos malas pasadas cuando asume resultados basándose en lo que la gente llama «sentido común». Cuando enfrentamos los resultados obtenidos por este método intuitivo con los que arrojan los fríos (pero efectivos) cálculos matemáticos vemos con sorpresa cómo de equivocados estábamos. Una de las paradojas que resulta más sencilla de demostrar es la que Martin Gardner -un divulgador científico y filósofo de la ciencia estadounidense- llama «paradoja de los cuatro hijos». Gardner dice que si sabemos (o nos cuentan) que un matrimonio tiene cuatro hijos, tendemos a pensar que existe una alta probabilidad de que dos de ellos serán niños, y dos niñas. Sin embargo, y a pesar de que estadísticamente prácticamente la mitad exacta de los nacimientos son de varones y la mitad de mujeres, puede demostrarse matemáticamente que nuestra intuición falla miserablemente.

La forma de abordar este problema es realmente simple. Supongamos que representamos cada nacimiento de un niño con una “H” (hombre) y el de una niña con una “M” (mujer). Solamente tenemos que elaborar lo que se denomina una «tabla de verdad» en la que se representen todas las diferentes posibilidades existentes a la hora de tener los 4 hijos. En la tabla siguiente el orden de izquierda a derecha indica el orden de nacimiento:

1. HHHH
2. HHHM
3. HHMH
4. HHMM
5. HMHH
6. HMHM
7. HMMH
8. HMMM
9. MHHH
10. MHHM
11. MHMH
12. MHMM
13. MMHH
14. MMHM
15. MMMH
16. MMMM

Dado que solo hay dos sexos posibles, la cantidad de combinaciones existente para cuatro nacimientos son las 16 que se ven en la tabla anterior. Recordemos que todo nuestro análisis es válido por que estamos considerando que la probabilidad de que sea niño es igual a la de que sea niña (50% cada uno). En el mundo real dicha proporción no es exacta, pero se aproxima lo suficiente como para que los resultados que vamos a mostrar prácticamente no varíen.

El paso siguiente consiste en contar cada uno de los casos mostrados en la tabla.

Vemos que, de los 16, solo hay dos casos en que el sexo de todos los hijos es el mismo (el 1 y el 16). Eso significa que tenemos una probabilidad de 2/16 (o 1/8, o el 12.5%) de que nuestros cuatro hijos tengan el mismo sexo.

Si contamos los casos en que los nacimientos incluyen un vástago de un sexo y tres del otro, encontramos ocho casos (en las filas 2, 3, 5, 8, 9, 12, 14 y 15). Eso implica que en la mitad de los casos, un matrimonio que tenga 4 hijos tendrá o bien una niña y tres niños, o bien un niño y tres niñas.

Por ultimo, si contamos los casos que nos interesan, aquellos en que hay dos niños de cada sexo, vemos que solo los casos 4, 6, 7, 10, 11 y 13 cumplen con la condición «dos niños y dos niñas». Esto demuestra que solo 6 de cada 16 veces ( o 3 de cada 8, si «simplificamos») se da realmente la situación que nuestro sentido común decía era la más probable. Las matemáticas demuestran que sólo el 37,5% de las familias con cuatro hijos tendrá dos de cada sexo, y que -en realidad- es mucho más probable tener 3 hijos de un sexo y uno del otro que cualquiera de las otras posibilidades por separado.

Este resultado nos desconcierta porque algo en nuestra mente nos hace relacionar el hecho de que la probabilidad de tener hijo o hija es del 50% con la errónea conclusión de que lo más lógico es tener el mismo número de chicos que de chicas. Pero eso es válido únicamente si tenemos dos niños. Con cuatro -como hemos visto- las posibilidades se reducen, demostrando que no siempre podemos fiarnos de nuestro sentido común.

Fuente:

ABC.es

25 de octubre de 2007

Especial - Matemática:
¿Cuántos videos caben en You Tube?




Curiosa pregunta la que titula este artículo y probablemente para mucha gente también sea curioso que la respuesta a la misma se pueda encontrar en las Matemáticas. Pues es así. Vamos con la teoría correspondiente y dejemos la pregunta para el final:

Combinatoria

La combinatoria es una rama de las Matemáticas que básicamente se encarga de estudiar cuántos grupos pueden formarse con un cierto número de objetos atendiendo a determinados criterios. Como esta definición puede no ser demasiado clara vamos a poner un par de ejemplos:

  • ¿Cuántos números de 5 cifras pueden formarse con los números del 1 al 9?
  • ¿Cuántas manos posibles de mus pueden darse? (Cada mano de mus consta de 4 cartas)

La combinatoria se encarga de determinar esos números.

En este tipo de problemas existen dos elementos fundamentales que van a ser determinantes a la hora de elegir la fórmula adecuada: si importa el orden en el cual van apareciendo los objetos y si puede existir repetición de los mismos. En la situación planteada en la primera pregunta anterior vemos que importa el orden en el que aparecen los números (ya que si cambio de lugar dos cifras de un número de 5 cifras el número obtenido es distinto al que tenía al principio) y puede haber repetición de elementos (las cifras pueden repetirse en un mismo número). En la situación planteada en la segunda pregunta vemos que no importa el orden (da igual en qué orden me lleguen las cartas, lo importante es la mano que llevo, es decir, el conjunto de 4 cartas) y no hay repetición de elementos (no puedo tener la misma cartas 2 veces). Pueden darse todos los casos posibles: importa orden y no hay repetición, importa orden y sí hay repetición, no importa orden y hay repetición y no importa orden y sí hay repetición.

Como acabamos de ver en un problema de combinatoria tendremos dos números: elementos a elegir y elementos que forman la agrupación. La mejor manera de interpretar esto es considerar los elementos a elegir como objetos que podemos que colocar y los elementos que forman cada agrupación como huecos que tenemos que rellenar. Así en el ejemplo de los números de 5 cifras tendremos 9 objetos que podemos colocar (1,2,…,9) y 5 huecos a rellenar (cada una de las cifras del número); y en el ejemplo del mus tendremos 40 objetos que podemos colocar (las 40 cartas de la baraja española) y 4 huecos a rellenar (las 4 cartas que forman una mano de mus).

Veamos a continuación qué tipo de agrupaciones podemos encontrar y cómo contarlas:

Variaciones

-Se llaman variaciones ordinarias o sin repetición de n elementos tomados de m en m a las diferentes agrupaciones que con ellos se pueden formar de tal modo que cada agrupación contenga m elementos distintos y que dos agrupaciones se diferencien bien en alguno de sus elementos o bien en el orden de colocación de los mismos. Es decir, en las variaciones sin repetición importa el orden y no hay repetición de elementos.

El número de variaciones de n elementos tomados de m en m viene dado por la siguiente fórmula:

Variaciones sin repetición

Por ejemplo, si queremos saber cuántos números de 5 cifras podemos forman con los números del 1 al 9 con la condición de que no se repita ninguna cifra debemos utilizar esta fórmula. El resultado sería:

Ejemplo de variaciones sin repetición

-Se llaman variaciones con repetición de n elementos tomados de m en m a las diferentes agrupaciones que con ellos se pueden formar de tal modo que cada agrupación contenga m elementos y que dos agrupaciones se diferencien bien en alguno de sus elementos o bien en el orden de colocación de los mismos. Es decir, en las variaciones con repetición importa el orden y sí puede haber repetición de elementos.

El número de variaciones con repetición de n elementos tomados de m en m es:

Variaciones con repetición

Por ejemplo, si queremos saber cuántas posibles columnas puedo rellenar en la quiniela utilizaremos esta fórmula. Tendremos 3 objetos a colocar (1X2) y 15 huecos a rellenar (cada una de las casillas). El resultado es:

Ejemplo de variaciones con repetición

Permutaciones

-Se llaman permutaciones ordinarias o sin repetición de n elementos a las variaciones de estos n elementos tomados de n en n, es decir, a los distintas agrupaciones que podemos formar con todos ellos. Dos permutaciones sin repetición se diferencian en el orden de sus elementos. Por tanto, en las permutaciones sin repetición importa el orden y no hay repetición de elementos.

El número de permutaciones sin repetición de n elementos se deduce fácilmente de la fórmula de las variaciones sin repetición y es:

Permutaciones sin repetición

Por ejemplo, si queremos saber de cuántas formas podemos sentar a 6 personas en 6 sillas utilizaremos esta fórmula. El resultado es:

Ejemplo de permutaciones sin repetición

-Se llaman permutaciones con repetición de n elementos donde el primero se repite a veces, el segundo b veces,…,el último k veces (a+b+…+k=n) a las distintas agrupaciones que podemos formar de modo que en cada una de ellas el primer elemento se repita a veces, el segundo b veces,…,el último k veces y que dos agrupaciones se diferencien únicamente en el orden de colocación de los elementos. Por tanto, en las permutacion con repetición importa el orden y sí hay repetición de elementos.

El número de permutaciones con repetición de n elementos donde el primero se repite a veces, el segundo b veces,…,el último k veces (a+b+…+k=n) es el siguiente:

Permutaciones con repetición

Por ejemplo, si queremos saber cuántas palabras podemos formar con las letras de la palabra MATEMATICAS utilizaremos esta fórmula. En este caso tenemos 11 objetos a colocar (las 11 letras) y uno que repite 3 veces (A), dos que se repiten 2 veces (M y T) y cuatro que se repiten una ves (E, I, C y S). El resultado es:

Ejemplo de permutaciones con repetición

Combinaciones

-Se llaman combinaciones ordinarias o sin repetición de n elementos tomados de m en m a las agrupaciones de m elementos que podemos formar con los n de que disponemos. Dos combinaciones son distintas sólo si difieren en algún elemento. Por tanto en las combinaciones sin repetición no importa el orden y no hay repetición.

El número de combinaciones sin repetición de n elementos tomados de m en m es:

Combinaciones sin repetición

Por ejemplo, en la primitiva podemos elegir el siguiente número de combinaciones distintas:

Ejemplo de combinaciones sin repetición

-Se llaman combinaciones con repetición de n elementos tomados de m en m a las agrupaciones de m elementos iguales o distintos que se pueden formar con los n de que disponemos. Dos combinaciones con repetición son distintas sólo si difieren en alguno de sus elementos. Por tanto en las combinaciones con repetición no importa el orden y sí puede haber repetición de elementos.

El número de combinaciones con repetición de n elementos tomados de m en m es:

Combinaciones con repetición

Por ejemplo, si queremos saber de cuántas formas podemos colocar 7 anillos idénticos en 4 dedos de una mano utilizaremos esta fórmula. En este caso, como nos tenemos que poner los 7 anillos y todos son iguales, los objetos a colocar serán los dedos y los huecos a rellenar serán los anillos (si lo hiciéramos al revés quedarían anillos sin poner). El resultado sería:

Ejemplo de combinaciones con repetición

¿Cuántos vídeos caben en Youtube?

Después de la necesaria teoría vamos a responder a la pregunta que se formula en el título de post. Para ello vamos a tener en cuenta la forma que tiene un enlace a un vídeo de Youtube: http://www.youtube.com/watch?v={ID del vídeo}. Esa ID consta de 11 caracteres que pueden ser letras minúsculas, letras mayúsculas, números del 0 al 9, guión y guión bajo (creo que no hay más posibilidades; si estoy equivocado comentadlo). Es decir, tenemos 26+26+10+1+1=64 objetos donde elegir y 11 huecos que rellenar. En este caso importa el orden de colocación de cada uno de los elementos y puede haber repetición de los mismos. Por tanto, según todo lo comentado anteriormente, debemos utilizar variaciones con repetición de 64 elementos tomados de 11 en 11. El resultado de esta operación es el siguiente:

Cuántos vídeos caben en Youtube

Como podéis ver es una cantidad realmente considerable. No sé cuántos llevarán ya, pero seguro que queda mucho tiempo para que las ID’s se les terminen.



Fuente:

Gaussianos
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0