Latest Posts:

Mostrando las entradas con la etiqueta redes cuanticas. Mostrar todas las entradas
Mostrando las entradas con la etiqueta redes cuanticas. Mostrar todas las entradas

5 de septiembre de 2013

Polémica: Facebook usará las fotos de perfil con fines comerciales

Siluetas de dos hombres frente al logo de Facebook

Facebook utilizará las fotos de perfil para reconocimiento facial del usuario en otras imágenes.

Un nuevo cambio en las normas de Facebook ha generado polémica antes de entrar en vigencia, y esta vez afecta a las fotos de perfil de sus usuarios.

La red social ha publicado una "propuesta de actualización" de su política de privacidad y uso de datos en la que explica que las imágenes de perfil de los miembros se utilizarán para sugerir etiquetas de la persona en otras fotos.
Hasta ahora Facebook ha utilizado el reconocimiento facial -herramienta que identifica a las personas en una imagen- a partir de fotografías que ya estaban etiquetadas y, por tanto, tenían el consentimiento y conocimiento del usuario.

Con el nuevo cambio, la red social utilizará la imagen de perfil para identificar al usuario en futuras fotos que otros amigos suban a la red.

Para Facebook, la imagen del perfil es "información pública", puesto que -según la empresa- cualquier persona puede verla y acceder a ella, incluidos quienes no son miembros. La red social entiende así que la foto está asociada a la persona.

Y esto puede afectar la forma en que la red comparte información con los anunciantes.

"Sólo proporcionamos datos a nuestros anunciantes y clientes después de haber eliminado su nombre o cualquier otra información de identificación personal, o después de haberlo combinado con los datos de otras personas de manera que ya no pueda ser asociada con usted", es el párrafo en el que Facebook detallaba los límites de privacidad de la información personal de usuarios que compartía con clientes.

Un sutil cambio modifica el sentido de toda la frase.

"Sólo proporcionamos datos a nuestros anunciantes [...] después de haberlo combinado con los datos de otras personas de manera que ya no se le pueda identificar personalmente".

Desde que el sentido de la comunicación no impide que se comparta información que pueda ser asociada con el usuario, la red social tiene vía libre para utilizar las fotografías de perfil con fines comerciales.
¿Se puede desactivar? 

¿Se puede desactivar esta opción? Facebook no lo deja claro.

Lea el artículo completo en:

BBC Ciencia

7 de agosto de 2013

Récord mundial: científicos alemanes detienen la luz durante un minuto

Las investigaciones dirigidas a crear un internet cuántico revelan cómo paralizar las partículas más rápidas del universo a voluntad.


Una memoria cuántica hecha a base de gas a alta temperatura / cqc2t
¿Se imagina porder correr más rápido que la luz sin apenas esfuerzo? Es algo imposible de acuerdo con las teorías físicas de Einstein, pero totalmente viable si se viaja al lugar adecuado. Para ganar a la luz en una carrera hay que ir al número 6 de la Hochschulstrasse, en Darmstadt, Alemania. Allí, en el laboratorio de física cuántica que dirige Thomas Halfmann, se puede ganar a la luz sin siquiera echar a correr, porque está paralizada. La semana pasada, Halfmann y el resto de su equipo en la Universidad Técnica de Darmstadt publicaron un estudio en el que describían cómo paralizar un rayo de luz durante un minuto: todo un récord mundial que casi multiplica por cuatro el anterior. El avance técnico, que se ha logrado usando rayos láser y superposición cuántica, es un importante paso hacia un nuevo sistema de comunicación basado en la luz que sería virtualmente imposible de hackear. En otras palabras, el internet ultraseguro que persiguen ejércitos, multinacionales y hasta casinos online.

Si el rayo de luz que Halfmann y su equipo han detenido hubiera seguido su marcha, habría recorrido unos 18 millones de kilómetros en un minuto, suficiente para dar 450 vueltas a la Tierra. El logro ha sido posible gracias a dos haces de luz láser, campos magnéticos y un cristal que se torna opaco o transparente cuando uno de los rayos lo atraviesa.

Los físicos creen que es posible establecer una especie de internet inhackeable que funcione con luz y en el que los mensajes vayan encriptados usando fotones. Cualquier intento de interferir en esos fotones destruiría la clave o el mensaje que transportan, lo que hace que la clave sea teóricamente inexpugnable. Pero para poder enviar mensajes con fotones a más de unos 200 kilómetros hacen falta repetidores pues si no la señal se pierde. El experimento de Halfmann, detallado en Physical Review Letters,  podría servir para construir un repetidor de luz o incluso una memoria informática que la guarde.

Dos lásers y un cristal cambiante

Hasta ahora, la técnica habitual para detener la luz era usar gases muy fríos para frenarla. Las propiedades ópticas de esos gases interfieren los fotones y permiten frenar la luz, que viaja a 300.000 kilómetros por segundo en el vacío, hasta los 17 metros por segundo, tal y como demostraron en 1999 físicos de la Universidad de Harvard. Dos años después lograron detenarla por completo durante fracciones de segundo. Este mismo año, otro equipo de EEUU logró el récord al retener la luz durante 16 segundos dentro de una nube de gas a unos 273 grados bajo cero, algo que ahora ha quedado totalmente pulverizado con la Transparencia Inducida Electromagnéticamente (EIT, en inglés) usada por Halfmann.

Lea el artículo completo en:

Materia

9 de octubre de 2012

Nobel de Física para pioneros en física cuántica

    Serge Haroche y David J. Wineland, galardonados con el Premio Nobel de Física 2012

    Serge Haroche y David J. Wineland ganaron por su aporte a la óptica cuántica.

    Los expertos en física cuántica Serge Haroche, de Francia, y David J. Wineland, de Estados Unidos, fueron galardonados este martes con el Premio Nobel de Física 2012.

    La Real Academia de Ciencias de Suecia dijo que ambos científicos fueron seleccionados por sus trabajos sobre la interacción entre la luz y la materia y por haber abierto la puerta "a una nueva era de experimentación en la física cuántica al lograr la observación directa de partículas cuánticas individuales sin destruirlas".
    Sus investigaciones podrían llevar a la creación de una nueva computadora superrápida basada en la física cuántica.
    "Tal vez la computadora cuántica cambiará nuestras vidas en este siglo al igual que la computadora clásica lo hizo en el siglo pasado"
    Real Academia de Ciencias de Suecia

    "Tal vez la computadora cuántica cambiará nuestras vidas en este siglo al igual que la computadora clásica lo hizo en el siglo pasado", dijo la Academia.

    Trabajar con la luz y la materia a este nivel era algo impensable hasta que Haroche y Wineland lograron un mecanismo para seleccionar, manipular y medir fotones de forma individual, abriendo una ventana a un mundo microscópico relegado hasta entonces al debate teórico.

    La Academia destacó los "métodos revolucionarios" de los expertos que han permitido "la medición y la manipulación de sistemas cuánticos individuales".

    "Tuve que sentarme"

    Bjorn Jonson, miembro del comité seleccionador, enfatizó la importancia del campo de investigación de los científicos premiados.

    "El campo de la física llamado física cuántica es muy activo hoy en día y estudia las interacciones fundamentales entre los fotones (las partículas de luz) y la materia. Es más, es la interacción entre la luz y la materia lo que permite que podamos vernos unos a otros en esta habitación".

    La física cuántica es uno de los grandes avances del siglo XX. Al explicar el comportamiento de la materia y de la energía ha posibilitado nuevas tecnologías como los transistores, utilizados en la mayoría de los aparatos electrónicos.

    Computadora cuántica, ilustración SPL

    La óptica cuántica podría llevar a la creación de computadoras ultrarrápidas.

    Haroche nació en 1944 en Casablanca, Marruecos, y en la actualidad es catedrático de Física Cuántica en el Colegio de Francia y en la Escuela Normal Superior, ambos en París.

    Por su parte, el estadounidense Wineland nació en 1944 y trabaja en el Instituto Nacional de Estándares y Tecnología (NIST, por sus siglas en inglés) en Boulder, Colorado.

    Haroche recibió la noticia por teléfono apenas 20 minutos después del anuncio.

    "Tuve suerte, estaba caminando en la calle y estaba cerca de un banco, así que inmediatamente tuve que sentarme por un momento", señaló el científico.

    "Estaba caminando con mi esposa rumbo a casa cuando vi una llamado con el código de Suecia y me di cuenta de que era algo que estaba ocurriendo en la realidad. Fue sobrecogedor".

    Desde 1901

    Los premios Nobel han sido concedidos anualmente desde 1901. El primer galardón de Física fue dado a Wilhelm Roentgen, de Alemania, por su descubrimiento de los rayos X.

    Los ganadores del Premio Nobel de Física 2012, dotado con ocho millones de coronas suecas (cerca de US$ 1,2 millones), siguen en este campo a los astrónomos estadounidenses Saul Perlmutter, Brian P. Schmidt y Adam G. Riess, que fueron seleccionados en 2011 por sus estudios sobre el aceleramiento de la expansión del Universo.

    La presente edición de los Nobel comenzó el lunes con la concesión del premio de Medicina al británico John B. Gurdon y al japonés Shinya Yamanaka por sus investigaciones en el campo de las células madre, que han "revolucionado" la comprensión científica de cómo "se desarrollan las células y los organismos".

    Este miércoles se anunciarán los ganadores en Química, el jueves en Literatura y el viernes el Nobel de la Paz. El último en ser anunciado, el próximo lunes, es el premio de Economía.

    La entrega de los Nobel se realizará en ceremonias paralelas el 10 de diciembre, en Oslo para el premio de la Paz y en Estocolmo para los otros. La fecha coincide con el aniversario de la muerte de Alfred Nobel.

    Fuente:

    BBC Ciencia 

    Lea también:

    2012 -  Nobel de Medicina a la investigación de células madre

    12 de marzo de 2012

    El Universo es como un gato: determinismo y teorías físicas


    La mecánica cuántica es realmente imponente. Pero una voz interior me dice que aún no es la buena. La teoría dice mucho, pero no nos aproxima realmente al secreto del “viejo”. Yo, en cualquier caso, estoy convencido de que Él no tira dados.

    Esta es la primera ocasión en la que Albert Einstein expresa su convicción de que el universo es determinista con la conocida analogía de “Dios no juega a los dados”. Aparece en una carta a su colega y amigo Max Born fechada el 4 de diciembre de 1926.

    Para muchos físicos, filósofos y religiosos la irrupción de la mecánica cuántica y su interpretación supuso una liberación de las limitaciones que la mecánica newtoniana imponía a su forma de ver el mundo. Para otros supuso un terremoto de consecuencias indeseables. Los casos más llamativos sin duda son los de los físicos que contribuyeron a crearla, como el propio Einstein (efecto fotoeléctrico, paradoja Einstein-Podolsky-Rosen) o Erwin Schrödinger (ecuación de onda), pero que no podían compartir las implicaciones no deterministas de esta teoría.

    El determinismo está íntimamente relacionado no sólo con cómo funciona el universo en sí, sino que tiene implicaciones prácticas muy inmediatas: si todo está determinado, ¿qué responsabilidad moral tengo? Quizás por ello, muchos filósofos y religiosos abrazaron entusiasmados la propuesta de que en la raíz misma de todo lo que existe reina la indeterminación. Con el principio de indeterminación tanto unos como otros recuperaban el terreno perdido por el libre albedrío a manos de la teoría newtoniana y encontraban huecos para la moral, el alma y algunos dioses.

    Y, sin embargo, un pequeño análisis muestra que todos aquellos que piensan que la mecánica cuántica abre las puertas al libre albedrío o que la física newtoniana es absolutamente determinista, se equivocan completamente. Invitamos al inteligente lector a explorar con nosotros la esencia del universo y los límites de nuestro conocimiento sobre ella a la luz de las distintos modelos físicos. Exigirá un pequeño esfuerzo, pero será gratificante o, al menos, eso pensamos.

    Algunos conceptos

    Empecemos dejando claras dos ideas. La primera está implícita en el párrafo anterior: el determinismo es una doctrina acerca de una característica del universo que, en el caso de ser cierta, no implica necesariamente que los estados del sistema sean predecibles. Es decir, el determinismo es una cuestión ontológica, algo intrínseco al universo, independientemente de si lo podemos conocer nosotros o no, lo que es una cuestión epistemológica. Trataremos ambas cuestiones en este orden.

    La segunda es el propio concepto de determinismo. Un profesor mío solía repetir que si la hipótesis es cierta los acontecimientos futuros están tan fijados como los pasados. Pero como vamos a hablar sobre qué nos dicen las teorías físicas sobre el universo necesitaremos una definición más apropiada. Como primera aproximación podemos decir que una teoría es determinista siempre que el estado de un sistema en un momento inicial, más las leyes de la teoría, fijan el estado del sistema en cualquier momento posterior.

    Esa definición de determinismo es intuitiva, pero podemos ir un pasito más allá y hacerla algo más rigurosa. Es un esfuerzo extra que después nos compensará permitiendo aplicarla a cualquier teoría física.

    Imagina dos regiones cualesquiera del espaciotiempo, R1 y R2, incluyendo esta habitación ahora y dentro de una hora o un acontecimiento poco tiempo después del Big Bang y el resto del universo. A R1 la llamaremos la región determinante y a R2 la determinada. Si una teoría asigna un estado a R2 que está fijado por el estado de R1 y sus propias leyes, entonces diremos que la teoría es determinista. Es lo mismo de antes dicho de otra manera. La diferencia está en que ahora podemos hablar de grados de determinismo: cuanto más grande tenga que ser R1 para que una teoría satisfaga esta definición, más débil es esa forma de determinismo. Pero veamos como la usamos en la práctica.

    Los invasores del espacio matan al demonio de Laplace

    Tiempo después de que Newton propusiese sus leyes del movimiento y gravitación, Laplace señaló que si un intelecto poderosísimo (conocido como el demonio de Laplace) conociese las leyes de Newton, fuese un consumado matemático y tuviese acceso a una descripción de la posición actual y el momento de cada partícula del universo, dicho intelecto sería capaz de calcular cualquier acontecimiento futuro o pasado de la historia del universo. Esta visión del “universo de relojería” fue la que dominó el mundo durante doscientos años y la que causó tantos problemas a teólogos y filósofos morales.

    Pero, ¿realmente es tan determinista la física de Newton? Hagamos un pequeño experimento mental. Imagina un mundo newtoniano compuesto por partículas masivas puntuales que se mueven por su mutua atracción gravitatoria. Parece una obviedad decir en este punto que las ecuaciones del movimiento calculadas por el demonio de Laplace nos proporcionan las posiciones y las velocidades de todas las partículas en un momento dado, tanto del futuro como del pasado. Tenemos así un sistema completamente determinista: R1 puede ser una simple muestra del espaciotiempo newtoniano que incluya un conjunto de acontecimientos absolutamente simultáneos, y R2, el resto de este universo con todas las trayectorias completas, queda absolutamente fijado.

    Y entonces llegaron los invasores del espacio. Imaginemos ahora una partícula de la que no hay constancia en R1 de ningún tipo, está infinitamente lejos. La mecánica clásica no impide que la partícula aparezca en las proximidades de nuestro sistema en un tiempo finito a pesar de venir de la infinitud espacial, recordemos que en mecánica newtoniana no hay límite superior para la velocidad que puede alcanzar una partícula. Por tanto R1 y las leyes de la teoría ya no estarían fijando R2. La teoría newtoniana, pues, no es determinista según nuestra definición.

    Si damos un pasito más, e incorporamos la teoría general de la relatividad, no pensemos que hemos solucionado el problema. Los invasores del espacio podrían saltar desde una singularidad desnuda sin ni siquiera haber dejado su señal en cualquier fracción de tiempo precedente.

    El universo es como un gato

    Centrémonos ahora en la mecánica cuántica. Podemos estar seguros de que el estado cuántico asociado a cualquier región R1 del espaciotiempo, no importa lo grande que sea, no fija (en general) el resultado de las mediciones hechas en otras regiones R2; si acaso, en el mejor de los casos, sus probabilidades. Según la definición de arriba estaríamos ante una teoría no determinista, ¿correcto? No tan rápido.

    Estamos considerando el aspecto ontológico, cómo las cosas son en sí. Bien, la ecuación de Schrödinger nos asegura que los estados cuánticos mismos evolucionan de forma determinista con el tiempo, siempre y cuando no haya mediciones. Desde este punto de vista la teoría es perfectamente determinista.

    De hecho, nos encontramos con una curiosa mezcla de determinismo con indeterminismo, la misma que aparece en la paradoja del gato de Schrödinger. La pregunta del millón es, entonces, ¿cuándo y cómo toma el control el indeterminismo para producir un resultado concreto a partir de una superposición?

    La bola de la ruleta

    Démonos cuenta de que los fenómenos cuánticos, si bien afectan a todo el universo, sólo ponen de relieve sus paradojas en tamaños muy pequeños, a nivel de átomos. Todo el azar y la incertidumbre que parece implicar la mecánica cuántica comienzan a hacerse menos evidentes conforme más partículas entran en los cálculos, esos valores discretos tan dispares comienzan a hacerse estadísticamente continuos. Para números de partículas importantes, como el del número de átomos de una neurona, la probabilidad de una desviación con respecto al comportamiento esperado es tan ridículamente baja que no cabe esperarla en períodos de tiempo mucho mayores que una vida humana. A efectos prácticos su comportamiento es determinista.

    Habrá personas que afirmen que todavía queda un resquicio, por minúsculo que éste sea para la indeterminación. Y habría que admitir que es así. Pero, y esto es relevante, ello no supone ningún tipo de concesión al libre albedrío. La mecánica cuántica habla de indeterminación, no de indeterminismo, ya que de existir éste sería puro azar. Pero, si mis acciones se libran del determinismo sólo haciéndose aleatorias, ¿cómo puede haber responsabilidad moral? El que mi brazo sufra un espasmo aleatorio y te abofetee es el tipo de acción que me excusa desde un punto de vista moral.

    Para estas personas que buscan en la física un resquicio donde tengan cabida sus creencias y su responsabilidad moral asociada se le ofrecen dos opciones. Ya mencionamos que lo de ser parte de un mecanismo de relojería no es de especial agrado de filósofos morales y teólogos pues reserva a los dioses sólo un papel en la puesta en marcha y elimina por tanto de facto toda responsabilidad moral. La alternativa a la que se agarran como un clavo ardiendo es, no un reloj, sino una ruleta de casino o, mejor aún, la bola en una ruleta de casino que aún no está construida, puro azar; ni siquiera hay espacio para impredicibilidad práctica. Y ya hemos visto que la aleatoriedad nos exime también de la responsabilidad moral.

    El entierro del demonio de Laplace

    Para finalizar veamos muy brevemente el indeterminismo desde un punto de vista epistemológico. Esto nos da la visión práctica del asunto: primero una respuesta a “¿qué puedo conocer?” para poder después responder a “¿qué puedo hacer?” y “¿qué debo hacer?”.

    Ya hemos mencionado que en la mecánica cuántica el conocimiento, la intervención del observador, nos lleva a la indeterminación en los resultados. Nos vemos abocados a un universo estadístico, en el que todo lo que no está prohibido es posible que ocurra, si bien con probabilidades muy diferentes. El demonio de Laplace no tiene cabida en este universo.

    En el espaciotiempo de la relatividad especial, el estado del universo en cualquier momento (relativo a cualquier observador) fija la totalidad de los acontecimientos en el espaciotiempo. Pero el hecho de que la información no pueda ser transmitida más rápido que la luz garantiza que ningún observador, ni siquiera el demonio de Laplace, pueda reunir todos los datos que necesitaría para predecir un acontecimiento antes de que éste ocurra realmente.

    Pero es que el demonio de Laplace no tiene siquiera cabida en un universo newtoniano. Porque aún admitiendo que éste fuese determinista también es caótico. Esto quiere decir que no importa la precisión con la que especifiquemos su estado inicial con objeto de predecir su estado final, siempre habrá variaciones minúsculas, impredecibles y no mensurables que harán que los resultados sean muy diferentes.

    En conclusión, si bien el universo en su conjunto no es predecible para un observador y se pueden discutir muchos detalles y matices, podemos afirmar que nuestras mejores teorías físicas nos aportan una dosis alta de determinismo y que donde no hay determinismo hay puro azar. Comprendemos que esto puede resultar muy incómodo para algunos. Lo único que cabe desear es que no pasen 30 años negando lo evidente, como hizo Einstein.

    Fuente:

    Amazings en español

    7 de diciembre de 2011

    2017: El año de la Revoluciòn Cuàntica



















    Un circuito

    Científicos de la Comisión de Energías Alternativas y de Energía Atómica de Francia, de la Escuela Politécnica Federal de Lausana (EPFL) y del laboratorio de IBM en Suiza proyectan que para 2017 un fenómeno cuántico podría hacer que los celulares y las computadoras consuman 100 veces menos energía.

    "En el proyecto Ángeles Guardianes, uno de nuestros objetivos es encontrar soluciones para reducir el consumo de energía de los procesadores. El 'túnel-FET' es la próxima revolución que nos ayudará a conseguir ese objetivo", dijo Adrian Ionescu, líder del proyecto, en un comunicado emitido por la EPFL.

    De acuerdo con el experto, la tecnología del "túnel-FET" aprovecha un fenómeno conocido como el "efecto del túnel cuántico". FET son las siglas en inglés de Field Effect Transistor: Transistor de Efecto de Campo.

    En declaraciones ofrecidas a BBC Mundo, el investigador señaló que la revolución tendrá un primer impacto en los celulares y en las computadoras.

    "Los procesadores de bajo consumo de energía de nuestros iPhones consumirán cien veces menos energía. Eso abrirá la puerta a una nueva gama de funciones relacionadas con herramientas de detección y de asesoramiento inteligente. También será beneficioso para extender la operatividad del dispositivo que no necesitará de carga en semanas o meses", señaló el científico.

    "Efecto de campo"

    iPhone

    Con la tecnología del "efecto del túnel", las baterías de los celulares podrían durar semanas e incluso meses.

    Según Ionesco, a largo plazo el "túnel-FET" podría ser la tecnología que permitirá que varios de los objetos de nuestra vida diaria se vuelvan "inteligentes" al extraer energía del medioambiente en vez de alimentarse de pilas o baterías.

    Es una tecnología que ayudará al campo de la investigación y a la industria de la electrónica, áreas en las que el consumo de energía de los transistores se ha convertido en un tema clave.

    De acuerdo con Ionescu, las unidades centrales de procesamiento, mejor conocidas como CPU (Central Processing Unit), de las computadoras de hoy en día "no tienen menos de mil millones de transistores".

    "Esos pequeños interruptores que se apagan y se prenden ofrecen las famosas instrucciones binarias, los ceros y los unos que nos permiten enviar correos electrónicos, ver videos, mover el cursor y mucho más", escribió Ionescu en la revista especializada Nature.

    La tecnología que se usa en la actualidad se conoce como el "efecto de campo", a través del cual el voltaje impulsa un canal de electrones que activa el transistor.

    Pero, advierte el experto, el "efecto de campo" está llegando a sus límites, especialmente en lo que se refiere al consumo de energía.

    El túnel

    El "túnel-FET" tiene como base un principio diferente.

    "En el transistor, hay dos cámaras que son separadas por una barrera de energía. En la primera, una horda de electrones espera mientras el transistor es desactivado. Cuando se inyecta el voltaje, (los electrones) cruzan la barrera de energía y entran a la segunda cámara, con lo que activan al transistor", indicó el investigador.

    Según Ionescu, en el pasado el "efecto de túnel" era conocido por interrumpir la operación de los transistores.

    "De acuerdo con la teoría cuántica, algunos electrones cruzan la barrera incluso si ellos aparentemente no tienen suficiente energía para hacerlo. Al reducir el ancho de esta barrera, es posible amplificar y sacarle provecho al efecto cuántico: la energía necesaria para que los electrones crucen la barrera es drásticamente reducida".

    Al sustituir el principio convencional, conocido como el "efecto de campo", por el "efecto del túnel", se puede recudir el voltaje de los transistores de 1 voltio a 0,2, explicó el experto.

    El objetivo de los investigadores es conseguir que la nueva generación de microchips combine ambos efectos.

    "Los actuales prototipos hechos por IBM y CEA han sido desarrollado en una etapa pre industrial. Podríamos proyectar una producción masiva para el año 2017", señaló Ionescu.

    Para el investigador, la nueva tecnología ayudará a que seamos más eficientes en términos energéticos y a que los aparatos eléctricos que usamos reduzcan sus "huellas de carbono" en el planeta.

    Fuente:

    BBC Ciencia

    Contenido relacionado

    2 de diciembre de 2007

    Un mesón de cuatro quarks desafía la física.

    Los físicos del experimento Belle del Laboratorio KEK en Japón descubrieron un curioso mesón bautizado Z(4430). Según algunos, se trataría de una partícula compuesta de cuatro quarks.

    Los físicos del experimento Belle del Laboratorio KEK en Japón descubrieron un curioso mesón bautizado Z (4430). Según algunos, se trataría de una partícula compuesta de cuatro quarks. Tal cosa parece imposible o casi en el marco de la teoría de la cromodinámica cuántica.

    ”mesón
    Tres ejemplos de mesones formados por un quark y por un antiquark designado por una barra sobre la parte superior.
    © KEK Laboratory

    Desde su introducción en el mundo de la física de las partículas al principio de los años 1960 por Gell-Mann, Ne’eman y Zweig, los quarks no han dejado de intrigar a los físicos por su comportamiento anormal respecto al de otras partículas elementales. Sin embargo, la teoría de las interacciones fuertes que dominaban el mundo de los hadrones construida con ellos, se mostró particularmente perfecta para describir experimentos en los aceleradores.

    No obstante, las ecuaciones de la QCD (cromodinámica cuántica) que describen los intercambios de gluones entre los quarks, y son responsables de la estructura compuesta de los protones y de los neutrones, son notoriamente difíciles de resolver a causa de su estructura no lineal. Lo que hace que no siempre se comprenda muy bien por qué los quarks quedan confinados en los hadrones, aunque se ha progresado mucho desde finales de los años 1960, es casi siempre imposible predecir la masa de los protones y de los neutrones sin utilizar ordenadores.

    A pesar de todo, la teoría implica de modo bastante sólido que los quarks pueden unirse sólo por pares de partícula-antiparticula, para formar mesones, y por tres para formar bariones.

    ”mesón
    Las colisiones electrón-positrón producen numerosos tipos de partículas que se desintegran según diferentes modos en cadena. Aquí un excelente mesón (B) se desintegra en Z (4430) y él mismo da un charmonium también llamado mesón J/psi.
    © KEK Laboratory

    Fue pues con una cierta sorpresa que los experimentadores ocupados en analizar los productos de las reacciones de colisiones entre electrones y positrones, con el experimento BaBar del Centro del Acelerador Lineal de Stanford y Belle en el Laboratorio KEK, descubrieron importantes indicadores de la presencia de mesones constituidos por cuatro quarks.

    ¿Un estado excitado del charmonium?

    A primera vista, esto no parecía la explicación más plausible. En efecto, los mesones, como los bariones, siendo compuestos a ejemplo de los átomos, poseen niveles de energía y pueden encontrarse en un estado excitado. La primera hipótesis presentada era pues que precisamente en presencia de este fenómeno con un mesón en estado de reposo y llamado aún charmonium porque está compuesto por un quark en reposo y por un antiquark en reposos (el reposos designa un estado cuántico análogo al espín para este tipo de quark), lo encontramos justamente en estado de desintegración de uno de los mesones inestables que podían interpretarse como constituido por 4 quarks.

    ”mesón

    ¡Ocurre entonces, que el méson Z (4430) hoy descubierto está cargado mientras que el charmonium es neutro! Parece pues difícil de creer que se trata de un estado de excitación. Además, Z (4430) se desintegra en charmonium y en un mesón ? (PI) cargado. Estamos pues en presencia de un candidato mesón con cuatro quarks que parece muy discernible de un estado excitado del charmonium al contrario que el otro mesón: el X(3872).

    ”meson
    La prueba de la existencia de Z(4430) con una resonancia en el índice de producción a 4430 de MeV.
    © KEK Laboratory

    No todos los físicos están todavía convencidos y algunos piensan que son necesarios aún nuevos experimentos. En efecto, si la existencia de un mesón con cuatro quarks se confirmara, habría que reexaminar las ecuaciones de la QCD, si no la teoría de las interacciones nucleares fuertes en si misma.

    Fuente:

    Ciencia Kanija

    9 de marzo de 2007

    Un fenómeno cuántico abre la vía a las redes de teleportación

    MÓNICA G. SALOMONE - Madrid - 07/03/2007

    El mundo cuántico es misterioso y nada intuitivo, y suele sorprender a quienes investigan en él. Es lo que les ha pasado a tres investigadores en redes cuánticas, dos de ellos en España y otro, Ignacio Cirac, del Instituto Max Planck para Óptica Cuántica, en Garching (Alemania).

    Construir redes cuánticas es muy complejo y aún no existen físicamente, ni siquiera de forma experimental, pero los investigadores aseguran que serán la base de la comunicación cuántica del futuro. Así que han empezado a trabajar con ellas en modelos de ordenador. Y han descubierto un inesperado fenómeno nuevo y que constituye una buena noticia: "En el mundo cuántico es posible establecer conexiones perfectas a grandes distancias a partir de conexiones imperfectas", afirman los investigadores. Su trabajo se ha publicado en la versión digital de Nature Physics.

    La telecomunicación cuántica se basa en el fenómeno del entrelazamiento entre partículas, por ejemplo entre fotones. El entrelazamiento permite que una partícula permanezca en cierto modo unida o, técnicamente, correlacionada a otra, a pesar de encontrarse lejos de ella; de esta forma, cuando se produce un cambio en una de las partículas también se produce en la otra. Así, las propiedades de una partícula se teleportan de modo instantáneo a la otra. En una red cuántica, los nodos de la red compartirían parejas de partículas relacionadas. "Por desgracia, establecer correlaciones perfectas incluso a distancias cortas es un desafío formidable. En los experimentos sólo podemos hacer correlaciones imperfectas", afirman Antonio Acín, español, y su colega polaco Maciej Lewenstein, ambos profesores ICREA en el Instituto de Ciencias Fotónicas, en Barcelona.

    Pero los investigadores observaron que en las redes cuánticas simuladas aparecía un fenómeno muy habitual en el mundo macroscópico llamado percolación. En el mundo a escalas humanas, el cotidiano, la percolación es responsable de que, por ejemplo, un incendio acabe propagándose a pesar de que sus focos están lejos entre sí. Por encima de un cierto grado de conexión entre los focos, aunque esta conexión sea pobre, el fuego acabará propagándose y será difícil de parar.

    Los investigadores observaron que en las redes cuánticas pasa igual: aunque las correlaciones sean imperfectas, una vez superado un nivel mínimo de imperfección la correlación perfecta a larga distancia es posible.

    Lo que más les sorprendió fue el darse cuenta no sólo de que había percolación cuántica, sino de que ésta podía ser mucho más eficaz que la clásica; es decir, podía tolerar un grado de imperfecciones mucho mayor que la percolación del macromundo. De hecho, el trabajo que ahora se publica muestra con qué protocolos de red es posible mejorar la capacidad de percolación de la red.

    ¿Cómo se consigue esto? La clave, explican los autores, es el concepto de que en comunicación cuántica las partículas se comportan también como ondas, y en las ondas se producen interferencias que pueden ser destructivas -que impiden la comunicación- o constructivas. El truco está en hacer la red de forma que las interferencias sean constructivas.

    Nadie hasta ahora había observado el fenómeno de la percolación cuántica porque las investigaciones se habían centrado en las conexiones lineales, el equivalente a una conexión punto a punto, no en redes. "Éste es el primer trabajo que muestra lo que ocurre con las redes. Estamos abriendo una nueva vía en la que seguro que hay muchas cosas por descubrir", dice Acín.

    El hallazgo tiene consecuencias prácticas: "Si en una red cuántica se establecen conexiones imperfectas en distancias cortas, es probable que se pueda, con la ayuda de métodos clásicos de comunicación como teléfonos o conexiones normales entre ordenadores, establecer correlaciones cuánticas perfectas en distancias largas", afirman los autores. Las conexiones normales, como el teléfono, servirían para hacer el protocolo que mejora la percolación de la red cuántica.

    El año que viene ya hay planeado un primer experimento con redes cuánticas en Viena, a través del proyecto europeo SECOQC, en el que se intentará crear una red cuántica con los nodos situados a pocos kilómetros de distancia.

    Fuente:

    El País - Sociedad

    Científicos logran teletransportación a lo “Star Trek’’

    Consiguen la primera teletransportación cuántica

    La teletransportación es posible
    google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0