Latest Posts:

Mostrando las entradas con la etiqueta vehiculo espacial. Mostrar todas las entradas
Mostrando las entradas con la etiqueta vehiculo espacial. Mostrar todas las entradas

23 de abril de 2019

Estudiantes de la UNI ganan en concurso de la NASA con prototipo de vehículo lunar

El equipo integrado por alumnos de la Universidad Nacional de Ingeniería ganó el premio de telemetría y electrónica del Human Exploration Rover Challange, este 14 de abril de 2019.


Un grupo de alumnos de la Universidad Nacional de Ingeniería (UNI) ganó el concurso Human Exploration Rover Challange. Los jóvenes universitarios ganaron el premio de Telemetría y Electrónica otorgado por el American Institute of Aeronautics and Astronautics (AIAA Telemetry/Electronisc Award).

Este concurso anual realizado por la NASA es un “desafío de diseño de ingeniería para involucrar a estudiantes de todo el mundo en la siguiente fase de la exploración del espacio humano”. 


Los estudiantes diseñaron un vehículo de exploración lunar de modo tal que este pueda adaptarse al terreno agreste del satélite. El vehículo o rover cuenta con inteligencia artificial que permite la medición de magnitudes físicas lejanas para la posterior transmisión de datos obtenidos. 

Fue con el apoyo de la fundación Belcorp que los jóvenes pudieron viajar a Estados Unidos para exponer su trabajo. El grupo de la UNI quedó entre los 100 finalistas de los más de 300 competidores a nivel mundial. 
Este es el presente que recibieron los estudiantes por lograr el premio de Telemetría del Human Exploration Rover Challenge de la NASA. | Fuente: RPP Noticias
 Fuente: RPP Noticias y El Comercio (Perú)
 

27 de agosto de 2014

Soluciones para el mal estado de las ruedas del Curiosity y nuestro futuro en Marte

  • Las ruedas del rover se deterioran a un ritmo muy superior al previsto
  • La NASA ha identificado el origen del problema y estrategias para minimizarlo
  • Lo aprendido se aplicará en el rover que la NASA quiere enviar en 2020 a Marte
Ampliar fotoImagen facilitada por la NASA del rover Curiosity en Marte
Imagen facilitada por la NASA del rover Curiosity en Marte.AFP

A principios de este mes el rover Curiosity de la NASA cumplía dos años explorando la superficie de Marte, dos años en los que todos los sistemas de a bordo han funcionado tan bien o mejor de lo que se esperaba, salvo las ruedas del vehículo.

Detectado por primera vez en las imágenes recibidas del sol –del día marciano– 411 de la misión, las ruedas, fabricadas fresando bloques de aluminio hasta dejarlos en un grosor de 0,75 milímetros, estaban acumulando pinchazos, rajas y desgarros a un ritmo preocupante, daños que amenazan la movilidad del vehículo, y que además resultaban tanto más preocupantes cuando en principio los responsables de la misión no sabían por qué las ruedas estaban resultando dañadas a tal velocidad, mucho mayor de la prevista.

Pero afortunadamente, tras muchas pruebas, los técnicos del Laboratorio de Propulsión a Chorro consiguieron averiguar qué es lo que causa estos daños y, lo que es más importante, diseñar estrategias para mitigarlo una vez entendida la causa del problema.

Rocas y sistema de supensión

Esta parece radicar en la presencia de numerosas rocas puntiagudas en la zona por la que estaba circulando Curiosity que no se desplazan al pasar este por encima, a diferencia de lo que ocurría en las zonas en las que circularon otros rover de la NASA, en las que las rocas se apartaban bajo el peso de estos.

La presencia de estas rocas resulta además más dañina para las ruedas de Curiosity de lo previsto porque aunque estas están pensadas para resistir los efectos de este tipo de rocas siempre que el peso del vehículo esté repartido entre todas resulta que el diseño del sistema de suspensión hace que en algunas circunstancias cuando el rover pasa por encima de una de estas rocas puntiagudas todo el peso del vehículo pueda pasar a descansar sobre la rueda que está pasando sobre esta, lo que prácticamente asegura que se produzca una perforación.



Pero la buena noticia, como decía antes, es que una vez identificado el origen del problema, los responsables de la misión han podido diseñar varias estrategias para mitigarlo.

Mitigando el problema

Una de ellas es programar a Curiosity para que cuando se mueva evite este tipo de rocas, aunque esto solo sirve para cuando se programan desplazamientos cortos, ya que solo es posible apreciar la presencia de estas rocas hasta una distancia de 10 o 20 metros en las imágenes que envía el rover; es el tipo de estrategia que se usa cuando Curiosity tiene que pasar sí o sí por terreno «peliagudo.

Otra es conducir marcha atrás, ya que, de nuevo en virtud del diseño del sistema se suspensión del rover, cuando circula marcha atrás las fuerzas que se ejercen sobre las ruedas son mucho menores. A cambio, cuando Curiosity se mueve marcha atrás al final tiene que girar 180 grados en el punto en el que se para para poder mirar hacia delante con las cámaras y programar el siguiente desplazamiento, lo que añade unos seis metros extra de desplazamiento a las ruedas sin que Curiosity realmente se mueva del sitio; se usa más para cuando se hacen desplazamientos largos «a ciegas» por terrenos en principio menos complicados.

También se están planificando las rutas a largo plazo sobre terreno más amigable usando tanto imágenes y datos obtenidos por los instrumentos de a bordo como imágenes y datos obtenidos de las sondas que hay en órbita alrededor de Marte.

Una última opción es una actualización del software de a bordo que debería permitir a Curiosity manejar las ruedas de forma más inteligente, de tal forma que si nota que una está experimentando demasiada oposición al movimiento podría dejarla girar libre o ejerciendo menos fuerza sobre ella, aunque esta modificación del software aún tiene que ser probada y aprobada.

Lecciones aprendidas

A largo plazo, lo aprendido con Curiosity servirá para el rover que la NASA quiere enviar a Marte en 2020, basado en el diseño de este.
No está claro qué modificaciones se harán en sus ruedas, porque por ejemplo hacerlas tan solo un milímetro más gruesas añadiría un total de 10 kilos al peso del rover, peso que se pierde en instrumentos científicos y que también afecta al sistema de aterrizaje de este.

Pero para Curiosity la suerte ya está echada, y aunque no quede más remedio que circular más lento, no parece que a la larga, una vez detectado el origen del problema, esto vaya a afectar seriamente a la misión.


Tomado de:

RTVE

30 de diciembre de 2013

2013: China celebra su llegada a la Luna


Dibujo del robot Yutu

Se espera que el vehículo pase tres meses reuniendo datos científicos.

Pocas horas después de alunizar, la sonda espacial china ensambló y liberó el robot de seis ruedas Yutu (Conejo de Jade) que explorará la superficie de la Luna.

El vehículo robótico bajó por una rampa hasta una planicie volcánica conocida como Bahía de los Arcoíris.

Se espera que el vehículo pase tres meses reuniendo datos científicos y buscando minerales valiosos que China pueda explotar en algún momento.

Sin embargo, el corresponsal de la BBC en Pekín asegura que estos potenciales descubrimientos son menos importantes que el simbolismo que representa el que una superpotencia emergente haya alcanzado la superficie lunar.
Fuente:

BBC

5 de junio de 2010

El antiguo robot soviético Lunokhod aún es útil

Sábado, 05 de junio de 2010

El antiguo robot soviético Lunokhod aún es útil

Un robot Soviético perdido en las llanuras polvorientas de la Luna durante los últimos 40 años ha sido hallado, y sorprendentemente está devolviendo fuertes pulsos láser a la Tierra.


“Enviamos un rayo láser a la posición del Lunokhod 1, y nos sorprendimos por el poder de la reflexión”, dijo Tom Murphy de la Universidad de California en San Diego, quien lidera el equipo de investigación que está poniendo a trabajar al envejecido robot. “Lunokhod 1 nos está hablando en voz alta y con claridad.”

Casi olvidado en la tradición de la carrera espacial de la era Apolo, el Lunokhod 1 fue uno de los mayores éxitos del programa de exploración lunar de la antigua Unión Soviética. En 1970, la revista Time describió así el histórico aterrizaje del robot:

Tres horas después de llegar a la Luna a bordo de la última sonda no tripulada rusa, Luna 17, el Lunokhod I (literalmente caminante lunar) bajó pesadamente por una de las dos rampas de la nave nodriza y se movió hacia adelante … dando así el primer paso gigantesco para los robots en otro cuerpo celeste.

El robot a control remoto viajó casi 11 kilómetros durante su gira lunar de 11 meses, transmitiendo miles de imágenes de televisión y cientos de panorámicas de alta resolución de la Luna a la Tierra. Asimismo, tomó muestras y analizó el suelo lunar en 500 localidades.

Luego el Lunokhod 1 se perdió – hasta el mes pasado cuando la nave Lunar Reconnaissance Orbiter de la NASA lo encontró de nuevo. La recuperación se describe en un comunicado de prensa de la NASA.

El 22 de abril, Murphy y su equipo enviaron pulsos de luz láser desde el telescopio de 3,5 metros en el Observatorio Apache Point en Nuevo México, enfocándo el objetivo a las coordenadas proporcionadas por la Lunar Reconnaissance Orbiter. Un retroreflector laser en el Lunokhod 1 interceptó los pulsos y devolvió una clara señal a la Tierra.

“Tenemos alrededor de 2,000 fotones del Lunokhod 1 en nuestro primer intento. Después de casi 40 años de silencio, este rover tiene mucho que decir”, señala Murphy.

De regreso a finales de 1960 y principios de 1970, los astronautas del Apolo colocaron otros tres retroreflectores en la Luna para permitir la medición láser de la órbita de la Luna. Con la ayuda de un cuarto reflector en el Lunokhod 2, un gemelo de Lunokhod 1, que aterrizó en 1973, estos espejos constituyen el único experimento de ciencia del proyecto Apolo que sigue funcionando.

Eric Silverman, ahora retirado de la Universidad de Texas, estuvo a cargo de las actividades del sistema láser de medición lunar en el Observatorio McDonald desde 1969 hasta 1982. “Durante ese tiempo”, recuerda, “medimos con éxito con los tres reflectores Apolo y con el reflector Lunakhod 2. También tratamos de medir con el primer explorador lunar, pero sólo tuvimos una detección posible (pero no definitiva) el 31 de diciembre de 1970. Nuestra falta de conocimiento de la ubicación del vehículo y las presiones para continuar con el programa Apolo causaron que se perdiera el interés en el Lunakhod 1″.

“Cuando leí que Tom Murphy había descubierto retornos laser desde el rover perdido me sorprendí mucho y estaba muy contento”, dice Silverman.

La reacción inicial de Murphy fue de incredulidad: “La señal era tan fuerte, que mi primer pensamiento fue que nuestro detector ¡estaba actuando solo! Yo esperaba que el reflector del rover estuviese degradado y sucio después de tanto tiempo, así que pensé, ‘esto no puede ser el reflector’. Pero lo era. “

“Este reflector es aún lo suficientemente fuerte como para permitirnos obtener mediciones durante el día lunar – una primicia para este experimento!”. Silverman continúa: “El hecho de que la reflexión del Lunokhod 1 es ahora más fuerte que la de su gemelo es un misterio. Puede aportar pistas importantes en cuanto a por qué todos los reflectores son más débiles que en la primera década después del aterrizaje.”

Con Lunokhod 1 vuelta en el redil, el estudio de medición láser puede avanzar a su velocidad máxima por primera vez. Los científicos están utilizando la medición láser para forzar al máximo la teoría de la gravitación de Einstein “para ver si podemos probarla”, dice Murphy.

Lea el artículo completo en:

Ahuramazdah
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0