Latest Posts:

Mostrando las entradas con la etiqueta numeros. Mostrar todas las entradas
Mostrando las entradas con la etiqueta numeros. Mostrar todas las entradas

12 de septiembre de 2015

Un problema griego antiguo: la raiz de dos

Una piedra en el zapato de los primeros filósofos griegos: la raíz cuadrada de dos 
Pitagoras y su Teorema.
Para los primeros filósofos los principios inmutables de la naturaleza eran “sustancias subyacentes” o ingredientes. Así pues la concepción que los griegos tenían de la creación del universo era el resultado de la expansión, la contracción y la mezcla de unidades de materiales inmutables.

Ahora bien, puesto que el tema principal de la filosofía griega era el poder de la razón, también se desarrollaron concepciones que se prestaran más al razonamiento y a la demostración racional, por eso, junto con esta idea de los “ingredientes” se desarrollo también la idea de que los verdaderos principios de las cosas eran axiomas matemáticos.

El resultado más importante por esta pasión por la demostración racional fue que, además de la física teórica, los griegos inventaron el ideal clásico de la matemática abstracta.

Los principios de la geometría

En Egipto y la Mesopotamia habían llegado a adquirir gran desarrollo las técnicas prácticas de cálculo. Por ejemplo, la geometría (geo= tierra, metria= medir) que consistía en un conjunto de reglas empíricas para ser usadas en la agrimensura. Así encontramos que los matemáticos babilonios comprendían la relación entre los lados de un triangulo rectángulo que midieron tres, cuatro y cinco unidades; pero nunca formularon el teorema general de Pitágoras, y menos aun dieron alguna demostración del mismo.
Fracción de una roca donde esta grabado el teorema.
La presentación de la matemática como un sistema de proposiciones generales y abstractas, unidas por el razonamiento lógico –como en los textos de geometría de la actualidad-, parece haber sido una invención de los griegos. Solo después de esta innovación fue posible examinar la matemática de una manera teórica y separada, aparte de toda aplicación práctica. La primera gran innovación intelectual de los griegos condujo de este modo, de manera natural a la segunda: el resultado más sorprendente de la fe de los griegos en la posibilidad de comprender el mundo en términos de principios racionales fue la invención de la matemática abstracta.

Los Pitagóricos

La más grandiosa ambición que concibieron fue explicar todas las propiedades de la naturaleza en términos exclusivamente aritméticos. Tal fue el objetivo de los Pitagóricos del sur de Italia.
Ellos sabían, por supuesto, que los fenómenos del cielo reaparecían de manera cíclica; por eso cuando descubrieron que también en la tierra algunas cosas se comportaban de manera tal que manifiestan relaciones numéricas simples, tal ambición recibió nuevo estímulo.

El ejemplo que mas los impresionaba era el del sonido emitido por una cuerda vibrante. Ellos descubrieron que el sonido se relaciona de manera simple con la longitud de la cuerda. Si la totalidad de la cuerda da un sonido de altura determinada, al reducir su longitud a la mitad produciremos la octava; si la dividimos por tres, el sonido producido estará una quinta por encima de esta última octava, y así sucesivamente. Las correlaciones entre el sonido original y sus “armónicos” siempre se expresan en magnitudes fraccionarias simples.

Los números de las cosas

Por eso, al principio, el programa de la filosofía matemática era buscar “los números en las cosas”. Y dado que los pitagóricos constituían una hermandad religiosa, para quienes el orden natural y el orden moral se hallaban ligados estrechamente, ellos pensaron que esta búsqueda no solamente los iba a conducir a explicaciones. Creían que si lograban descubrir las armonías matemáticas que hay en las cosas, podían también descubrir cómo ponerse en armonía con la naturaleza.
“Acorde planetario” de Kepler, basado en los conceptos pitagóricos.
De este modo, tanto las virtudes como los sonidos, las formas y los movimientos deberían recibir una interpretación aritmética. Hoy esto puede sonar extraño pero debemos recordar que los primeros griegos aún no habían recibido, obviamente, la influencia de las concepciones cristiana posterior acerca del alma; para ellos, el alma formaba parte del mundo natural. Un hombre que gozaba de salud espiritual era como un instrumento musical bien afinado.

Cualquiera que sea el juicio que nos merezca su ética aritmética, debemos admitir que tenían buenas razones para pensar que, tanto la astronomía como la acústica eran aritméticas en su esencia. El estudio de las fracciones simples, tal como la aprendemos hoy en la escuela, era llamado “música” hasta fines de la Edad Media.

Las influencias

¿Qué influencia ejercieron en el campo particular de la astronomía estos intentos por elaborar una concepción aritmética de la naturaleza? Los primeros pitagóricos como Anaxágoras, pudieron explicar el porqué de las observaciones de los babilónicos (cuyo registro tan detallado y exacto, los propios babilónicos, jamás pudieron explicar) ya que comprendieron que la luz de la Luna no es propia, y que los eclipses se producen cuando un cuerpo astronómico oscurece a otro. Pero fueron aun más lejos, y enseñaron que la Tierra es una esfera, y no un disco o un cilindro.
Alejandro de Afrodisias.
En este cuadro general podría objetarse que no hay nada especialmente aritmético, pero el siguiente comentario de Alejandro de Afrodisias (Siglo III a.C.) muestra donde aparece la aritmética.

Los pitagóricos afirmaban que “los cuerpos del sistema planetario giran alrededor del centro a distancias que se hallan relacionadas entre sí por proporciones matemáticas. Algunos cumplen sus revoluciones más rápidamente que otros. Los más lentos emiten sonidos más graves, a medida que se mueven, y los más rápidos emiten sonidos más agudos. Estos sonidos dependen de las proporciones de las distancias, que se hallan distribuidas de tal manera que el efecto combinado es armonioso… Si la distancia del Sol a la Tierra (por ejemplo) es el doble de la distancia de la Luna, la Venus tres veces mayor y la de Mercurio cuatro veces mayor, suponían que había proporciones aritméticas en el caso de los otros planetas igualmente, y que el movimiento de todo el cielo era armonioso. Los cuerpos más distantes (afirmaban) se mueven con mayor rapidez, los más cercanos se mueven más lentamente y los cuerpos que están entre los primeros y los segundos se mueven a velocidades que corresponden a las dimensiones de órbitas”. 

Representacion simple de la armonía de las esferas.
Obsérvese que en la cita anterior, las distancias planetarias se miden desde la Tierra. Alejandro era aristotélico y por eso usa un ejemplo geocéntrico para ilustrar el punto central de la teoría pitagórica.
Esta creencia pitagórica en que las distancias de los planetas del centro de sus órbitas cumple una ley matemática simple y “armoniosa” fue una convicción que Kepler sostuvo durante toda su vida, dos mil años más tarde, e inspiro todo el curso de sus investigaciones astronómicas.

De esta manera los pitagóricos cayeron en una suerte de “embrujo”, otorgando a ciertos números un carácter divino y fueron los primeros en captar la fascinación intelectual (o la diversión) que ofrece el mundo de los números. Independientemente de la astronomía y de la acústica hicieron una serie de descubrimientos acerca de las propiedades de los números enteros, muchas de las cuales demostraron geométricamente disponiendo guijarros para formar triángulos, cuadrados y rectángulos. Su figura sagrada era el tetraktys. Esta figura expresaba para ellos la ecuación aritmética en números 10 = 1 + 2 + 3 + 4 

El Tetraktys
Sobre el problema del programa

Como en este mundo todo tiene un “pero”, Pitágoras también tuvo el suyo, y más bien temprano que tarde, el programa pitagórico encontró, un serio inconveniente como resultado del cual cambio totalmente la dirección de las especulaciones griegas acerca de la naturaleza (e inspiró a Platón a dirigirse hacia esa nueva dirección).

En efecto descubrieron ciertas relaciones geométricas muy elementales que no se adecuaban a su esquema; este descubrimiento fue un duro golpe para ellos.

Los pitagóricos descubrieron que si el lado de un cuadrado tiene una longitud igual a un número entero de unidades, la longitud de la diagonal nunca será un número entero de estas mismas unidades. También podemos decir: la diagonal y el lado de un cuadrado son “inconmensurables”, es decir, no son medibles en unidades comunes.

Puesto que, por el teorema de Pitágoras, la longitud de la diagonal de un cuadrado de lado igual a la unidad, es la raíz cuadrada de dos, podemos decir que no es posible expresar la raíz cuadrada de dos como una fracción simple de dos números enteros. No hay dos números enteros cuya división sea igual a la raíz cuadrada de dos; esta cantidad solo puede ser expresada numéricamente mediante el decimal infinito 1,4142….

Raiz cuadrada de 2 = 1,4142135623730950488016887242096980785696718753769480731766797379907…….

Hasta el día de hoy los matemáticos llaman a la raíz cuadrada de dos, un número irracional. Esto constituye un eco lejano de la respuesta de los griegos a este descubrimiento, Enamorados de los números enteros, para ellos era doblemente irracional, por un lado no puede expresarse un numero como relación de dos y por el otro lado esta irracionalidad era una amenaza, una indicación de que toda su concepción del mundo carecía de sentido

Toda la concepción pitagórica del mundo se basaba en la idea de que todo se adecua a principios racionales y de que estos son la expresión de números enteros y de sus fracciones (o razones). Así la irracionalidad de la raíz cuadrada de dos amenazaba con quebrantar toda su fe.

La leyenda nos dice que trataron a ese descubrimiento como a una especie de esqueleto oculto en un placar, cuyo conocimiento por el resto de la humanidad es necesario evitar por todos los medios. Pues ¿de qué manera su enseñanza fundamental, según la cual los números enteros constituyen los principios esenciales de la naturaleza, podía sobrevivir a la revelación de que, de acuerdo con sus pautas, ni siquiera la geometría simple era totalmente racional?
Una raíz cuadrada Real……….
Aunque su primera reacción fue suprimir este descubrimiento, a la larga debieron enfrentarse con él, y los resultados de esto fueron beneficiosos. Este obstáculo para la elaboración de una teoría aritmética de la naturaleza no desacredito a la matemática (como ellos temían). En lugar de ello sirvió como estimulo para la creación de una teoría geométrica, que en realidad funcionó mucho mejor. Después de todo (pensaban los hombres), quizá los números son demasiado generales y abstractos para servir como principios universales de las cosas; las figuras y los modelos geométricos quizá podrían servir más efectivamente a la física.

Quizás, inspirado en este nuevo rumbo que tomo la teoría geométrica, Platón colgó un cartel en el frontispicio de su academia que versaba aproximadamente así: “Prohibida la entrada a aquel que no sepa geometría” y aunque Platón no era un matemático supo difundir e inspirar a otros en tan noble saber.

En este pasaje de “La República” Platón discute los objetivos y los métodos de la astronomía en los siguientes términos:
“Por eso, si queremos estudiar la astronomía de una manera que haga uso adecuado del intelecto innato del alma, debemos proceder como lo hacen en geometría – es decir, trabajando en problemas matemáticos- y no perder el tiempo observando los cielos”.
Pero esto, ya es harina de otro costal y será motivo de un nuevo relato

Fuente:

Info Observador

5 de septiembre de 2015

La ley de la selva siempre sigue las mismas reglas matemáticas

Los grandes ecosistemas del planeta repiten el mismo patrón que relaciona la biomasa de depredadores y presas.

Las matemáticas son una abstracción humana, pero gobiernan la vida salvaje del planeta. Ya sea en la sabana o en las profundidades del mar, los ecosistemas muestran siempre los mismos patrones matemáticos que relacionan la biomasa de depredadores con el de presas. Un monumental estudio con miles de especies demuestra cómo el aumento de comida disponible (presas) no lleva aparejado un aumento igual del número de depredadores. Y el patrón se reproduce casi de manera universal.

En la Tierra hay una gran variedad de ecosistemas marinos, terrestres, lacustres, de montaña, selváticos o desérticos. Unos están integrados por unas pocas especies, como en las cumbres alpinas o las fumarolas de las simas atlánticas. Otros son exuberantes, como la Amazonia brasileña o la reserva del Ngorongoro, en Tanzania. A pesar de tanta diversidad, todos pueden representarse en forma de pirámide, con una base, generalmente biomasa vegetal, y sucesivas capas que se alimentan de la precedente, como los herbívoros de aquella base y los grandes depredadores felinos de estos últimos.

La lógica y buena parte de las investigaciones en ecología dicen que a más biomasa en la base, más cantidad de energía en forma de comida para los de arriba: si hay más pasto en la sabana, habrá más gacelas y ñus, y si hay más gacelas y ñus, habrá más leones. Es decir, el tamaño de la pirámide puede aumentar, pero no cambia su forma. Sin embargo, no es así. La relación no es lineal, sigue en realidad una ley de potencia que es sublineal: a más gacelas y ñus, habrá 0,74 (o 3/4) más de leones. Y se ha comprobado en todos los ecosistemas donde ambos conviven. Desde el secarral del desierto del Kalahari hasta el rico cráter del Ngorongoro, pasando por el delta del Okavango o la reserva Kruger, siempre se repite esa ley de potencia.

"Una ley de potencia es una función matemática simple", dice el investigador de la Universidad McGill (Canadá) y principal autor del estudio, Ian Hatton. En ecología, se asumía que el exponente de esa ley de potencia era 1, lo que significa que cuando se dobla las presas [en número o densidad], también se dobla el de los depredadores. "Sin embargo, hemos comprobado un exponente cercano a los 3/4, lo que es menos que 1", añade el científico canadiense. Esto supone que si aumentan las gacelas, también lo harán los leones pero no en la misma proporción.

Lo que han descubierto Hatton y sus colegas es que esta ratio no es solo cosa de los leones. En el caso de las hienas y sus presas es de 0,74. En el de los tigres del sudeste asiático, también del 0,74. De los lobos de norteamericana, del 0,72... y así hasta una treintena de grandes depredadores y los centenares de especies de las que se alimentan. Tal y como muestran en un artículo publicado en Science, allí donde aumenta la biomasa de presas, la ratio depredador-presas disminuye.

El fenómeno, además, no es exclusivo de los grandes depredadores. Los investigadores repasaron más de 1.000 estudios sobre poblaciones ecológicas, densidad de especies, número de ejemplares, relaciones entre depredadores y presas... En total obtuvieron datos de 2.260 ecosistemas y unas 1.500 áreas geográficas. Hay estudios sobre grandes mamíferos, invertebrados, zooplancton que depreda el fitoplancton, invertebrados y plantas... En la práctica totalidad, a excepción de algunas comunidades de peces y protistas, la relación entre depredadores y presas siempre sigue esa ley de potencia elevado a 3/4.

"Estamos impresionados. Se trata de un patrón asombroso", dice en una nota el investigador de la Universidad de Guelph, Kevin McCanny, coautor del artículo. Sea el ecosistema que sea el observado, la cantidad relativa de biomasa de presas y depredadores puede ser predicha "por una simple función matemática", comenta.

Pero aquí no acaba la relación de la naturaleza con las matemáticas.
El artículo completo en:

El País 

9 de julio de 2015

Matemáticas: Sistema de numeración de base cinco

Los aymaras contaban con un sistema de numeración quinario (de base cinco) porque ellos contaban solamente con los dedos de una mano. El tema me interesó y, aunque no existe mucha información en internet, encontré este artícilo que ahora comparto con ustedes. ¡Para realizar con material concreto con niños de diez años en adelante!

Hemos visto cómo se representan y leen los números en nuestro sistema de numeración decimal. Podemos también representar los números utilizando bases distintas de 10 y conservando el principio de posición y el cero. Vamos a hacerlo usando como base el número 5.



Si tenemos cierta cantidad de cerillos y los agrupamos en bolsitas de cinco cerillos cada uno, obtenemos 19 bolsitas y sobran 2 cerillos.

Si luego agrupamos las bolsitas de cinco en cinco y las acomodamos en cajas, tendremos 3 cajas y sobran 4 bolsitas y 2 cerillos, lo que podemos expresar como:
3 cajas + 4 bolsitas + 2 cerillos.

O sea:
3 x (5 x 5) + 4 x (5) + 2 x (1)

Como 5 x 5 = 52, 5 = 51 y 1 = 50, puede también expresarse empleando las formas exponenciales de 5, quedando:
3 x 52 + 4 x 51 + 2 x 50

En esta expresión podemos reconocer la notación desarrollada de un número si la base considerada es 5. En ella observamos que hay 2 unidades de 1° orden, 4 unidades de 2° orden y 3 unidades de 3° orden, con base 5, lo que puede expresarse en la siguiente forma:
342cinco

Donde la palabra cinco colocada de esta manera, indica que el número está escrito en base cinco. Este número no debe leerse comotrescientos cuarenta y dos puesto que 3 representa 3 x 25 y no 3 x 100 y 4 representa 4 x 5 y no 4 x 10. Por esto, dicho número debe leerse tres, cuatro, dos, base cinco.

Ejemplo. Tenemos 58 cuadernos y queremos expresar esa cantidad en base 5. 

Primero, agrupamos los cuadernos en bolsas de 5 cuadernos. Al hacerlo, tendremos 11 bolsas y quedarán libres 3 cuadernos. Esto es equivalente a dividir 58 entre 5, el cociente es 11 y el residuo es 3, es decir:
58 = (11 x 5) + 3

Después, agrupamos las bolsas en cajas de 5 bolsas. Al hacerlo, tendremos 2 cajas y quedará libre 1 bolsa. Esto es equivalente a dividir 11 entre 5, el cociente es 2 y el residuo es 1, por lo tanto:
58 = 2 x (5 x 5) + 1 x (5) + 3

Escribiéndolo de forma exponencial:
58 = 2 x 52 + 1 x 51 + 3 x 50

Que también puede expresarse así:
58 = 213cinco

Como el lector ya habrá podido observar, para escribir números en el sistema de numeración base 5, se utilizan unicamente las cifras 0, 1, 2, 3 y 4. Si un número escrito en base cinco se quiere transformar en su equivalente de base decimal, solo hay que sumar los valores relativos de cada una de sus cifras. Como nuestra notación usual es de base diez, se ha convenido en no anotar la base cuando se escriban estos números. Solamente se hará cuando se trate de los que estén expresados en bases distintas de diez.

Tomado de:

12 de junio de 2015

Cómo armar (y amar) las tablas de multiplicación

Muchos recordaréis las tablas de multiplicar de la escuela y los trucos para aprenderlas. En algunas había tendencias que se repetían (como simplemente duplicar la tabla de multiplicar del 2) pero otras terminábamos aprendiéndolas de memoria. Y no estaba muy claro por qué había que memorizar el resultado de 7 x 9.
No temas, aquí no te encontrarás trucos para memorizar las tablas. En lugar de ello, te quiero mostrar una forma de entender los números que les da cierta estructura, y cómo la multiplicación utiliza esa estructura.

Comprendiendo la multiplicación

Multiplicar simplemente te da el área de un rectángulo, si sabes la longitud de sus lados. Escoge cualquier cuadrado de la tabla debajo (por ejemplo, escojamos el cuadrado en la columna número 7 y la fila 5) y colorea un rectángulo desde ese punta a la esquina de la izquierda (debajo en verde).
Estas explicaciones matemáticas te harán amar las tablas de multiplicar
Un rectángulo de tamaño 5 x 7 en la tabla de multiplicar
Este rectángulo tiene una longitud de 7 y una altura de 5, y el área (el número de cuadrados verdes) la puedes encontrar en el círculo azul de la esquina inferior derecha. Esto se cumple independientemente del par de números que escojas en la tabla.
Cojamos ahora este rectángulo y girémoslo sobre la diagonal principal de la tabla (la línea discontinua roja debajo).
Estas explicaciones matemáticas te harán amar las tablas de multiplicar
El mismo rectángulo, girado
La longitud y altura del rectángulo también se ha cambiado, pero el área sigue siendo la misma. Por tanto, podemos ver que 5 x 7 es lo mismo que 7 x 5. Esto se cumple para cualquier par de números. En matemáticas es lo que conocemos como propiedad conmutativa.
Este hecho implica que hay una simetría en la tabla de multiplicar. Los números sobre la diagonal son como una especie de espejo de los números debajo. Así que, si tu objetivo es memorizar la tabla, solo necesitas memorizar la mitad.

La base que construye los números

Para adentrarnos más allá en las multiplicaciones necesitamos primero hacer algunas divisiones. Recuerda que dividir un número simplemente significa separarlo en partes más pequeñas de igual tamaño.
12 ÷ 3 = 4
Esto significa que 12 puede ser separado en 3 partes, cada una de tamaño 4.
Dado que 3 y 4 son ambos números enteros, se les llama factores de 12, y 12 se dice que es divisible por 3 y por 4. Si un número es solo divisible por sí mismo y 1, se le llama número primo.
Pero hay más de una forma de representar 12 como un producto de dos números:
12 × 1
6 × 2
4 × 3
3 × 4
2 × 6
1 × 12
De hecho, podemos ver esto si miramos a la tabla de multiplicar debajo:
Estas explicaciones matemáticas te harán amar las tablas de multiplicar
Las apariciones del 12 en la tabla de multiplicar
El número de cuadrados coloreados de azul en esta tabla te dice que hay seis formas en las que puedes hacer un rectángulo de área 12 cuyos lados tengan una longitud de números enteros. Representan también las diferentes maneras en las que puedes escribir 12 como producto de dos números.
Además, tal vez te hayas dado cuenta de que los cuadrados coloreados parece que forman una especie de curva. ¡Lo hacen!. La curva que uniría los cuadrados se llama hipérbola, definida por la ecuación a × b = 12, en la que “a” y “b” no son necesariamente números enteros.
Echemos un vistazo de nuevo a la lista de números cuyo producto es igual a 12. Todos esos números son factores de 12. ¿Y si miramos a factores de factores? Cualquier factor que no sea un factor primo (excepto el 1) puede separarse en factores adicionales, por ejemplo:
12 = 6 × 2 = (2 × 3) × 2
12 = 4 × 3 = (2 × 2) × 3
No importa cómo lo hagamos, cuando dividimos los factores hasta que nos quedamos solo con los factores primos, siempre acabaremos con dos 2 y un 3.
Esta multiplicación:
2 × 2 × 3
Se llama “descomposición factorial” de 12 y es única a ese número. Solo hay una forma de escribir un número como un producto de sus factores primos, y cada multiplicación de factores primos da un resultado diferente. En matemáticas esto es lo que se conoce como teorema fundamental de la aritmética.
La descomposición en factores primos nos cuenta cosas importantes sobre un número de una forma muy condensada.
Por ejemplo, en la descomposición factorial 12 = 2 × 2 × 3 podemos ver inmediatamente que 12 es divisible por 2 y 3, y no por ningún otro número primo (como el 5 o el 7). También podemos ver que es divisible por el producto de cualquier combinación de dos 2 y un 3 que escojas.
Más aún, cualquier múltiplo de 12 será también divisible por los mismos números. Toma 11 x 12 = 132. Este resultado es divisible por 1, 2, 3, 4, 6 y 12, exactamente igual que 12. Al multiplicar cada uno de estos por el factor de 11, obtenemos que 132 es también divisible por 11, 22, 33, 44, 66 y 132.
Es también fácil ver si un número es el cuadrado de otro número: en ese caso debe haber un mismo número de cada factor primo. Por ejemplo, 36 = 2 × 2 × 3 × 3, es decir, es el cuadrado de 2 × 3 = 6.
La descomposición factorial puede hacer también las multiplicaciones más sencillas. Si no sabes el resultado de 11 x 12, conocer la descomposición de 12 implica que puedes calcular la multiplicación paso por paso.
11 x 12
= 11 x 2 × 2 × 3
= ((11 x 2) × 2) × 3
= (22 × 2) × 3
= 44 × 3
= 132
Si los factores primos de la descomposición son lo suficientemente pequeños (digamos 2, 3 o 5), multiplicar es sencillo, tal vez solo tengas que escribir un poco. Por tanto, multiplicar por 4 (= 2 x 2), 6 (= 2 x 3), 8 (= 2 x 2 x 2), o 9 (= 3 x 3) no tiene por qué ser tan complicado.
Por ejemplo, si no puedes recordar la tabla de multiplicar del 9, no importa siempre que puedas multiplicar dos veces por 3 (este método no vale sin embargo si tienes que multiplicar por factores primos mayores, aquí hay que utilizar otros trucos - si no has visto el de la tabla del 11, echa un ojo a este vídeo).
La habilidad de separar los números en sus factores primos puede hacer sencillas multiplicaciones muy complicadas, y es aún más útil para números mayores.
Por ejemplo, la descomposición factorial de 756 es 2 x 2 x 3 x 3 x 3 x 7, es decir, multiplicar por 756 simplemente significa multiplicar por cada uno de estos factores primos más pequeños (por supuesto, dar con la descomposición factorial de primos de un número muy grande es generalmente muy complejo, así que solo es útil si ya sabes antes cuál es esa descomposición).
Pero, ante todo, la descomposición factorial ofrece información fundamental sobre los números. Esta información es muy útil en matemáticas y otros campos como la criptografía y seguridad online. También lleva a algunos hallazgos sorprendentes: intenta colorear todos los múltiplos de 12 en las tablas de multiplicar anteriores y mira qué ocurre. Eso lo dejaré de tarea.
Fuente:

10 de junio de 2015

Así engañan los supermercados con las ofertas

Detrás de las ofertas que nos pretenden vender las tiendas, se esconden muchas mentiras que a veces inevitablemente los clientes sin darnos cuenta creemos y acabamos comprando.


Todos acostumbramos a buscar por cualquier rincón del supermercado ofertas, incluso llegamos a comprar cosas que no nos hacen falta por el simple hecho de que tienen un menor precio. Pero a veces, no somos conscientes que detrás de esta pegatina de "promoción" se esconden muchas mentiras y estrategias de marketing que nos llevan al engaño.
Por ello, debemos ser conscientes de esta realidad y mirar toda la letra pequeña de los productos para evitar las supuestas promociones que nos quieren vender, aunque a veces estas ofertas están a la vista de todos pero nos intentan esconder el precio anterior. 
Zumo de piña 
Con este pack de zumo Don Simon, Carrefour quiere vendernos un segundo pack de estos zumos a la mitad de precio diciendo que una sola unidad costaría 1.60€ y si compras dos saldría a 0.80€; pero si nos fijamos el pack sin la oferta sale por 1.25€, por tanto, ¿cuál es el verdadero descuento que nos quieren hacer?

El artículo completo en:

26 de abril de 2015

ACME, conoce este curso sobre método científico

Hace unos meses os hablé de ACME, el curso online sobre escepticismo, anumerismo y método científico que estaba preparando. Hace unos meses me lo aprobaron como Proyecto de Innovación Docente en mi Universidad, pero por motivos que no vienen al caso no conseguí llevarlo a la plataforma MOOC.

Tenía dos opciones, echarme a llorar en un rincón o intentarlo por mis propios medios.
¿Adivináis cuál fue mi decisión?

Amigos, amigas, unidades con base de carbono que pueblan el tercer planeta, bienvenido al nuevo curso online ACME (Anumerismo, Ciencia, Método, Escepticismo). Todos sois bienvenidos, no es necesario tener conocimientos previos y no hay examen final, ni siquiera hay que registrarse. Tan sólo necesitáis ganas de aprender.

El curso ACME está dividido en siete temas:
– Introducción al método científico
– Observación y experimentación
– Formulación, verificación, comunicación
– Método científico y pseudociencias
– El escepticismo y la ciencia
– Escepticismo y falacias lógicas
– Anumerismo

El curso estará albergado en la web http://elprofedefisica.es/acme.htm. También usaremos las siguientes herramientas:
– YouTube – Canal ACME MOOC
– Twitter – @acme_mooc
Para más información, sed bienvenidos a la sección de bienvenida del curso. Comenzamos el viernes 24 de abril a las 16:00 hora peninsular española (14:00 UTC).
Puede acceder al curso desde AQUÍ.

13 de abril de 2015

El principio del palomar, una potente herramienta matemática (parte 2)

Esta es la segunda parte de una mini serie de dos entradas en la sección Matemoción, del Cuaderno de Cultura Científica, dedicadas al principio del palomar, o de Dirichlet. Como ya comentamos en la entrada anterior, este principio matemático es muy sencillo de formular, no necesita demostrarse, pero al mismo tiempo es una potente herramienta dentro de las matemáticas. Dice lo siguiente: si hay más palomas que palomares, alguno de los palomares deberá contener por lo menos dos palomas. En general, podemos hablar de objetos y cajas donde guardar estos objetos.
En la primera parte vimos algunos ejemplos de su aplicación en problemas relacionados con la vida cotidiana (personas en un teatro con la mismas letras inicial y final en su nombre, número de amigos en una fiesta o sumas de las edades de las personas de una reunión), en teoría de números (algunos resultados sobre divisibilidad) o en geometría (distribución de puntos en un triángulo equilátero), e incluso vimos una generalización del mismo (lo que nos permitió mostrar un ejemplo de coincidencia de cumpleaños).


Si hay más cartas que buzones, eso quiere decir que alguno de los vecinos recibirá por lo menos dos cartas
El ejemplo que se utiliza con más frecuencia en la divulgación científica para explicar la aplicación del principio del palomar a cuestiones más o menos cotidianas, o también como una práctica herramienta para resolver problemas de ingenio, tiene que ver con el número de pelos que tenemos en la cabeza. Aunque me resistía a incluirlo en estas dos entradas por ser un resultado muy conocido, veremos que desde una perspectiva histórica tiene sentido volverlo a recordar.
Ejemplo 1En Bilbao hay al menos dos personas con el mismo número de pelos en la cabeza.
Para resolver esta cuestión lo primero que tenemos que conocer es cuántos pelos podemos tener como máximo en nuestras cabezas. ¿Lo sabéis? ¿No? No importa, tampoco es una información vital para nuestra existencia. Sin embargo, vamos a realizar una estimación por lo alto de dicha cantidad con el objetivo de utilizarla para resolver este problema.
Supongamos que tenemos cabezas completamente redondas que miden 12 cm. de radio, es decir, unos 75 cm. de perímetro, lo que está al nivel del concurso de cabezones de Kortezubi, en Bizkaia. En tal caso, la superficie de nuestras cabezas, 4 \pi r^2, es de unos 1.800 cm2. Para realizar una estimación por lo alto, supongamos que tenemos pelos por toda nuestra cabeza, por toda la superficie de esa esfera de 12 cm de radio, y que la densidad del pelo es de 100 pelos por cm2, entonces el número de pelos de la cabeza de cualquier persona no va a llegar nunca a los 180.000 pelos. Esta es una estimación por lo alto.
Supongamos que no existe nadie que sea completamente calvo, sin un solo pelo (en caso contrario, además estaría resuelto el problema), por lo tanto, el número de pelos que puede tener una persona va entre 1 y 180.000 (estas cantidades van a ser los palomares para aplicar el principio matemático). Las palomas serán los habitantes de Bilbao, que son unos 350.000. Como hay más bilbaínos que posibles números de pelos, el principio del palomar nos dice que existen al menos dos bilbaínos con el mismo número de pelos en la cabeza.


Hermosa imagen de Bilbao por la noche, sacada de la página “conoce Bilbao conmigo
Pero si tenemos en cuenta la generalización del principio del palomar que vimos en la primera entrega dedicada a esta herramienta matemática, podemos obtener un resultado más impactante aún. La generalización dice lo siguiente: si hay n palomas y k palomares (n > k), existe al menos un palomar con al menos (no solo dos, sino) n/k palomas, es decir, el valor máximo es al menos mayor que el valor medio.
Si tenemos en cuenta que el número de habitantes de la Península Ibérica es de al menos 57 millones de habitantes, entonces aplicando el principio del palomar generalizado se obtiene lo siguiente.
Ejemplo 2En la Península Ibérica hay al menos 317 personas con el mismo número de pelos en la cabeza.
En la entrada anterior habíamos comentado que se atribuye al matemático prusianoGustav L. Dirichlet (1805-1859), el haber sido la primera persona en aplicar explícitamente este principio matemático, allá por el año 1834, para demostrar un resultado de aproximación de números irracionales mediante racionales. Dirichlet lo llamó Schubfachprinzip (principio de los cajones), y nosotros lo conocemos desde entonces como el principio de Dirichlet.
Sin embargo, en el artículo “The pigeonhole principle, two centuries before Dirichlet” (que me envió Samuel Dalva, a quien le agradezco la información), se explica que la primera referencia al principio del palomar es de dos siglos antes de Dirichlet y tiene que ver con el ejemplo de los pelos de la cabeza.
En el libro, escrito en latín en 1622, Selectae Propositiones del jesuita francés Jean Leurechon, que enseñó matemáticas en la Universidad jesuita de Lorraine en Pont-à-Mousson, se menciona de forma indirecta este principio: “Es necesario que dos hombres tengan el mismo número de pelos, oro y otros”. Además, en el libro Récréation mathematique composee de plusieurs problemes plaisants et facetieux (1624), atribuido al propio Jean Leurechon, se explica por qué “es absolutamente necesario que dos personas tengan el mismo número de pelos”, utilizando el argumento que conocemos como el principio del palomar, si hay más personas que cantidades distintas de pelos que puedan tener, entonces habrá dos con el mismo número de pelos.

Pero volvamos a los ejemplos de aplicaciones de este principio. El primero tiene que ver, de nuevo, con una fiesta, pero esta vez relacionado con el lugar en el que se sientan los comensales en una mesa.
Ejemplo 3En una fiesta, 8 de los invitados están sentados en una mesa octogonal, con cada uno de los comensales sentado en uno de los lados de la mesa. Cada sitio ha sido asignado a un invitado concreto (marcado con su nombre), sin embargo, los invitados no se han dado cuenta de esta circunstancia y se han sentado al azar. Curiosamente, ninguno de los 8 invitados de esa mesa se ha sentado en el lugar que le correspondía. Vamos a demostrar que hay una forma de rotar la mesa de forma que haya dos personas que quedan sentadas en el sitio correcto.

En la siguiente imagen vemos una posible distribución de las ocho personas sentadas en la mesa octagonal, en la que ninguna de ellos se ha sentado en el sitio que había sido designado para ella.
Para probar la afirmación de que se puede realizar un giro de la mesa en el que al menos dos de los comensales estén sentados en su sitio, vamos a considerar la distancia (en el sentido de las agujas del reloj) de cada una de las personas al sitio que le había sido asignado. Como cada persona está sentada en un lugar incorrecto, entonces las posibles distancias de cada persona a su lugar correcto son {1, 2, 3, 4, 5, 6, 7}.
Pero hay 8 personas que se sientan a la mesa, y 7 posibles distancias de ellas a su sitio correcto (en el sentido de las agujas del reloj), luego por el principio de los cajones, habrá dos personas que estén a la misma distancia (en el sentido de las agujas del reloj) del lugar que tiene escrito su nombre. Por lo tanto, rotando la mesa (en el sentido contrario a las agujas del reloj) tantas posiciones como la distancia que comparten esas dos personas, situará la mesa de tal forma que esas dos personas estén colocadas en el lugar correcto.


Distribución de las ocho personas sentadas en la mesa octagonal, en la que ninguna de ellos se ha sentado en el sitio que había sido designado para ella. Si se giran cuatro posiciones los comensales C y E quedarán sentados en su sitio
El siguiente es un ejemplo interesante, con un argumento sencillo, pero curioso.
Ejemplo 4Una joven que quiere participar en la Olimpiada Matemática decide entrenarse en la resolución de problemas matemáticos. Durante un periodo de 61 días (dos meses) va a estar haciendo problemas, por lo menos un problema al día, pero no más de 92 problemas (que es la cantidad total que tiene el libro que utiliza). Independientemente de la cantidad de problemas que decida hacer cada día, va a existir una cantidad de días consecutivos durante los cuales realiza exactamente 29 problemas.
Si denotamos por s_k la cantidad de problemas realizados hasta el día k, es decir, la cantidad de problemas acumulados desde el primer día, entonces tenemos que
0 < s_1 < s_2 < \cdots < s_{61}\leq 92
Los 61 números s_k son distintos, y están ordenados en orden creciente, puesto que todos los días hace por lo menos un problema.
Con esta notación, lo que tenemos que demostrar es que existen dos días i y j tales ques_i + 29 = s_j (es decir, hay un periodo de j - i días consecutivos en los que ha realizado 29 ejercicios). Por lo tanto, vamos a sumar 29 a todas las sumas acumuladas anteriores, esto es,
29 < t_1 = s_1 + 29 < t_2 = s_2 + 29 < \cdots < t_61 = s_{61} + 29 \leq 121
Por la misma razón de antes, estos 61 números t_k son distintos y están ordenados en orden creciente. Las dos desigualdades nos están diciendo que hay 122 números (s_1, s_2, \cdots , s_{61} y t_1, t_2, \cdots , t_{61}) que toman valores entre los números 1 y 121. Como tenemos más números (122) que posibles valores (121), eso quiere decir que al menos dos números tienen el mismo valor, es decir, son iguales. Pero, resulta que los 61 primeros números, 0 < s_1 < s_2 < \cdots < s_{61}, son diferentes entre sí, al igual que los otros 61, t_1 < t_2 < \cdots < t_{61}, de manera que los dos números que son iguales deberán pertenecer uno al primer grupo y el otro al segundo, es decir, existirá un j, lo que significa un elemento del primer grupo de números s_j, y un i, lo que significa un elemento del segundo grupo de números t_i = s_i + 29, tales que s_j = s_i + 29, como deseábamos.

Logotipo de la Olimpiada Internacional de Matemáticas
Logotipo de la Olimpiada Internacional de Matemáticas
Como ya comentamos en la entrada anterior del Cuaderno de Cultura Científica dedicada a este tema, el principio de Dirichlet tiene muchas aplicaciones a la teoría de números. Empecemos con algunos resultados sencillos.
Muchísimos más ejemplos en:
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0