Latest Posts:

Mostrando las entradas con la etiqueta teoria. Mostrar todas las entradas
Mostrando las entradas con la etiqueta teoria. Mostrar todas las entradas

8 de enero de 2019

La música es color... y matemática

EL GRAN AMOR de Albert Einstein se llamaba Lina y era un violín. Físico e instrumento (el instrumento que históricamente ha acompañado a judíos errantes por su facilidad para ser transportado) vivieron una historia apasionada. No salía de casa sin él. Según Elsa Einstein, su prima y su segunda esposa, la música le ayudaba a pensar sus teorías. “La vida sin tocar me es inconcebible. Vivo mis ensoñaciones en mi música. Veo mi vida en términos musicales… Y obtengo alegría de vivir gracias a la música”, declaró. No por casualidad sus biógrafos coinciden en señalar que las composiciones de Bach y Mozart tienen la misma claridad, simplicidad y perfección arquitectónica que él anhelaba para sus teorías.


No fue Einstein el único enamorado de los números que halló inspiración y consuelo en la música. Ígor Stravinski sostenía que “la forma musical se parece a las relaciones matemáticas”. Ambas disciplinas comparten terminología: “armónico”, “raíz”, “serie”… El estrecho víncu­lo entre ellas ha sido analizado por el experto Eli Maor en el ensayo La música y los números (Turner). Desde Pitágoras, que investigó las vibraciones de los objetos que emitían sonidos y estableció la octava como intervalo musical fundamental, hasta Arnold Schönberg, hijo de aquella Viena luminosa del fin de siècle en la que todo sucedió, y paradigma de la relación entre números y música, pues fue el inventor del dodecafonismo. Fue contemporáneo de Einstein, con quien tuvo coincidencias vitales: ambos judíos, hijos de madres que sabían tocar el piano, exiliados en Estados Unidos huyendo del nazismo, de donde nunca volverían a Europa…, Schönberg estaba convencido de que este nuevo sistema de composición de 12 tonos que se relacionan entre sí acabaría con la que consideraba “filistea” y “sentimental” tonalidad imperante. Y aunque no lo consiguió, descubrió un cosmos sonoro sin jerarquías que hizo evolucionar a la música y abrió nuevos caminos. Tuvo la suerte de contar con dos seguidores igualmente extraordinarios: Anton ­Webern y Alban Berg.

Pero no solo de números vive el músico, también puede hacerlo de los colores. Para hablar de ello es obligado recordar al ruso Alek­sandr Scriabin, que padecía “sinestesia” y oía los colores con tanta nitidez que asoció cada tono con un color y creó un sistema musical con ellos. Y a Olivier Messiaen, figura determinante de la cultura francesa del siglo XX, cuya vida ha sido novelada por Mario Cuenca Sandoval en El don de la fiebre (Seix Barral). Este “Mozart francés” veía y leía colores en todos los sonidos del mundo a través de su oído absoluto. Siendo niño, entró junto a su padre en la Sainte-Chapelle de París y en el incendio de luz de las vidrieras sintió que podía escuchar los colores como si fueran acordes. Ornitólogo (para él los pájaros eran los grandes compositores de la creación cuyas líneas melódicas le recordaban al canto gregoriano), católico, místico y al mismo tiempo vanguardista con sus arcoíris de acordes que “abrían los cielos y derrumbaban la casa”, como apuntó el compositor Virgil Thomson, Messiaen se apoyó en la música para salvarse de la barbarie del siglo. Luchó en la Segunda Guerra Mundial. En 1940, en la batalla de Francia, cayó preso. En la cárcel compuso su crudo Cuarteto para el fin de los tiempos. Lo estrenó en el invierno de 1941 entre presos como él y vigilantes armados. La música, inseparable de la vida, extendiendo su fuerza como un hilo de color, en el centro de un campo de concentración.

2 de octubre de 2018

Afirman haber encontrado restos de un Universo anterior

El célebre físico Roger Penrose cree haber localizado remanentes de agujeros negros que datan de antes del Big Bang. Es nueva evidencia a favor de la teoría de que el Universo atraviesa por infinitos ciclos de Big Bangs.


Una serie de anomalías luminosas que aparecen en ciertas imágenes de los científicos podrían ser restos de un Universo anterior. O por lo menos eso es lo que piensa Roger Penrose, el célebre físico de la Universidad de Oxford que a mediados de los sesenta explicó, junto a Stephen Hawking, cómo se forma una singularidad. Para Penrose, en efecto, esas extrañas espirales de luz serían restos de agujeros negros que lograron sobrevivir a la destrucción de un Universo que existió antes del Big Bang. 

"Lo que afirmamos -explica Penrose- es que estamos viendo el remanente final de un agujero negro que se evaporó en el eón anterior". Junto a un grupo de colegas, el investigador británico acaba de publicar sus conclusiones en Arxiv.org. 

Penrose es uno de los padres de una teoría llamada "Cosmología Cíclica Conforme" (CCC), según la cual el Universo pasa por una serie infinita de ciclos (eones), durante los cuales primero se expande y después se comprime hasta convertirse de nuevo en un punto. Lo cual podría permitir que, bajo ciertas condiciones, la radiación electromagnética sobreviviera a la destrucción de un Universo para pasar a formar parte del siguiente.

Y esos restos "supervivientes" son precisamente los que Penrose y sus colegas creen haber identificado en el Fondo Cósmico de Microondas (CMB), la débil radiación residual del Big Bang que impregna por completo el Universo en que vivimos.

Lea el artículo completo en: ABC Ciencia 

23 de septiembre de 2018

Las pseudociencias más famosas (y que debes evitar)

¿Qué es pseudociencia? ¿Es el feng shui una pseudociencia? ¿Y la hipnosis? ¿Distinguir entre ciencia y pseudociencia te resulta confuso? Hoy te ayudamos con esta clasificación.


Los negacionistas del cambio climático son acusados de practicar la pseudociencia, como lo son los creacionistas del diseño inteligente, los astrólogos, los ufólogos, los parapsicólogos, los practicantes de medicina alternativa y, a menudo, cualquiera que se aleje de la corriente científica principal. El problema reside en el límite entre la ciencia y la pseudociencia; pues, de hecho, está notoriamente cargado de desacuerdos definitorios porque las categorías son demasiado amplias y confusas, y el término "pseudociencia" está sujeto al abuso adjetivo contra cualquier afirmación que a uno le disguste por algún motivo.

Muchos científicos reconocen que los límites que separan ciencia y pseudociencia son mucho más difusos y permeables de lo que muchos quieren creer.

Fue el filósofo austríaco Karl Popper quien identificó lo que llamó "el problema de la demarcación" como objeto de encontrar un criterio para distinguir entre ciencia empírica, como la exitosa prueba de 1919 de la teoría general de la relatividad de Einstein y la pseudociencia, como las teorías de Sigmund Freud, cuyos seguidores solo buscaban confirmar la evidencia ignorando los casos que no se confirmaban. La teoría de Einstein podría haberse falsificado si los datos del eclipse solar no mostraran la desviación necesaria de la luz de las estrellas doblada por el campo gravitacional del sol. Las teorías de Freud, sin embargo, nunca podrían refutarse, porque no había ninguna hipótesis comprobable abierta a la refutabilidad. Por lo tanto, Popper declaró que la "falsabilidad" es el último criterio de demarcación. Las teorías científicas no son falsables.

El problema es que muchas ciencias no son infalsificables, como la teoría de cuerdas, la neurociencia que rodea la conciencia, los grandes modelos económicos y la hipótesis extraterrestre. Respecto a esto último, a falta de buscar en cada planeta alrededor de cada estrella en cada galaxia en el cosmos, ¿podríamos decir alguna vez con certeza que los extraterrestres no existen?

Según el historiador de la ciencia de la Universidad de Princeton Michael D. Gordin "Nadie en la historia del mundo se ha autoidentificado como pseudocientífico. No hay persona que se despierte por la mañana y piense a sí mismo: Me dirigiré a mi pseudolaboratorio y realizaré algunos pseudoexperimentos para tratar de confirmar mis pseudoteorías con pseudofactores".

Sin embargo,
la pseudociencia confunde al público sobre la naturaleza de la teoría evolutiva y cómo se desarrolla la ciencia.

Aquí, quizás, hay un criterio práctico para resolver el problema de la demarcación: la conducta de los científicos reflejada en la utilidad pragmática de una idea. Es decir, ¿la nueva idea genera interés por parte de los científicos que trabajan para su adopción en sus programas de investigación, produce nuevas líneas de investigación, conduce a nuevos descubrimientos o influye en las hipótesis, modelos, paradigmas o visiones del mundo existentes? Si la respuesta es no, es probable que sea una pseudociencia.

Así las cosas, la ciencia es un conjunto de métodos destinados a probar hipótesis y construir teorías. Si una comunidad de científicos adopta activamente una nueva idea y si esa idea se extiende a través de distintos campos y se incorpora a la investigación que produce conocimiento útil reflejado en presentaciones, publicaciones y especialmente nuevas líneas de investigación, lo más probable es que sea ciencia.

Determinar qué es pseudociencia no es discriminatorio, sino que no hacerlo es perjudicial para la sociedad.

Pero, ¿cómo identificar ciencia vs. pseudociencia?


1 de junio de 2018

Fíaica: la ley que discretamente controla tu vida y puede ayudarte a mejorarla

 
¿Esto es un árbol, un cerebro o un mapa del metro? De acuerdo a la Ley Constructal todo sistema, inanimado o no, sigue un mismo patrón. Y eso se puede ver en las formas que nos rodean. 

¿Por qué la forma de un cactus es la ideal para vivir en un hábitat sin agua? ¿Por qué muchos ríos forman meandros al avanzar hacia su desembocadura?

Hay una teoría física que lo explica. En realidad no solo explica estas cosas, sino que lo explica potencialmente todo: el comportamiento de cualquier ente en movimiento, ya sea animado o inanimado. 

Se trata de una ley física bastante reciente y aún poco conocida por el público: se llama ley Constructal y la formuló en 1996 el profesor estadounidense de ingeniería mecánica Adrian Bejan, de la Universidad Duke de Carolina del Norte. 

Bejan quiso hacerla más accesible para las masas en su libro "La física de la vida: la evolución de todo", publicado en 2016. 

¿Pero cómo puede explicarlo potencialmente todo?

Todo fluye bajo el mismo principio

La esencia de esta teoría es que todo proceso en movimiento, da igual si es algo vivo, como una planta, un río o algo más intangible o inanimado, como una ruta migratoria o la comunicación entre computadoras, todo avanza hacia una mayor eficacia.

En ese avance se producen cambios morfológicos y ajustes que responden al mismo principio de optimización, de evolución hacia algo mejor.

Y eso, según escribió Bejan en su libro, se aplica a flujos tan dispares como "el tráfico en la ciudad, el transporte del oxígeno en los pulmones y la fluidez del pensamiento rápido y lento en la arquitectura del cerebro". 

Bejan dice que toda la naturaleza está formada por sistemas de flujos que cambian y evolucionan sus configuraciones con el tiempo para fluir mejor. 

Así, según la ley Constructal, la tendencia es siempre hacia una fluidez más fácil, y con el tiempo los flujos se hacen más grandes. Y cuanto mayores los flujos, más inherentemente eficaces son.

Bejan dice que toda la naturaleza está formada por sistemas de flujos que cambian y evolucionan sus configuraciones con el tiempo para fluir mejor. 

¿Ley o teoría?

En la física hay muchas teorías, tantas como la mente quiera imaginar, pero pocas leyes.
Una ley debe explicar o resumir un fenómeno universal, como las leyes de la dinámica de Newton. 

Además, según el ingeniero, una ley debería ser "obedecida" por cualquier sistema imaginable: cuerpos, ríos, máquinas. 

Las teorías, en cambio, son predicciones sobre cómo algo debería ser, y están basadas en una ley.

Para Bejan, la ley Constructal explica el funcionamiento de cualquier sistema dinámico y es el motor de campos tan distintos como la evolución, la ingeniería o el diseño.

A él mismo le llegó la inspiración mientras diseñaba el sistema de refrigeración de computadoras portátiles: se dio cuenta de que los conductos se ramificaban como si fueran árboles y a partir de ahí nació el concepto de su ley. 

Ahora su propuesta Constructal está ganando aceptación en los círculos científicos, y según le dijo Bejan a la revista National Geographic en 2016, no ha sido refutada en las publicaciones especializadas.

De hecho el estadounidense acaba de recibir la prestigiosa medalla Benjamin Franklin, en parte por su "teoría constructal, que predice el diseño natural y su evolución en los sistemas de ingeniería, científicos y sociales". 

Según el ingeniero mecánico, entender mejor esta ley podría ayudarnos a anticipar cambios, por ejemplo en las dinámicas sociales, en los gobiernos o en la economía.

¿Y cómo puede mejorar tu vida?

Si una dinámica se vuelve más eficaz cuanto más fluida y libre es, entonces la moraleja para nuestras vidas bien podría ser "no te pares". 

Bejan, que nació y creció en Rumanía bajo un gobierno comunista, se reconoce como un optimista.
Su ley Constructal aplicada de una manera práctica a nuestro día a día, a nuestro trabajo, sugiere que cuanto más libres, flexibles y dinámicos nos volvamos, más eficaces seremos.

Por el contrario, la inacción interrumpiría el flujo y detendría ese proceso de optimización natural. 

Según dijo Bejan hace unos años en declaraciones a la revista Forbes, su teoría tiene incontables aplicaciones "porque pone el diseño biológico y la evolución dentro del campo de la física, junto a todo lo demás que hasta ahora no tenía cabida bajo el paraguas de la 'ciencia dura': la economía, las dinámicas sociales, los negocios y el gobierno". 

Una de las frases que más le gusta repetir al ingeniero en charlas y entrevistas, que también es recurrente en sus libros, es "la libertad es buena para el diseño".
Así que el mensaje es fluir más y mejor para ser mejores.

Fuente:

BBC Mundo


google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0