Latest Posts:

Mostrando las entradas con la etiqueta pi. Mostrar todas las entradas
Mostrando las entradas con la etiqueta pi. Mostrar todas las entradas

4 de mayo de 2015

Descifran los misterios de la Gran Pirámide de Keops

Su reconstrucción tridimensional ha permitido descubrir sus medidas originales (100.000 veces el número pi) y demostrar que estaba coronada por una esfera de más de dos metros.



Las investigaciones del arquitecto catalán Miquel Pérez-Sánchezdurante más de diez años han permitido reconstruir por ordenador con gran exactitud la pirámide de Keops y determinar que estaba coronada por una esfera de más de 2 metros. Pérez-Sánchez, que ha presentado hoy la publicación del libro que recoge su tesis doctoral, ha explicado en la presentación que «del análisis de la pirámide se deduce que era una especie de enciclopedia del saber de su tiempo».
La Gran Pirámide, la edificación más importante del Reino Antiguo, fue construida durante el reinado de Khufu (2550 a.C. a 2527 a.C.), segundo faraón de la IV Dinastía, a quien Herodoto llamó Keops. Fue la primera de las 7 Maravillas del Mundo Antiguo y la única que ha permanecido en pie, y en la actualidad se encuentra desprovista de su recubrimiento original de bloques de piedra caliza blanca y su cima ha perdido 9 metros de altura, por lo que hasta ahora no se conocía su forma exacta, asegura Pérez-Sánchez. La esfera que coronaba la pirámide, dice el arquitecto, simbolizaba el Ojo de Horus y tenía por diámetro 2,718 codos reales (2,7 metros), la medida del número e. Añade que esta esfera de coronación estaba, a la vez, proporcionada con el Sol y con Sirio, la estrella más brillante del cielo, que estaba asociada a Isis.
Las investigaciones del arquitecto, que ha contado con el apoyo de un equipo pluridisciplinar, han permitido dibujar el monumento por ordenador con una exactitud de 4 decimales, lo que representa «100 veces superior a la precisión habitual en arquitectura». El dibujo tridimensional de la Gran Pirámide ha permitido descubrir sus medidas originales, analizarla y entender el significado histórico del monumento.

Conocimientos científicos insospechados


Pérez-Sánchez ha explicado que, además de la esfera de coronación, hoy desaparecida, esta reconstrucción ha posibilitado conocer «el ángulo de inclinación, de 51,84º; la plataforma de apoyo de la esfera, de perímetro pi (µ) codos reales; y la altura del vértice piramidal, de 277.778 codos reales, igual al cociente de dividir 1.000.000 entre 3.600».
A su juicio, el descubrimiento de la forma y medidas originales de la Gran Pirámide, y su reconstrucción y análisis, ha revelado «una arquitectura hecha de pura filigrana matemática y geométrica, geodésica y astronómica».
La superficie original de la pirámide, «hoy en estado ruinoso», era100.000 veces el número pi (µ), por lo que se avanzan en unos 3.000 años al conocimiento de µ. Los egipcios que idearon Keops tenían «conocimientos científicos insospechados, entre los que cabe destacar el uso del Teorema de Pitágoras dos milenios antes del sabio de Samos, una precisión en la definición del número pi con 6 decimales que se adelantó en 3 milenios, así como el conocimiento del número e y de las medidas de la Tierra, del Sol y de Sirio que se anticiparon en más de 4 milenios».
Lee el artículo completo en:

11 de agosto de 2013

El día en que pudo cambiar el valor de pi

¿Te imaginas por un momento que alguien se atreviera a cambiar el valor de pi, la relación matemática entre la longitud de una circunferencia y su diámetro, bien conocida desde los antiguos griegos? No solo eso, ¿qué pensarías si además se quisiera sacar tajada de ello y legislarlo mediante una ley? Pues todo eso y mucho más ocurrió a finales del siglo XIX, cuando el estadounidense Edwin J. Goodwin (1825-1902) afirmó haber encontrado un método para realizar la famosa cuadratura del círculo.

El problema de la cuadratura del círculo era bien conocido desde la antigua Grecia. Se cree que fue Anaxágoras, aproximadamente en el año 600 A.C. quien planteó el problema de construir, con regla y compás, un cuadrado que tuviese el mismo área que un círculo dado. Pasaron más de dos mil años sin que nadie encontrara una solución, hasta que el matemático alemán Ferdinand Lindemann demostró que, tal y como la habían planteado los antiguos griegos, la cuadratura del círculo era imposible. 


Ferdinand Lindemann

Sin entrar en detalles, podemos entender lo que ocurre. El área de un círculo es π·r2, donde r es el radio de dicho círculo. La del cuadrado es a2, siendo a el lado del cuadrado. Si queremos que ambas áreas sean iguales, entonces:


π·r2 = a2

Y despejando a, resulta que


a = r·√π

Resolver el problema algebraico es bastante sencillo. Pero si queremos resolverlo como lo plantearon los griegos tendríamos que poder dibujar π con regla y compás. ¿Y realmente podemos? Si π fuese racional (de la forma m/n, donde m y n son números enteros con b distinto de cero), no habría mayor inconveniente. Incluso si π fuese irracional (que no se pudiese escribir de la forma m/n) todavía habría esperanzas. Se pueden construir con regla y compás números irracionales. Si dibujas, por ejemplo, un triángulo rectángulo con los catetos de longitud 1, la hipotenusa medirá √2, que es irracional. Esto es posible porque √2 es solución de la ecuación x2-2=0. Todos los que se pueden expresar como solución de una ecuación algebraica pertenecen a una clase de números llamados algebraicos y se pueden dibujar mediante regla y compás. 

Si un número no es algebraico, entonces se dice que es trascendente, como el número e, y en tal caso nunca podrá ser dibujado con regla y compás. De esta forma, el milenario problema de la cuadratura del círculo se reduce a la simple cuestión de si el número π es algebraico o trascendente. Eso fue lo que demostró Lindemann en 1882: π era trascendente y, por tanto, no se puede dibujar con regla y compás, lo que acabó con las esperanzas de todos los matemáticos de conseguir resolver este problema.

¿He dicho todos? Bueno, no. Hubo un matemático llamado Edwin J. Goodwin que pasó por alto los avances de todos sus predecesores, culminado por Lindemann. En realidad, Goodwin no era más que un médico rural que vivía en el pueblo de Solitude, Indiana, y que en su tiempo libre -debía tener mucho- se aficionó a las matemáticas. Al parecer, Goodwin ya había logrado resolver otros famosos problemas matemáticos imposibles, como la trisección del ángulo y la duplicación del cubo. En todos estos casos, Goodwin había publicado la solución en la revista matemática The American Mathematical Monthly. Y en todos ellos, el artículo estaba encabezado por una nota diciendo que se publicaba a petición del autor. Dicho de otro modo, la revista no se hacía responsable del contenido del artículo. Sospechoso, ¿verdad?

Edwin J. Goodwin

En su demostración de la cuadratura del círculo no se menciona explícitamente a pi. Pero hacia el final de la segunda sección se dice que "la relación entre el diámetro y la longitud de una circunferencia es de cinco cuartos a cuatro". Como esa es exactamente la definición de pi, la afirmación de Goodwin significaba que ¡pi valía 3,2! De nada había servido que, más de dos mil años atrás, Arquímedes ya hubiese demostrado que el valor de pi estaba comprendido entre 3+(10/70) y 3+(10/71), una aproximación mucho más buena que el valor -erróneo- dado por Goodwin. El genio de Siracusa debió retorcerse en su tumba.


Esquema que utilizó Goodwin para su "demostración"

Pero eso no es todo. A pesar de este y otros disparates que contenía su demostración, Goodwin estaba tan satisfecho con su descubrimiento que lo registró, con la idea de que cualquiera que lo utilizara tuviera que pagarle derechos de autor. Al mismo tiempo decidió que su estado natal de Indiana sí podría usarlo para beneficio de sus escolares. De hecho, Goodwin embaucó al representante por Indiana, Taylor I. Record, y le propuso presentar en la Asamblea legislativa un proyecto de ley que recogiese lo anterior. El título lo dice todo: Proyecto de ley que presenta una nueva verdad matemática y que es ofrecido como una contribución a la educación que sólo podrá ser utilizado por el Estado de Indiana de forma gratuita sin necesidad de pagar ningún tipo de derechos de autor, siempre y cuando sea aceptado y adaptado en forma oficial por la legislatura en 1897. Ahí queda eso.

La cadena de despropósitos no había hecho más que empezar. Después de recibir el visto bueno de la Comisión de Educación, el proyecto de ley número 246 de las sesiones del año 1897 llegó al Congreso. El resultado de la votación no dejó lugar a dudas: 67 votos a favor, ninguno en contra. Ya solo faltaba la aprobación del Senado y el valor de pi quedaría establecido en Indiana como 3,2.

El mismo día que se debatía el proyecto de ley en el Senado, se encontraba en el edificio C. A. Waldo, un profesor de matemáticas de la Universidad de Purdue, que había acudido a la ciudad para gestionar el presupuesto anual de la Academia de Ciencia de Indiana. Waldo se quedó muy sorprendido al enterarse que en el Senado estaban debatiendo una ley sobre matemáticas. Pero su sorpresa se transformó en espanto cuando comprendió el disparate que estaba a punto de cometerse. Una vez terminada la sesión, le ofrecieron conocer en persona al mismísimo Goodwin, lo que Waldo rechazó enérgicamente (“ya me han presentado a tantos locos como estoy dispuesto a conocer”). Por suerte, el Senado de Indiana no había completado la aprobación final del proyecto de ley y el profesor Waldo tuvo tiempo de convencer a un número suficiente de senadores para que postergaran el proyecto de forma indefinida.


C.A.Waldo, el salvador de Indiana

Y así fue cómo el estado de Indiana se salvó de hacer el mayor de los ridículos y consiguió que lo que todavía hoy se conoce como Indiana Pi Bill, el proyecto de ley de Indiana sobre pi, se quedase en eso, un simple proyecto.

NOTA: Esta entrada participa en la Edición 4,12310 del Carnaval de Matemáticas que organiza en esta ocasión el blog de Rafael MirandaGeometría Dinámica.

BIBLIOGRAFÍA:
  1. Texto completo del Proyecto de Ley (en inglés).
  2. La demostración de la cuadratura del círculo, tal y como se publicó (en inglés).
  3. Errores, lapsus y gazapos de la historia, Gregorio Doval. Editorial Nowtilus, 2011.

Tomado de:

La aventura de la ciencia

18 de marzo de 2013

El algoritmo de Chudnovsky (o cómo se calculan los decimales de Pi en el siglo XXI)

Hoy, día 14 de marzo, es el día de Pi (por la forma de expresar las fechas en Estados Unidos: 3-14), y vamos a celebrarlo presentando uno de los algoritmos más útiles de la actualidad para calcular decimales de Pi: el algoritmo de Chudnovsky.

A lo largo de la historia han sido muchas las formas utilizadas por el ser humano para calcular aproximaciones cada vez más exactas de este número Pi, cociente entre la longitud de una circunferencia cualquiera y el diámetro de la misma: se han usado las áreas de polígonos inscritos y circunscritos a una circunferencia, se han encontrado interesantes aproximaciones numéricas con algunas fracciones sencillas, se han desarrollado series infinitas y productos infinitos de todas las formas que uno pueda imaginar…Vamos, de todo. Pero de entre todos estos métodos hay varios que destacan sobre el resto, y uno de los que más lo hacen es el denominado algoritmo de Chudnovsky.

El algoritmo de Chudnovsky es un algoritmo creado por David Volfovich Chudnovsky y Gregory Volfovich Chudnovsky, hermanos y matemáticos ucranianos nacionalizados estadounidenses, mediante el cual podemos obtener muy buenas aproximaciones del número Pi. Se basa en la siguiente expresión relacionada con el número Pi que encontró Ramanujan:

\cfrac{1}{\pi} = \cfrac{2\sqrt{2}}{9801} \; \displaystyle{\sum^\infty_{k=0} \cfrac{(4k)!(1103+26390k)}{(k!)^4 396^{4k}}}

La expresión del algoritmo de Chudnovsky es la siguiente:

 \cfrac{1}{\pi} = 12 \; \displaystyle{\sum^\infty_{k=0} \cfrac{(-1)^k (6k)! (13591409 + 545140134k)}{(3k)!(k!)^3 640320^{3k + 3/2}}}

y con ella obtenemos 14 decimales exactos más de Pi con cada término de la misma. ¿Qué significa esto? Muy sencillo. Vamos a partir del valor de Pi hasta su decimal número 50:

3.14159265358979323846264338327950288419716939937511

Si calculamos el primer término de esa suma, el correspondiente a k=0, la aproximación de Pi obtenida será 1 dividido entre ese resultado, que nos da lo siguiente:

\mathbf{3.1415926535897} 3420766845359157829834076223326091571

En negrita resalto la parte de ese resultado que coincide con el valor de Pi. Calculemos ahora los dos primeros términos. La aproximación de Pi ahora será 1 dividido entre la suma de los mismos. Obtenemos esto:

3.1415926535897 \mathbf{93238462643383} 58735068847586634599637

Como veis, los decimales que ya eran exactos con el primer término se mantienen con este segundo término, y añadimos 14 más (son los resaltados en negrita). Por hacer otro más, veamos que la tendencia continúa con el término siguiente. Al calcular 1 dividido entre la suma de los tres primeros términos obtenemos la siguiente aproximación de Pi:

3.141592653589793238462643383 \mathbf{27950288419716} 767885485

Los anteriores se mantienen y se añaden 14 nuevos decimales exactos. Y así sucesivamente.

Es una barbaridad obtener 14 decimales exactos más con cada término, ya que con muy poquitos términos obtenemos una aproximación escandalosamente cercana al valor real. Por eso este algoritmo es tan bueno, y por eso ha servido para obtener varios récords mundiales de cálculo de decimales del número Pi (por ejemplo, para éste de 5 billones de agosto de 2010 y para éste de 10 billones de octubre de 2011). 

Por eso es uno de los más utilizados en la actualidad para el cálculo de buenas (más bien buenísimas) aproximaciones de esta constante que tanto nos gusta.

Por cierto, para obtener los resultados que aparecen en esta entrada he utilizado Mathematica de la siguiente forma:
  • Definimos mediante una función el término general de la serie: a[k_]:=(12 (-1)^k (6 k)! (13591409+545140134 k))/((3 k)! (k!)^3 640320^(3 k+3/2))
  • Ahora, para calcular cada término utilizo el comando Sum. Por ejemplo, para calcular el primero uso Sum[a[k],{k,0,0}]
    pero como lo que quiero es calcular la aproximación de Pi que corresponde con este término hago lo siguiente (como quería 50 decimales le pongo un 51, 51 cifras significativas):
    N[1/Sum[a[k],{k,0,0}],51]
  • Para ampliar el número de términos simplemente cambiamos el segundo cero de {k,0,0}. Por ejemplo, para calcular la aproximación con los dos primeros términos N[1/Sum[a[k],{k,0,1}],51]
    y para los tres primeros
    N[1/Sum[a[k],{k,0,2}],51]
Si se os ocurre alguna otra manera de realizar estos cálculos con Mathematica os agradecería que nos lo comentarais.

Por cierto, una última curiosidad. Con
N[Pi,51]

Mathematica nos muestra una aproximación del número Pi con 50 decimales. Evidentemente, podemos aumentar el número de decimales para conseguir aproximaciones cada vez más exactas. ¿A que no sabéis que algoritmo utiliza el propio Mathematica para obtener dichas aproximaciones? Efectivamente, el algoritmo de Chudnovsky.

Imagen tomada de aquí, donde podéis encontrar mucha información sobre el cálculo del número Pi.

Fuente:

Gaussianos

4 de enero de 2013

Hey: Pi no siempre vale 3,1416

Si buscamos en el diccionario de la RAE la definición matemática de π (Pi), obtenemos lo siguiente (segunda acepción):

2. f. Mat. Símbolo de la razón de la circunferencia a la del diámetro (aquí).
¿Es esta definición correcta? Sí…pero no. En realidad es incompleta, falta información. bueno, más bien presupone cierta información.

Antes de explicar esto, veamos qué pone nuestra amiga la Wikipedia:

π (Pi) es la relación entre la longitud de una circunferencia y su diámetro, en geometría euclídea (aquí).
Ah, amigo, en geometría euclídea…¿Es necesario dar ese dato?
Pongamos otro ejemplo. ¿Cuánto es 1+1? Seguro que si nos hacen esta pregunta todos diríamos 2, porque presuponemos que nos están preguntando por la suma habitual dentro del conjunto de los números reales. Pero esa suma podría hacerse en el conjunto de los números binarios, y en ese caso el resultado sería 10, o dentro de los enteros módulo 2, en cuyo caso la suma daría 0.


Pues con \pi ocurre lo mismo. El valor que conocemos para \pi está calculado de la forma anteriormente descrita, longitud de una circunferencia dividida entre el diámetro de la misma, dentro de la geometría euclídea. ¿Cómo es esta relación en otras geometrías?

De la geometría euclídea a las no euclídeas

En este post sobre el quinto postulado ya hablamos sobre la geometría euclídea, pero no está mal recordar en qué se basa. Euclides estableció en su obra Elementos (compendio de los conocimientos geométricos de la época) estos cinco postulados:

  1. Por dos puntos distintos sólo se puede trazar una línea recta.
  2. Todo segmento rectilíneo se puede prolongar indefinidamente.
  3. Con un centro y un radio sólo se puede trazar una circunferencia.
  4. Todos los ángulos rectos son iguales.
  5. Si dos rectas intersecan con una tercera de forma que la suma de sus ángulos interiores a un lado es menor que dos ángulos rectos, entonces las dos rectas individualmente se cortan en el mismo lado si se alargan suficientemente.
Una forma alternativa para este quinto postulado es:

Por un punto exterior a una recta se puede trazar una única paralela a la recta dada.
También en el post sobre el quinto postulado comentamos algo sobre los intentos de demostración de ese postulado a partir de los demás, y del cambio de enfoque del asunto provocado por los continuos fracasos de dichas demostraciones.

Ese cambio de enfoque consistió, como muchos sabréis, en considerar la negación de este quinto postulado, que resulta dar dos posibilidades:

  • Por un punto exterior a una recta no pasa ninguna paralela a la recta dada (geometría elíptica).
  • Por un punto exterior a una recta pasan infinitas paralelas a la recta dada (geometría hiperbólica).
El caso particular más característico de geometría elíptica es la geometría sobre la esfera (esférica), donde las “rectas”, que se denominan geodésicas, son las circunferencias sobre la esfera que tenga el mismo radio que la propia esfera.

Veamos cuánto valdría \pi (es decir, el cociente entre la longitud de una circunferencia y su diámetro) en este caso.

Tomamos una circunferencia C de diámetro 2r situada sobre la esfera de radio R (con r < R). Sean \alpha el centro de la circunferencia visto en la geometría esférica, \beta el centro de la esfera, \gamma un punto de la circunferencia, \delta el centro de la circunferencia visto en la geometría euclídea, \rho el radio de la circunferencia visto en el espacio euclídeo y \theta el ángulo \angle \alpha \beta \gamma, como se puede ver en la figura de la derecha.

En este caso se tiene que:


r=R \theta, \; sen(\theta)=\cfrac{\rho}{R} y 2 \rho \pi=C
siendo C la longitud de la circunferencia. Por tanto:


 

\rho=R \; sen(\theta) \rightarrow C=2 \pi R \; sen (\theta )=2 \pi \cfrac{r}{\theta} \; sen(\theta)
Si ahora denotamos como \Pi al cociente entre la longitud de la circunferencia sobre su diámetro (que es 2r) obtendremos la siguiente expresión dependiente de \theta:

\Pi (\theta)=\cfrac{C(\theta)}{2r}=\pi \; \cfrac{sen (\theta)}{\theta}
Es decir:

El valor de \Pi en una esfera depende del ángulo \theta formado por el centro de la circunferencia (visto en la esfera), el centro de la esfera y un punto de la circunferencia.
Vamos a ver un caso concreto: el ecuador de la esfera. Para esta circunferencia de la esfera se tiene que \theta=\textstyle{\frac{\pi}{2}}, por lo que

\Pi (\pi/2)=\pi \; \cfrac{sen (\pi/2)}{\pi/2}=2
Es decir, para el ecuador se tiene que \Pi=2. ¿Cuadra esto con la realidad? Veamos:

El diámetro del ecuador visto en la esfera sería la curva que sale de un punto del ecuador y llega, por la superficie de la esfera, al punto diametralmente opuesto (según la geometría euclídea) pasando por el polo norte (o el polo sur).
Como el ecuador divide a la esfera en dos partes iguales, esta curva es una semicircunferencia, que resulta ser exactamente igual a medio ecuador. Esto significa que la longitud de la circunferencia del ecuador es el doble que la de su diámetro. Por tanto el cociente, que es \Pi, vale 2.
Vamos, que cuadra a la perfección.

En la imagen siguiente podéis ver la gráfica de la misma, que por tanto representa todos los valores de \Pi sobre la esfera:


Como curiosidad, podemos obtener el valor máximo y el mínimo de esta función mediante las herramientas habituales de cálculo en una variable. Derivamos dicha función:


\pi^\prime (\theta)=\pi \, \cfrac{cos(\theta) \cdot \theta - sen(\theta)}{\theta ^2}
Igualando a cero nos queda la ecuación tg(\theta)=\theta, y resolviéndola obtenemos un máximo en \theta=0, que nos da \Pi=\pi y un mínimo en \theta=4,493409, que nos da el valor \Pi=-0,6824595 (¡¡un valor negativo de \Pi!!). De esta manera, podemos concluir que \Pi, la razón entre la longitud de una circunferencia y su diámetro en geometría esférica, cumple lo siguiente:


-0,6824595 < \Pi < \pi
De manera similar podemos encontrar una función que me dé los valores de \Pi en geometría hiperbólica (en un paraboloide hiperbólico). En este caso llegaríamos a la siguiente expresión:


\Pi (\theta)=\pi \; \cfrac{senh(\theta)}{\theta}
 
Echando un vistazo a la gráfica de esta función, que como hemos comentado representa los valores posibles de \Pi en un paraboloide hiperbólico (imagen de la derecha), vemos que estos valores varían desde \pi hasta \infty, por lo que en este caso \Pi, la razón entre la longitud de una circunferencia en un paraboloide hiperbólico y su diámetro, vale al menos \pi, pero no tiene valor máximo (esto es, ¡¡\Pi puede tomar cualquier valor real positivo!!).

¿Qué podemos sacar con conclusión de todo esto? Pues que es muy importante especificar en qué geometría estamos realzando nuestras afirmaciones, no vaya a ser que Pi sea negativo o que tienda a infinito.

Fuente:

Gaussianos
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0