Latest Posts:

Mostrando las entradas con la etiqueta presion. Mostrar todas las entradas
Mostrando las entradas con la etiqueta presion. Mostrar todas las entradas

17 de marzo de 2013

Mecánica de Fluidos: Principio fundamental de la hidrostática

Mecánica de Fluidos - Cuarta Parte


Ya llevamos tres artículos a la espalda del bloque [Mecánica de fluidos I], en el que tratamos de describir su comportamiento de manera cualitativa. Tras describir el concepto de fluido primero y sus tres tipos después, en el último capítulo hablamos sobre uno de los conceptos más importantes para comprender el comportamiento de los fluidos: la presión. Como vimos entonces, la importancia de la presión se debe a que las interacciones con un fluido –a diferencia de las que se producen con un sólido– suceden sólo con una parte del fluido, debido a la libertad relativa de movimiento de las partículas del fluido.

Tras dejar claras –espero– las causas de la existencia de la presión en los fluidos, además de la diferencia en esas causas entre líquidos y gases, hoy vamos a concretar más y a determinar juntos no ya el hecho de que los fluidos ejerzan presión (eso debería haber quedado claro en el capítulo anterior), sino cuánta presión ejercen y de qué factores depende esa presión.

Pero antes, como siempre, la solución al desafío de la entrega anterior.


Solución al desafío 2 – Presión

El desafío era fundamentalmente matemático: simplemente hacía falta tener cuidado con unidades y demás. 

Dado que la presión es la fuerza entre la superficie sobre la que se reparte esa fuerza, nos hacía falta calcular ambas:

La fuerza era el peso de la mesa, es decir, 200 N: 20 kg en la gravedad terrestre.
La superficie era la de las cuatro patas sobre las que se apoya la mesa. Cada pata tenía un lado de 0,2 metros, es decir, una superficie –lado por lado– de 0,04 m2. Puesto que hay cuatro patas, la superficie sobre la que se reparte el peso de la mesa es 0,16 m2.

Por lo tanto, la presión en pascales que ejerce la mesa sobre la nieve es el cociente de ambos: 200 N entre 0,16 m2, es decir, 1 250 Pa. Como se nos decía que la nieve puede soportar 5 000 Pa, la nieve resiste sin problemas. Harían falta otros 3 750 Pa “extra” para que la mesa se hundiese en la nieve.

En la segunda pregunta debemos tener en cuenta que la superficie de contacto sigue siendo la misma, 0,16 m2, pero dado que el peso aumenta según añadimos bocadillos, la presión también lo hará, hasta que supere los 5 000 y la mesa y los bocadillos se hundan.

Es posible realizar el cálculo de muchas maneras, pero aquí tienes una: cada bocadillo ejerce 2,5 N de fuerza (pues tiene 0,25 kg de masa). La presión de 2,5 N repartidos sobre 0,16 m2 –la superficie de contacto con la nieve– es de 15,625 Pa. Dado que hacían falta 3 750 Pa “extra” para hundir la mesa, eso se corresponde con 240 bocadillos.

Como digo, hay otras maneras de responder a esta pregunta, como calcular la fuerza máxima que puede ejercer la mesa, la masa máxima que puede apoyarse sobre la nieve, etc. Pero el resultado debería ser el mismo salvo que nos hayamos confundido unos u otros.


Factores de los que depende la presión en el interior de un fluido

Para empezar a comprender qué factores afectan a la presión debida a un fluido, te recomiendo que releas el desafío de antes –o que lo leas, si te lo saltaste por ser algo opcional–. Comprender la presión debida a los sólidos ayuda a entender la de los fluidos, aunque sólo sea por contraste con ella. En el ejemplo del desafío, la superficie que importaba era la de contacto entre mesa y nieve: es decir, la de la base de las cuatro patas. La mesa podría ser enorme, o tener muchas cosas encima, pero dado que es sólida, la superficie de contacto no varía.

Pero calculemos ahora la presión que ejerce el agua sobre el fondo de una piscina. Aunque éste sea un bloque introductorio, para saber qué factores incluyen tendremos que hacer algunos cálculos sencillos, pero creo que juntos y con calma lo haremos sin crear demasiada confusión. Siempre intentaré tomar el caso más simple posible para que no se compliquen las fórmulas.

Como en el caso de la mesa, necesitamos saber la superficie sobre la que se apoya el agua, pero ¡ah!, en este caso es un fluido, con lo que la cosa es fácil: el agua se apoya sobre toda la superficie del fondo de la piscina. Si la superficie del fondo es S (nos da lo mismo lo que valga), ya tenemos la superficie sobre la que se reparte el peso de la piscina: precisamente S.

El peso de la piscina es un poco más complicado, pero no mucho. Supongamos que la profundidad del agua (desde el fondo hasta la superficie del agua) es h: vas a tener que disculparme por usar esa letra, pero es la que te vas a encontrar siempre al hablar de profundidad en fluidos, de modo que prefiero que te vayas acostumbrando aunque no tenga demasiado sentido, ya que creo que es una herencia del height inglés.


¡Ojo! Profundidad ≠ altura

Este error es lo suficientemente común como para merecer su propio cuadro. Como acabo de decir, por razones históricas se utiliza la letra h para representar la profundidad de fluido, es decir, la altura desde el punto de que se trate hasta la superficie del fluido.

Como en muchas otras fórmulas de física se utiliza h para representar la altura desde el suelo, es un error muy frecuente hacer lo mismo aquí cuando la situación se presta a ello. Por ejemplo, si un submarinista está a 200 metros del fondo del mar, mucha gente inmediatamente piensa que h = 200.

Pero ese dato es absolutamente irrelevante. La presión que sufre el submarinista se debe al peso del agua que hay sobre él: da lo mismo que bajo sus pies haya 200 metros o 200 kilómetros. Lo que importa es lo que hay desde su cabeza hasta la superficie del océano, es decir, la profundidad, y no la altura sobre ninguna cosa.

Entonces, el volumen de agua de la piscina será el área de la base por la altura, es decir, Sh, y la masa de agua será el volumen por la densidad, es decir, dSh –usaremos d para representar la densidad, como hicimos al presentar esta magnitud–.

Finalmente, el peso de algo es igual a su masa por la aceleración de la gravedad g (que en la superficie de la Tierra es alrededor de 10 m/s2, pero eso nos da igual ahora mismo), así que el peso de la piscina es de dShg newtons. Dicho de otro modo, ésa es la fuerza que ejerce sobre el fondo de la piscina.

¿De qué depende entonces la fuerza que hace el agua sobre el fondo? De la densidad del fluido –cuando más denso, más pesa–, de la gravedad del lugar –en Júpiter, por ejemplo, la piscina pesaría muchísimo más que en la Tierra aun teniendo la misma masa–, de la superficie de la piscina –una olímpica tendrá mucha más agua que una de jardín–, y finalmente de la profundidad del agua –un charquito pesará mucho menos que una piscina de 4 metros de profundidad–.

Hasta aquí todo es bastante intuitivo y la mayor parte de la gente lo asimila y lo acepta sin problemas. Pero ahora viene la parte menos fácil de aceptar.

La presión es el cociente de fuerza entre superficie, de modo que para calcular la presión en el fondo de la piscina tenemos que dividir la fuerza ejercida –dShg– entre la superficie en la que se reparte –S–. De modo que la presión resulta ser simplemente dhg, ya que la superficie del numerador se cancela con la del denominador. Esto es suficientemente importante como para tener su propio párrafo y en negrita.

La presión ejercida por un fluido no depende de la superficie.

Fórmulas aparte, si una superficie se cancela con otra tiene que ser por algo, y hace falta entenderlo sin recurrir necesariamente a las matemáticas. ¿Cuál es la razón de que la superficie no influya?

Imagina una piscina olímpica, y supongamos que sufre una presión determinada en el fondo. Imagina ahora que la extendemos, de modo que todo sea igual que antes, pero con el doble de superficie: algo así como dos piscinas olímpicas una al lado de la otra. Al hacerlo hay el doble de agua que antes, con lo que la fuerza es el doble. Pero esa agua se apoya sobre el doble de superficie que antes, con lo que la presión es exactamente igual que al principio.


Columnas y presión
 

Si la superficie se cuadruplica sin cambiar la profundidad de la columna, la presión no cambia.

Tal vez lo veas mejor con el ejemplo del billete del capítulo anterior: un billete ejerce una presión sobre la mesa de más o menos 1 Pa. ¿Qué presión ejercen dos billetes? Quien no entiende lo que es la presión seguramente diría que 2 Pa, ¡si hay dos billetes! Pero la presión es exactamente la misma que antes: hay el doble de billetes, luego hay el doble de masa pero también el doble de superficie de apoyo. Hablamos precisamente de esto en una caja de texto de aviso de ese capítulo, de modo que si no estás convencido deberías echarle un ojo antes de seguir.


¿Y si no es una columna recta?

Es muy común preguntarse qué pasa si la cosa no es tan simple como la hemos pintado aquí. En el caso de la columna de arriba se ve claramente que, al aumentar la superficie, aumentan proporcionalmente la cantidad de agua pero también la propia superficie de apoyo, de modo que la presión no cambia. Pero ¿y si el recipiente tiene una forma diferente, de modo que la superficie cambie con la profundidad?
Por ejemplo, un recipiente de forma cónica (como un matraz), con una base más ancha que la boca… ¿tiene la misma presión en el fondo que uno de paredes verticales como las de antes? La respuesta, aunque a algunas personas al principio les cuesta aceptarlo –al menos a mí me pasó–, es que sí.

La razón es que da igual cómo hagas el cambio de superficie. Aquí no vamos a entrar a calcular casos tan raros, pero intentaré convencerte de manera cualitativa. En un recipiente que se va ensanchando según bajas hay más agua que en uno recto –tanta más agua cuanto más bruscamente aumente la superficie según bajas–. Pero, por otro lado, mayor es la base en la que se apoya el agua, con lo que un efecto se cancela con el otro.

¿Y si es al revés? Lo mismo da. Si el recipiente se estrecha, como un cuenco, de modo que la superficie en la boca sea mucho mayor que la base, al principio puede parecer que la presión abajo será mucho mayor que si las paredes fuesen rectas, ¡es una superficie de apoyo muy pequeña, pero el recipiente tiene mucha agua porque la parte de arriba es muy ancha!

Pero, ¡ah!, aquí también hay que encender la bombilla: la superficie de apoyo ya no es sólo la pequeña base del cuenco. Las paredes no son verticales, sino que parte del peso del agua se apoya sobre ellas: tanto más cuanto más horizontales estén. Si se inclinan mucho la superficie de la base será mucho más pequeña, pero las paredes a su vez, al ser más horizontales, soportan mayor parte del peso del agua, con lo que –aquí tienes que creerme porque, insisto, no voy a ponerme a calcular nada– un efecto se cancela matemáticamente con el otro y el resultado es exactamente el mismo.

Sí, aunque parezca raro, da exactamente igual la forma de las paredes del recipiente –luego veremos una ilustración con muchas y muy variadas porque da lo mismo–: la presión depende única y exclusivamente de la profundidad, la densidad del fluido y la gravedad.

También es posible que estés pensando que hago muchos aspavientos y que esto no es nada raro, sino absolutamente evidente. Bien, lo “raro” de esto es lo siguiente: imagina una piscina de 5 metros de profundidad. Como puedes imaginar, la presión en el fondo es bastante grande, y de sus efectos hablaremos más adelante. Pero ahora imagina que tomas pajitas como las de beber refresco y unes muchas hasta que tienes 5 metros de largo, y luego llenas de agua la súperpajita y la pones en vertical. La presión en el fondo de la pajita es exactamente la misma que en el fondo de la piscina.

Tan “rara” es esta idea, postulada por primera vez por el flamenco Simon Stevin, que aunque hoy en día suele conocerse como principio fundamental de la hidrostática –o de la estática de fluidos–, en el siglo XVII se la llamaba paradoja hidrostática: la idea de que la presión en el interior de un fluido depende, no de la cantidad total de fluido, sino del espesor de fluido sobre el punto de que se trate. Algunos contemporáneos de Stevin opinaban que aquello era una tontería: ¿cómo iba una cantidad tan pequeña de agua como la de una pajita tener el mismo efecto que una gruesa columna de agua?

Barril de Pascal
 

Experimento del barril de Pascal, 1646.

Sin embargo otro genio, el francés Blaise Pascal, respondió con un experimento memorable, el del barril de Pascal, en 1646. El bueno de Blaise llenó un barril de agua a través de un tubo muy fino y muy largo, y luego siguió echando agua en el delgado tubo. Cuando el agua subió por el tubo hasta determinado nivel –el tubo tenía 10 metros de largo–, el barril reventó debido a la presión del agua en su interior. Pascal tenía razón — lo mismo que en muchas otras cosas, en este y otros campos, y volveremos a él varias veces en este bloque.

Principio fundamental de la hidrostática

Aunque en muchos sitios ya no se llame así (llamarlo principio está un poco anticuado, ya que es posible deducirlo), aparece con la suficiente frecuencia con este nombre como para que enunciemos lo que acabamos de ver de manera formal:
La presión en el interior de un fluido en equilibrio debida a su propio peso es igual al producto de la aceleración de la gravedad por la profundidad hasta la superficie del fluido por la densidad del fluido.
Tres aclaraciones sobre esto:
  • El nombre es terrible, pero ya hablamos de ello en la introducción. Nada obliga a que el fluido sea agua, ni siquiera un líquido. Tampoco se trata ya de un principio, ya que es posible demostrarlo formalmente –aquí lo hemos hecho para un caso sencillo, pero puede hacerse en general–.
  • Esta expresión supone que todas las variables son números fijos. No vale, por lo tanto, si la densidad del fluido no es igual en todas partes o la gravedad cambia –por ejemplo, en el caso de la atmósfera la densidad del aire disminuye con la altura–. En ese caso la expresión es algo más compleja, pero los factores siguen siendo los mismos tres. De la atmósfera hablaremos en el siguiente capítulo, así que paciencia.
  • Generalmente, aunque a mí no me guste, se da una expresión más general que describe la diferencia de presión entre dos puntos arbitrarios de un fluido. Esa forma es equivalente a ésta –si una es cierta la otra también lo es y viceversa– y, en mi opinión, simplemente complica las cosas para nada, de modo que aquí te he mostrado la versión más sencilla. Si la has entendido, cuando te topes con la otra la entenderás perfectamente.
El caso es que lo interesante del principio o ecuación fundamental de la hidrostática, en mi opinión, es de lo que no depende la presión en el interior de un fluido, algo que pone de manifiesto estupendamente el experimento de Pascal: que la cantidad total de fluido es irrelevante. La presión a dos metros de profundidad en una piscina o en el lago Eire es exactamente la misma –suponiendo que la densidad del agua es igual en ambos sitios, etc.–.

Como digo, esto es difícil de aceptar. Cuando miramos una presa hidráulica, por ejemplo, y vemos las enormes paredes de la presa, pensamos (al menos yo), “Claro, hacen falta paredes muy gruesas para sostener tanta agua”, pero no es realmente así. Hacen falta paredes gruesas para sostener agua tan profunda. Si la presa tuviera la misma profundidad pero tan sólo un litro de agua (en un tubo finísimo, por ejemplo), el grosor de las paredes tendría que ser el mismo, ya que también lo sería la presión. Vale, dejo de repetir lo mismo: es que es esencial.

Vasos comunicantes

La cantidad de situaciones en las que es relevante esta idea central de la estática de fluidos es tan enorme que me es imposible aquí dar todos los ejemplos. Un caso clásico, sin embargo, es el de los vasos comunicantes: un fluido en el que es posible llegar a la superficie por más de un lugar, es decir, que tiene superficies inconexas.

Para entender el funcionamiento de un sistema de vasos comunicantes es necesario mirar el principio fundamental de la hidrostática al revés. Hemos dicho que, en un fluido en equilibrio, la presión debida al peso es igual a la densidad del fluido por la gravedad por la profundidad. Pero ¿y si no hay una sola superficie? Imagina la siguiente situación:

Vasos comunicantes

En este caso, si nos fijamos en cualquier punto del interior del fluido, ¿cuál es la profundidad? ¡Hay “dos profundidades”! Si te fijas en una superficie y luego en la otra, la profundidad no es la misma. Esto significa que no podemos aplicar el principio fundamental, ya que podríamos obtener dos valores diferentes para la presión: una referida a cada superficie. Pero, si no podemos aplicar el principio, es que no se cumple su premisa fundamental.

Este fluido no está en equilibrio.

Visto de otra manera, efectivamente, hay dos presiones: las dos columnas de fluido ejercen dos presiones diferentes, lo que supone que la parte del fluido situada, por ejemplo, en el interior del tubo que comunica ambos barriles, sufrirá dos presiones distintas, una que trata de desplazarlo hacia la derecha y otra hacia la izquierda:

Vasos comunicantes 2

De manera que el fluido se moverá hasta que la presión sea única, independientemente de “hasta cuál superficie”. En ese momento estará en equilibrio y la presión será la misma. Esto es lo que hace que, si se vierte agua con la suficiente lentitud como para que se mantenga un estado lo más parecido al equilibrio, suceda algo así:

Vasos comunicantes animación
 

Animación de vasos comunicantes (Waglione / CC Attribution-Sharealike 3.0 License).

Dado que la presión depende única y exclusivamente de la profundidad, y no de la forma del recipiente, es posible tenerlos de formas tan imaginativas como se quiera, pero al rellenarlos con el mismo fluido, éste alcanzará el mismo nivel en todos una vez que esté en equilibrio.

Vasos comunicantes
 

Vasos comunicantes (dominio público).

Éste es el principio del funcionamiento de muchísimas cosas, pero una de las más interesantes es el pozo artesiano. Cuando el nivel de la superficie del agua –aunque sea subterráneo– se encuentra por encima de donde hagamos un agujero en el suelo, tendremos una suerte de “vasos comunicantes” en los que una de las dos superficies –la del agua bajo el suelo– está por encima, mientras que la otra –la superficie donde hagamos el agujero– está a un nivel diferente. Por lo tanto sucede lo mismo que en el dibujo de los dos barriles: hay “dos profundidades” diferentes, el agua no está en equilibrio y tenderá a moverse.

Pozo artesiano
 

Diagrama de un pozo artesiano (modificado de Gregors / CC Attribution-Sharealike 2.0 License).

Pero claro, en este caso es dificilísimo que ambos niveles lleguen jamás a igualarse, sobre todo si la lluvia va rellenando el depósito subterráneo de agua, de manera que el agua seguirá fluyendo desde el pozo artesiano (a veces con una presión tremenda) para siempre.

Algunos ejemplos concretos

Aunque en este bloque no hagamos demasiados cálculos, siempre es conveniente tener una idea aproximada sobre el valor de magnitudes comunes. Vamos a utilizar la ecuación fundamental de la hidrostática para calcular un par de presiones en el interior de fluidos muy cotidianos, como es el caso del agua de la piscina del principio del artículo.

Cuando hablamos sobre el concepto de densidad dijimos que la del agua es de unos 1 000 kg/m3. Dado que la aceleración de la gravedad en la superficie terrestre es de unos 10 m/s2, es muy fácil calcular la presión debida al peso del agua.

Un primer ejemplo: una piscina. En el fondo de una piscina de 3 metros de profundidad la presión es igual al producto de la densidad del agua por la gravedad y la profundidad, es decir, grosso modo, 1 000·10·3 = 30 000 Pa. Ya dijimos al definir la unidad de presión que un pascal es muy pequeño, por lo que no debe sorprender que las presiones cotidianas sean bastante grandes al expresarlas en pascales.

Para ver una presión bastante más impresionante, descendamos hasta el fondo del océano. La Fosa de las Marianas tiene una profundidad máxima de unos 11 km, con lo que la presión debida al peso del agua allí abajo es nada más y nada menos que 1 000·10·11 000 = 110 000 000 Pa. ¡Ciento diez millones de pascales! Así hacen falta batiscafos de gruesas paredes para llegar allí, claro.

En cambio, el aire es un fluido bastante ligero, como dijimos también al hablar de densidades: unos 1,2 kg/m3 al nivel del suelo. Como veremos en el siguiente capítulo, el aire es más complejo de estudiar que el agua, ya que es compresible y su densidad varía mucho con la profundidad, pero si no nos alejamos mucho del suelo esto no es un problema.

Así, un edificio de diez pisos tiene una altura aproximada de 30 metros, con lo que la diferencia de presión entre la azotea y el suelo es más o menos de 1,2·10·30 = 360 Pa. Claro, tras ver los números de antes éste parece de broma… pero es que, efectivamente, se trata de una presión muy pequeña. Recuerda los billetes: trescientos sesenta billetes, aunque sean muchos, no ejercen una presión muy grande sobre una mesa al colocarlos unos sobre otros.

Y, ya que hablamos sobre el aire, en el siguiente capítulo nos dedicaremos exclusivamente a él, ya que vivimos sumergidos en un océano tenue y sutil, pero un océano al fin y al cabo: un océano de aire. En la siguiente entrega hablaremos sobre la presión atmosférica.

Ideas clave

Para construir el resto del bloque sobre una base sólida deben haberte quedados claros los siguientes puntos:
  • La presión en el interior de un fluido debida al peso del propio fluido no depende en absoluto de la superficie ni de la forma del recipiente, si lo hay.
  • El principio fundamental de la hidrostática afirma que esa presión es igual al producto de la densidad del fluido por la gravedad y la profundidad.
  • Este principio sólo es aplicable si el fluido está en equilibrio, de modo que puede deducirse que no lo está si no se cumple el principio.
  • El fenómeno de vasos comunicantes garantiza que un solo cuerpo de fluido que rellena recipientes unidos se moverá hasta que la presión en el fondo sea la misma independientemente de qué recipiente sea el que ejerce esa presión.

Hasta la próxima…

Podríamos hacer cálculos con más presiones cotidianas, pero tú mismo puedes pensar en situaciones de la vida real y aplicar el principio fundamental de la hidrostática, de modo que no hace falte que te ponga más desafíos de ese tipo. Algo mucho más revelador, aunque no sea tremendamente fácil de hacer a bote pronto, es experimentar el principio fundamental como hizo Pascal con su barril. De modo que eso es precisamente lo que te propongo hacer de aquí al siguiente capítulo dentro de un mes.



Experimento 1 – El barril de Pascal

Material necesario: Un recipiente, un tubo, muchas pajitas, agua, imaginación.

Instrucciones: El objetivo del experimento es replicar, hasta donde sea posible, el de Pascal con el barril, el tubo y el embudo. Evidentemente es muy difícil llegar a los diez metros del bueno de Blaise, pero mi propuesta es la siguiente, sobre todo si das clase en un colegio. Intenta conseguir muchas pajitas o tubos que puedan ensamblarse unos con otros, un recipiente, un lugar donde alcanzar la parte de arriba del tubo y un grupo de niños con ilusión y, si fuera posible, grábalo y nos lo mandas o enseñas en la red.

Si consigues llegar bastante alto, para que la presión abajo sea grande, es una experiencia estupenda y permite ver “en vivo y en directo” la independencia de la presión y la cantidad total de fluido.

Fuente:

El Tamiz

Mecánica de Fluidos: Presión

Mecánica de Fluidos - Tercera Parte

En el anterior capítulo del bloque hablamos sobre las diferencias entre los tres tipos de fluidos –líquidos, gases y plasmas–. También pusimos de manifiesto algo en lo que los esos tres estados se parecen: en el hecho de que, dado que pueden fluir, la interacción con ellos no se produce como si fueran un todo, sino sólo con la parte del fluido en contacto con cualquier otra cosa. Esa característica hace muy útil una magnitud fundamental en mecánica de fluidos, a la que nos dedicaremos hoy: la presión.

Sin embargo, como siempre, antes de entrar en faena detengámonos un momento para hablar sobre la respuesta al desafío planteado al final del anterior artículo.


Respuesta al Desafío 1 – Densidad

Cálculos aparte, recuerda que lo esencial es comparar los valores obtenidos con los que tienes más o menos asimilados –agua y aire, por ejemplo– para ver si tienen sentido y qué significan las densidades calculadas.
La bola de goma era fácil: un 80% de la densidad del agua, que es 1000 kg/m3, no es más que 800 kg/m3.
El anillo de oro requería simplemente buscar la densidad del oro –ya que no importa si es un anillo, un martillo o un bloque del tamaño de tu casa, la densidad del oro es la que es–: unos 19 300 kg/m3. Dicho de otro modo, casi veinte veces la densidad del agua –el oro es un metal muy pesado–.

En el caso del tornillo hacía falta emplear la fórmula que define la densidad: masa entre volumen. Además, era necesario utilizar unidades del Sistema Internacional para poder comparar con el resto –kilogramos y metros cúbicos–. El tornillo tenía una masa de 10 gramos, es decir, 10-2 kg, y un volumen de 10-6 m3. Dividiendo uno por el otro obtenemos su densidad, 10 000 kg/m3, diez veces la densidad del agua.

Finalmente, el trozo de madera tenía las unidades ya en el Sistema Internacional, de modo que no hacía falta más que dividir su masa –0,5 kg– entre su volumen –0,8 m3–: 0,625 kg/m3. Pero, ¡ah!, qué madera más curiosa, ¿no? Tiene menos densidad que el aire, lo cual es imposible. No olvides nunca que esto no son matemáticas, sino física — imagina resultados comparándolos con realidades que conoces para ver si la cosa encaja o no encaja.

Así, la ordenación que se nos pedía debería ser: madera imposible, bola de goma, tornillo y anillo.

De sólidos perfectos a otros menos sólidos

Como dijimos en la entrada anterior, la interacción con un fluido es, por su propia naturaleza, sólo con parte de él. De ahí que magnitudes muy útiles en otros campos de la mecánica, como la fuerza, no lo sean tanto aquí. Aunque parezca extraño, creo que la manera más fácil de verlo no es precisamente con fluidos sino con un sólido que no se comporte como uno ideal — de modo que hagamos el tránsito desde un sólido rígido de verdad a uno que no lo sea.

Imagina que tienes frente a ti un bloque de un sólido perfecto, cuyas partículas están unidas por fuerzas tan enormes que es imposible deformarlo ni tampoco destruirlo. Todas y cada una de las partículas que forman el sólido se mueven como un todo. La única manera de interaccionar con este cuerpo es, por tanto, con todas las partículas a la vez. Si ejerces una fuerza sobre él, por ejemplo, tal vez puedas moverlo y tal vez no, pero no podemos ir más allá de eso; de hecho, el comportamiento de este bloque es muy simple comparado con el de un fluido.

Pero imagina ahora que el cuerpo se “reblandece” hasta convertirse en una especie de escayola. Ahora la fuerza que puedas ejercer sobre él es importante, pero puedes lograr otras cosas además de empujarlo. Por ejemplo, si concentras una gran fuerza en la punta de un clavo, tal vez puedas perforar el bloque. La clave, claro está, es que ahora es posible mover unas partículas respecto a otras.

Así, si pones la punta de un clavo sobre la superficie del bloque y luego le das un golpe a la cabeza del clavo, es irrelevante lo que haya lejos del clavo: la interacción que nos importa es fundamentalmente la que hay entre la punta del clavo y las partículas del bloque en contacto con ella. ¿Ves como esto se va pareciendo a un fluido?

Pero ahora la fuerza ya no es lo único que importa: no es lo mismo que hagas una fuerza determinada sobre una punta de clavo muy afilada que sobre otra que no lo sea. Por lo tanto, a diferencia del caso del bloque sólido perfecto, la fuerza no es tan útil como antes para predecir el comportamiento del bloque. Otros ejemplos en los que esto sucede con sólidos no perfectos son la nieve, el barro, una pared de yeso, etc. Cuanto menos “sólido” sea el cuerpo, menos importante será la fuerza como magnitud única, ya que menos interaccionamos con el cuerpo en su conjunto y más con las partes de él que tocamos.

Resulta entonces muy útil introducir un concepto nuevo que describe justo lo que necesitamos: no la fuerza total ejercida sobre algo, sino algo así como la fuerza que corresponde a cada partícula del cuerpo, ya que las interacciones que nos interesan no son entre cuerpos completos, sino entre partes en contacto. Y ese concepto es precisamente el de presión.

Concepto de presión

Como solemos hacer, permite primero que te dé la definición estricta de presión para luego hablar sobre lo que significa realmente.
La presión es la fuerza ejercida por unidad de superficie.
Hagamos entonces algo también muy común en estos bloques: una analogía absurda. Imagina, paciente y estimado lector, que en una habitación hay un grupo de gente. Se trata de cien personas cuyos lazos de unión son intensísimos: tanto que nunca jamás hacen algo por su cuenta, sino que actúan todos a la vez o no actúan en absoluto. Se trataría de algo análogo al sólido perfecto de antes.

Si quieres modificar el comportamiento de este grupo de gente, por lo tanto, no tienes más remedio que hacerlo en grupo. Supongamos que deseas, por ejemplo, que trabajen para ti haciendo algo. El problema estaría entonces en que no puedes modificar el comportamiento de uno solo, sino únicamente de todos a la vez; así, si cada uno está dispuesto a trabajar por 100€, te costaría nada menos que 10 000€ hacer que trabajaran, pues debes compensar a los cien para que actúen.

Como puedes ver, para predecir el comportamiento de este grupo la única magnitud relevante sobre lo que haces es el dinero total que empleas: en el caso del sólido perfecto, la fuerza con la que empujas el bloque rígido. Pero supongamos que la situación es distinta.

Hay un segundo grupo de personas menos ligadas unas a otras: cada una hace un poco lo que le da la gana. El comportamiento del grupo ya no es común. Puedes, por ejemplo, emplear una cantidad de dinero pero no para todo el grupo, sino sólo para unos cuantos — de modo que algunos actúen de una manera y otros de otra. Por ejemplo, puedes emplear 500€ para intentar que trabajen para ti.

Pero ¿basta con saber la cantidad de dinero que empleas? No. Cuando el comportamiento de un grupo –o de un cuerpo– no es tan simple como antes, hace falta más información. Ahora no tienes por qué interaccionar con todo el grupo, sino sólo con parte, y eso determina lo que sucederá en el futuro. Lo importante no es el dinero total que empleas –la fuerza con la que empujas– sino otra cosa que merece su propio párrafo.

Lo importante es el dinero que corresponde a cada miembro del grupo. En términos físicos, lo importante es la fuerza por unidad de superficie, es decir, la presión.

Por ejemplo, podrías emplear esos 500€ para convencer a cincuenta miembros del grupo de que trabajasen, pero naturalmente se negarían, ya que a cada uno –y recordemos que estos tipos son individualistas y lo que les importa es lo que les toca a ellos– le corresponderían 10€. Sin embargo, si ofreces ese dinero sólo a cuatro de ellos cada uno recibiría 125€, con lo que trabajarán gustosos.

La primera magnitud –el dinero que empleas– es el análogo a la fuerza. Por ejemplo, al intentar clavar un clavo en una pared de yeso, se trata de la fuerza con la que golpeas el clavo. Naturalmente, a más fuerza en el golpe mayor probabilidad de conseguir clavar el clavo, pero hace falta saber algo más.

La segunda magnitud –el número de miembros del grupo a los que ofreces ese dinero– es el análogo a la superficie en la que repartes esa fuerza. En el caso del clavo, la interacción es clavo-pared, luego se trataría del área de contacto entre la punta del clavo y la pared. Evidentemente, a menor número de miembros del grupo a los que ofrezcas el dinero –a menor superficie de contacto– más le toca a cada uno. Y lo que importa es el dinero por persona, es decir, la fuerza por unidad de superficie: la presión.

Raquetas de nieve
 

Minimización de la presión: raquetas de nieve (Burtonpe/Creative Commons Attribution-Sharealike License 3.0).

En este ejemplo nuestro propósito era modificar el comportamiento, clavar el clavo, pero a veces queremos justo lo contrario. Por ejemplo, si tienes que caminar sobre una superficie cubierta de una espesa capa de barro, no quieres hundirte en ella. Por lo tanto, lo que deseas es minimizar la presión: ejercer una fuerza lo más pequeña posible por una parte y repartirla sobre una superficie lo más grande posible por otra. Tal vez puedas controlar ambas magnitudes, tal vez sólo una –por ejemplo, si quieres caminar sobre la nieve y no estás dispuesto a adelgazar–, pero conociendo el efecto de la relación entre ambas puedes adaptarte mejor al mundo que te rodea.

Unidad de presión – El pascal

Dado que la presión es la fuerza por unidad de superficie y ambas magnitudes tienen sus propias unidades, las de la presión son unidades derivadas: vienen dadas al dividir las unidades de fuerza y las de área. La fuerza se mide en newtons (N) en honor al ínclito Sir Isaac Newton, y la superficie se mide en metros cuadrados (m2), con lo que la presión se mide en newtons por cada metro cuadrado (N/m2).

Sin embargo, esto es más soso que yo –que ya es decir–, con lo que en 1971 le dimos un nombre propio a esta unidad. Dado que uno de los padres de la mecánica de fluidos en general y de la presión de fluidos en particular es el francés Blaise Pascal, el N/m2 recibió precisamente su nombre:
Un pascal (Pa) es la presión correspondiente a una fuerza de un newton repartida sobre una superficie de un metro cuadrado.
De modo que lo mismo da decir quinientos pascales (500 Pa) que quinientos newtons por cada metro cuadrado (500 N/m2). Pero ¿eso es mucho o poco? Como siempre, nos hace falta comparar estos números con otros que podamos hacer asimilables a nuestro sentido común. Para ello tendrás que creerme, ya que no vamos a estudiar aquí en profundidad las unidades de fuerza (eso lo hicimos en un bloque diferente que no es necesario para entender éste).

El peso de un objeto de 100 gramos de masa es más o menos de 1 newton. Si repartimos esa fuerza sobre una superficie cuadrada de 1 metro de lado, la presión resultante sería justo de un pascal: un newton sobre un metro cuadrado. Sin embargo, eso puede no decirte nada, de modo que utilicemos un ejemplo diferente pero equivalente a éste.

Si en vez de 1 N y 1 m2 utilizásemos 0,5 N y 0,5 m2, el resultado sería exactamente igual que antes: medio newton sobre medio metro cuadrado es la misma presión que un newton sobre un metro cuadrado. De modo que podemos tomar algo como un billete (cuyo peso es alrededor de 0,01 N) y depositarlo sobre una mesa. El peso del billete se reparte sobre la superficie del propio billete, que es alrededor de 0,01 m2, con lo que la presión vuelve a ser la misma: 0,01 N sobre 0,01 m2, es decir, 1 Pa.

Un pascal, billete
 

Una presión aproximada de un pascal.

Así, para asimilar la magnitud del pascal puedes imaginar lo siguiente: un pascal es la presión que ejerce un billete sobre una mesa. Como puedes comprender, se trata de una unidad minúscula — pero recuerda que no la hemos elegido, debe necesariamente valer lo que vale para que el Sistema Internacional sea coherente, ya que es una unidad derivada de otras.


¡Ojo! Peso ≠ Presión

El ejemplo del billete tiene un peligro: que al mirarlo pienses que la razón de que su presión sobre la mesa sea muy pequeña es que el billete pesa muy poco. Recuerda siempre que la presión depende de dos cosas diferentes: fuerza (en este caso, el peso del billete) y superficie (en este caso, la del propio billete ya que es donde presiona contra la mesa).

Las buenas noticias son que es muy fácil librarse de esa falsa idea pensando en lo siguiente: como vimos antes, 0,01 N sobre 0,01 m2 es exactamente la misma presión que 1 N sobre 1 m2. Así, en vez de imaginar un billete sobre la mesa, imagina cien billetes idénticos sobre la mesa, uno al lado del otro. El peso total es de 1 N, la superficie total es la de cien billetes, es decir, 1 m2.

La presión sigue siendo de 1 Pa, exactamente la misma que la que ejercía un solo billete.

La clave de la cuestión, claro, es que si usamos más de un billete aumentamos el peso, pero también aumentamos la superficie de manera proporcional, con lo que realmente no cambia nada respecto a la presión sobre la mesa. Y entender eso es básicamente entender el concepto de presión: podríamos poner cien millones de billetes uno al lado del otro y la presión sería la misma que la que hace un solo billete.

Sí, soy pesado y no me importa serlo: la presión es la relación entre fuerza y superficie, de modo que un objeto muy pesado puede ejercer una presión muy pequeña o viceversa. Peso y presión no son lo mismo.

Sin embargo, la consecuencia inmediata del pequeño tamaño de 1 Pa es que muy a menudo utilizamos múltiplos de esta unidad. Un kilopascal es el equivalente a mil pascales (1 kPa = 1 000 Pa), un megapascal el equivalente a un millón de pascales (1 MPa = 1 000 000 Pa), etcétera. Desgraciadamente, dependiendo de dónde y cuándo a veces se utilizan también otras unidades que no son del SI como las atmósferas y los milibares, pero de ellos hablaremos en su momento.

Presión en líquidos

La manera más fácil de comprender el concepto de presión, en mi opinión, es hacerlo utilizando sólidos apoyados sobre algo, como acabamos de hacer. Sin embargo, como hemos visto en el capítulo anterior, los sólidos y los fluidos no se comportan igual debido a la capacidad de fluir de unos y la ausencia de esa capacidad en los otros. Como siempre, un ejemplo tonto es la mejor manera de ver esta diferencia.
Imagina un objeto con un peso de 100 N (que, con la gravedad terrestre, es el peso aproximado de un objeto de 10 kg), apoyado sobre una mesa. ¿Qué presión ejercerá?

A estas alturas estoy seguro de que estás levantando una ceja: hombre, depende, responderás. ¿Cómo de grande es la superficie en la que se apoya ese peso? Y tendrías razón, por supuesto. Si el objeto es un martillo, no sería lo mismo depositarlo sobre la mesa apoyado horizontalmente, de modo que el mango repose sobre la mesa a lo largo, que hacerlo de manera que la cabeza del martillo sea el único contacto con la mesa. En el primer caso la superficie es mayor que en el segundo, luego la presión será menor.

Pero ¿y si el objeto no fuera sólido, sino un fluido? Entonces no sería tan fácil controlar esa superficie de contacto. Si no encerrásemos el fluido en un recipiente, se desparramaría por toda la mesa –y, si fuera un gas, por toda la habitación–. El comportamiento de los fluidos, una vez más, es más complejo que el de los sólidos.

Un líquido, si tiene suficiente espacio para fluir y desparramarse tanto como sea necesario, siempre terminará formando una película infinitamente fina (con un límite tan extremo que, en lo que respecta a este bloque, podemos considerar cero). El propio peso del líquido tiende a llevarlo hacia el suelo y, dado que las partículas no ocupan posiciones fijas, todas ellas terminarán contra el suelo. Puedes imaginarlo así: si viertes agua sobre el suelo con una jarra, el agua forma un charco sobre el suelo. Si el agua fuera un fluido perfecto, ese charco sería infinitamente fino y extenso.

Por tanto, en esas condiciones ideales –un fluido perfecto y una superficie tan grande como sea necesaria– la presión que ejerce el líquido al final será cero, independientemente de la cantidad de líquido, ya que se habrá esparcido infinitamente. Podríamos decir –horrible afirmación, pero si te ayuda bienvenida sea– que cada parte del líquido tienden a ocupar el lugar más bajo posible, de modo que el grosor final sea cero y la presión también lo sea.

Si evitamos que esto suceda, por ejemplo, encerrando el líquido en un recipiente, entonces el líquido seguirá este comportamiento hasta donde puede: ocupará primero la base del recipiente como en el caso anterior pero, cuando ya no quede sitio en el fondo, irá rellenando el resto del recipiente hasta que todo el volumen de líquido esté “apoyado” o bien sobre el fondo o bien sobre el resto de líquido y las paredes.

Como consecuencia, casi toda la presión que los líquidos ejercen se debe a su propio peso, y casi toda esa presión se debe a que “forzamos” al líquido a ocupar el recipiente en vez de desparramarse infinitamente, que es lo que tiende a hacer por la combinación de su propio peso y la capacidad de sus partículas de fluir unas sobre otras. Desde luego, si el líquido se mueve a gran velocidad (por ejemplo, saliendo de la boca de una manguera) puede ejercer presión que no tiene nada que ver con su peso, y de ello hablaremos en su momento.
Sobre cuánto vale esa presión dependiendo de cuánto líquido hay, cómo es el recipiente y cuál es la naturaleza del líquido hablaremos en el siguiente capítulo, ya que es algo con la suficiente miga como para merecer una explicación cuidadosa. Pero ¿y los gases? ¿forman también charcos en el suelo?

Presión en gases y plasmas

Como vimos al hablar de los distintos tipos de fluidos, los gases y plasmas se diferencian de los líquidos en que no mantienen un volumen constante, ya que las partículas que los forman no sufren interacciones tan intensas como aquéllos. Esta “libertad” supone un comportamiento diferente respecto a la presión.
Hay algo en lo que gases y plasmas sí se parecen a los líquidos: como ellos, su propio peso tiende a hacerlos fluir hacia abajo y llegar al suelo. Así, en casi todos los casos el comportamiento en este sentido es parecido al de los líquidos, tanto más cuanto más denso sea el gas. Cuando se trata de un gas suficientemente denso se comportará casi igual que un líquido, como sucede con el hexafluoruro de azufre.

Sin embargo, por un lado los gases suelen ser –aunque no siempre lo sean, ni tenga esto que ver con la definición de gas– menos densos que los líquidos, con lo que el efecto de la gravedad se nota menos sobre ellos. Por otro, la libertad de movimiento molecular es tan grande que la velocidad de cada molécula es muy grande. Como consecuencia hay gases lo suficientemente ligeros como para que la gravedad terrestre, por ejemplo, no sea suficiente para retenerlos, como es el caso del helio. En estos casos la presión debida al peso es casi inapreciable.


¿Por eso los globos flotan?

No –aunque sí tenga que ver con el hecho de que el helio es muy poco denso–. El responsable principal es el aire que rodea al globo, que lo empuja hacia arriba de acuerdo con el principio de Arquímedes. Pero, dado que en este mismo bloque dedicaremos un capítulo entero a hablar de ese principio, permite que aquí simplemente te diga que no, los globos no flotan porque el helio sea capaz de escapar de la gravedad de la Tierra.

Como ejemplo, el aire caliente de los globos aerostáticos, dependiendo de su temperatura, puede seguir siendo suficientemente denso como para no poder escapar de la gravedad terrestre pero sí ser lo bastante ligero como para que el aire de alrededor lo sustente. Lo que hace que un globo flote es precisamente el hecho de que sea menos denso que el aire que lo rodea — el helio es, además, tan ligero que podría escapar incluso sin aire alrededor.

Podrías pensar entonces que los gases apenas ejercen presión, sobre todo si son ligeros, pero la propia libertad de movimiento de sus partículas hace que ejerzan un tipo de presión que los líquidos apenas ejercen: la debida a los choques de esas moléculas con cualquier cosa que se encuentre cerca.

Un líquido es algo así como un conjunto de bolas bastante pesadas que siempre se mantienen juntas y apenas pueden moverse: si estás bajo ellas notarás la presión, pero si estás por ejemplo a un lado no notarás nada. Un gas o un plasma, por el contrario, consta de bolitas mucho más ligeras pero que se mueven caóticamente, chocando unas con otras y saliendo disparadas en todas direcciones con mucha facilidad. Así, si estás debajo apenas notarás el peso de esas bolitas, pero si estáś a un lado –o debajo, o encima– notarás los golpecillos constantes de todas las bolitas.

Dado que esta agitación de las bolitas –una agitación molecular a nivel microscópico, aunque aquí tratemos a los fluidos como continuos– depende de la temperatura del gas, aquí tienes otra gran diferencia en la presión de líquidos y gases/plasmas. Al calentar un líquido apenas se nota diferencia en la presión que ejerce, ya que aunque cambie la temperatura, el movimiento molecular sigue siendo muy leve ya que las moléculas mantienen sus distancias más o menos fijas. Sin embargo, los gases y plasmas que se calientan, al moverse sus partículas más deprisa, golpean todo lo que los rodea más violentamente, con lo que su presión aumenta proporcionalmente con la temperatura. Puedes leer más sobre este efecto –que en este bloque no trataremos más– en el dedicado a la termodinámica.

Pero claro, imagina que tienes sobre ti una cantidad ingente de gas: entonces, aunque cada bolita sea muy ligera, una acumulación gigantesca de bolitas sobre tu cabeza sí ejercerá una presión considerable. Como siempre, es difícil poner etiquetas a las cosas que no simplifiquen demasiado el asunto: dependiendo del sistema físico concreto que estemos estudiando podremos despreciar algunos efectos y no otros. Si estudias la presión ejercida por el helio dentro de un pequeño globo, por ejemplo, la presión debida al peso del helio es muy pequeña. Si estudias la presión ejercida por todo el hidrógeno del Sol sobre su núcleo, la presión debida al peso es tan grande que te trituraría como una cucaracha, con lo que sería una estupidez despreciarla.

Lo bueno es que la presión es la que es independientemente de sus causas: puede deberse fundamentalmente al peso del propio fluido, como suele suceder en los líquidos, o al movimiento de sus partículas en gases o plasmas, pero su descripción y sus consecuencias son idénticas.

Ideas clave

Para seguir el bloque con garantías debes haber asimilado los siguientes conceptos fundamentales:
  • La presión es la fuerza ejercida por unidad de superficie.
  • La unidad de presión es el pascal (Pa). Un pascal equivale a una fuerza de 1 newton repartida sobre una superficie de 1 m2.
  • La presión en los líquidos suele deberse a que los encerramos en un recipiente sobre cuyas paredes y fondo se apoyan, de modo que el peso del propio líquido es la causa de la presión.
  • La presión en los gases y plasmas suele deberse al movimiento de las partículas que los forman, aunque si hay suficiente cantidad pueden ejercer presión debida al peso como los líquidos.
  • Tanto en un caso como en otro, si el fluido se mueve en una determinada dirección puede aparecer una presión adicional que no tiene que ver ni con el peso ni con la agitación molecular.

Hasta la próxima…

Imagino que ya sospechas de qué va a ir el desafío de este capítulo: de calcular presiones. Dado que hemos explicado el concepto básico utilizando sólidos, con ellos seguiremos; en la siguiente entrega nos dedicaremos específicamente al cálculo de la presión en fluidos. Recuerda, como siempre, comparar lo que obtienes con resultados que tengas asimilados, para ver si tienen sentido o has metido la pata.


Desafío 2 – Presión

El desafío de hoy tiene dos partes, y te aviso de que hay que hacer algunas operaciones matemáticas. ¡Qué se le va a hacer!

Imagina, pacientísimo lector, que has decidido hacer un picnic sobre un campo nevado. La nieve puede soportar una presión máxima de 5 kPa, y sobre ella has puesto una mesa de 20 kg (recuerda que, en la gravedad terrestre, el peso de algo en newtons es diez veces su masa en kg). La mesa se apoya sobre cuatro patas de base cuadrada y 20 cm de lado cada una.

La primera pregunta es, ¿se hundirá la mesa en la nieve? La respuesta, por cierto, es que no –o esto no tendría gracia– pero el objetivo es, naturalmente, que consigas demostrarlo.

La segunda pregunta es, si empiezas a poner bocadillos de 250 gramos cada uno sobre la mesa, ¿cuántos bocadillos podrás poner sobre ella antes de que se hunda en la nieve?

Como siempre, os pido que no contestéis a estas preguntas en comentarios, ya que el objetivo es que cada uno piense por su cuenta y si respondes aquí fastidias al resto. En la siguiente entrega, como siempre, hablaremos sobre la respuesta a este desafío.

Fuente:

El Tamiz

16 de marzo de 2013

Mecánica de Fluídos: Introducción

Hoy iniciamos el cuarto “bloque de conocimiento”, tras los dedicados a la electricidad, la termodinámica y la mecánica clásica. Como aquéllos, se trata de un bloque introductorio en el que no supondré conocimientos previos por parte del lector e intentaré mantener las matemáticas en el mínimo necesario: nuestro objetivo ahora no es alcanzar fórmulas tanto como establecer conceptos cualitativos. Esto no significa, por otro lado, que todo sea un camino de rosas: son necesarias cierta disciplina e inteligencia para asimilar cada bloque, y hace falta esfuerzo para sacar todo el partido posible a cada artículo.

Como siempre, cada capítulo del bloque incluirá cajas de texto con contenido adicional: advertencias, ampliaciones, desafíos y experimentos. Quienes hayáis leído alguno de los otros bloques notaréis una diferencia: en vez de cajas de colores, vamos a utilizar los iconos de los libros, pues creo que son más elegantes. En cualquier caso, mi recomendación es siempre leer el artículo una primera vez saltándote las cajas y centrándote en lo fundamental. Deja pasar un tiempo –por ejemplo, un día o dos– y vuelve a leerlo, pero esta vez con las cajas de texto incluidas. De este modo no debería resultar un exceso de información y seguramente lo entenderás mejor.

Dicho esto, empecemos nuestro camino para conocer la mecánica de fluidos. En este artículo pretendo explicar en qué consiste esta parte de la Física, cuál ha sido el camino que hemos seguido para desentrañar sus secretos a lo largo de la historia y cuáles son las características fundamentales de su objeto de estudio, los fluidos. ¡Vamos con ello!


¿Qué es la mecánica de fluidos?

Hombre, no hace falta una larga explicación sobre esto, pero quiero detenerme en ello porque hay un par de aspectos interesantes. La mecánica de fluidos, como indica su nombre, estudia los fluidos. Sin embargo, no trata de describir todo lo relacionado con ellos: se centra en aspectos mecánicos del comportamiento de los fluidos, como su movimiento, la presión que ejercen, cómo alteran el movimiento de objetos introducidos en ellos, etc. Otras facetas del comportamiento de los fluidos, como sus cambios de temperatura y cosas así, son estudiados por la termodinámica. De hecho, si has leído aquel bloque, verás que aquí repito algunos conceptos definidos allí, aunque en un contexto diferente y haciendo énfasis en cosas distintas; disculpa la repetición, pero al ser ambos bloques introductorios, he preferido mantener ambos independientes a costa de repetir alguna cosa que otra.

La mecánica de fluidos es, por tanto, una aplicación de la mecánica, que estudia el movimiento de partículas puntuales y establece principios generales sobre su comportamiento, a un tipo especial de cuerpos: los fluidos. En cierto sentido, esto hace de esta disciplina algo derivado y no fundamental. Con esto me refiero a que sería posible describir el comportamiento de los fluidos utilizando los principios de la mecánica clásica; en otras palabras, si nos sumergimos de verdad en la mecánica de fluidos y preguntamos “¿por qué?” una y otra vez ante cada afirmación que realiza, al final llegamos a los principios básicos de la mecánica.
Sin embargo, el hecho de que la mecánica de fluidos sea teóricamente derivable a partir de la mecánica clásica no quiere decir que, en la realidad, la hayamos derivado de ella. Esta parte de la Física fue desarrollada en paralelo a la mecánica newtoniana, y contiene muchos principios físicos obtenidos de manera empírica, en varios casos siglos antes de que su explicación teórica a partir de las leyes de la dinámica fuera posible, porque esas leyes no eran aún conocidas.

Incluso ahora que nuestra mecánica está bien madura, sigue teniendo sentido utilizar una mecánica específica para los fluidos. Al fin y al cabo, estudiar el movimiento de una partícula utilizando los principios de la mecánica es bastante simple; hacerlo con dos partículas es más complicado, y hacerlo con cien algo más difícil. Pero piensa lo siguiente: un litro de agua contiene unas 3,35·1025 moléculas, treinta y tres cuatrillones de moléculas en cada litro. ¿Tiene sentido determinar el movimiento de cada molécula con sus propias ecuaciones para describir el comportamiento de un litro de agua? Desde luego que no, sobre todo porque es posible hacerlo con principios que se aplican al conjunto de todas las moléculas — de ahí la existencia, incluso hoy, de la mecánica de fluidos.

Agua
 
Ondas formadas por gotas sobre el agua (Brocken Inaglory / CC Attribution-Sharealke 3.0 License).

En ella, en vez de tratar los fluidos como conjuntos de moléculas, se tratan como un continuo. Para comprender el concepto lo mejor, en mi opinión, es alcanzarlo llevando un proceso al límite. Imagina 1 kg de arena de playa, formada por un grano de arena de 1 kg de masa. Ahora imagina que lo partimos en dos, de modo que la arena está formada por dos granos de 0,5 kg cada uno. Si seguimos haciendo esto hasta tener granos de 1 gramo, la arena estará formada por mil granos de 1 g cada uno.

Ahora imagina que los volvemos a partir un millón de veces, y luego un millón de veces más. Tendríamos un número gigantesco de granos tan pequeños que serían invisibles, individualmente, al ojo humano. Bien, ahora imagina que repetimos el proceso hasta el infinito: la “granularidad” de la arena se haría infinitamente fina, como si triturásemos la masa con una trituradora infinitamente poderosa. El resultado es un continuo, en el que no tiene sentido hablar de las partes, sino del conjunto formado por ellas. Evidentemente la materia no es continua y los fluidos, por tanto, tampoco lo son, pero recuerda el número de moléculas de agua en un litro del líquido; la mecánica de fluidos parte de esta premisa para simplificar enormemente las cosas sin perder apenas rigor y precisión en el resultado.


¿Qué es un fluido?

Como sucede tantas otras veces, es muy fácil tener una idea intuitiva bastante razonable sobre qué es un fluido, pero dar una definición rigurosa no lo es tanto porque se trata de una “etiqueta” más o menos arbitraria que damos a ciertos medios. Dicho mal y pronto,

Un fluido es un medio capaz de fluir, es decir, de cambiar de forma y adaptarse al recipiente que lo contiene.
Esta propiedad la cumplen, en su definición ideal, los líquidos, los gases y los plasmas. Es lo que tienen en común, por mucho que se diferencien en otras cosas, y esta propiedad determina gran parte de su comportamiento en contraposición al de los sólidos. De las diferencias entre los distintos tipos de fluidos hablaremos en la próxima entrega pero, por ahora, centrémonos en lo que los une.



¡Ojo! Fluido ≠ líquido

Sí, ya sé que acabo de definir fluido, pero esta confusión está tan extendida que no puedo dejar de dedicarle su propia advertencia. Los líquidos son fluidos, pero no son los fluidos, sino simplemente un subconjunto de ellos. Tan fluidos como los líquidos son los plasmas, y tanto como ellos los gases.

Existen diferencias entre esos estados de agregación (no se comporta igual el agua que el plasma que forma el núcleo del Sol), pero todos tienen en común una propiedad fundamental, que es la que determina el hecho de que sean fluidos. De modo que un líquido siempre es un fluido, pero hay fluidos que no son líquidos. Sí, ya dejo de ser pedantón.

Así, un ladrillo es un sólido y no es capaz de fluir: tendrá siempre forma de ladrillo esté dentro de un barril, sobre tu mano o en el suelo. Sin embargo, el agua de una botella es un fluido, ya que tiene forma de botella mientras está en ella, pero si la viertes sobre tu mano se adapta a su forma; puesto que tu mano tiene huecos entre los dedos, de hecho, la gravedad terrestre hará que el fluido se escape entre ellos y caiga al suelo. Y, una vez en el suelo, se adaptará a su forma y creará un charco más o menos amplio dependiendo de la profundidad que pueda tener por la forma del terreno.

El aire dentro de un globo tiene la misma propiedad: puedes apretar la superficie del globo con un dedo creando una hendidura, y el gas del interior cambiará de forma para adaptarse a la nueva superficie del globo. Si metes el globo dentro de una caja cuadrada y lo fuerzas a tomar la forma de la caja, el aire tomará forma cuadrada como la caja, etc.



¿Y el puré de patatas?

Como he dicho muchas veces anteriormente en El Tamiz, los nombres que damos a las cosas, nuestras definiciones y nuestras ecuaciones están en nuestra cabeza y son herramientas que nos ayudan a predecir el comportamiento de las cosas, pero no forman parte de las propias cosas.

Siempre se nos enseña que hay sólidos, líquidos y gases, y que los primeros no son fluidos pero los segundos sí. Sin embargo, esos nombres idealizan comportamientos. Ningún líquido es realmente un fluido de acuerdo con la definición, y ningún sólido deja de serlo realmente. Se trata de una cuestión de grado. Por ejemplo, ¿qué es el puré de patatas? ¿Un sólido? Si así fuera daría igual la forma del recipiente en el que lo introduces, porque siempre tendría una forma propia, algo que no sucede. ¿Un fluido? No, porque sería imposible tomar puré de patatas con un tenedor, ya que fluiría entre los dientes y caería de nuevo al recipiente.

Ah, puedes pensar, depende de la consistencia del puré de patatas. Si tiene mucha leche o agua, entonces se irá aproximando a un fluido hasta que sea imposible cogerlo con un tenedor, y si tiene muy poca leche o agua, llegará un momento en el que tenga casi una forma propia, independiente del recipiente. Pero si piensas así habrás llegado, creo, a la conclusión que intento hacerte ver: es una cuestión de grado. No hay sólidos y fluidos, sino medios que se parecen más a unos o a otros. Cuando un medio se aproxima muchísimo a un comportamiento, las conclusiones teóricas derivadas de la definición serán casi idénticas a lo que sucede en la realidad y viceversa.

Esto significa, claro, que las sustancias que están “a medio camino”, como muchos plásticos, la plastilina, el puré de patatas, etc., no se definen bien mediante las definiciones de fluido o sólido. A lo largo del tiempo hemos ideado magnitudes y ecuaciones que tienen en cuenta estas desviaciones de los comportamientos ideales, como la viscosidad, y de ellas hablaremos tarde o temprano. Mi objetivo en esta ampliación es simplemente recordarte que no te dejes llevar por las etiquetas que damos a las cosas y pensar así que en la Naturaleza existe tal cosa como un “sólido”.


Hidráulica, hidrodinámica y mecánica de fluidos

La necesidad de comprender el comportamiento de los fluidos ha sido siempre imperiosa para nosotros: al fin y al cabo, nuestra vida depende de dos fluidos, el aire y el agua. Asegurar el suministro de ambos es un requisito indispensable para nuestra supervivencia, y esto significa que mucho antes de que Newton estableciera principio alguno ni supiéramos lo que es una fuerza con el menor rigor ya teníamos cierta idea sobre las características fundamentales de los fluidos y cómo manipularlos.

Esto significa que, en sus comienzos –mucho antes de recibir su nombre actual– la mecánica de fluidos era algo completamente empírico, y no tanto el campo de estudio de los científicos como de los ingenieros civiles: sin un conocimiento, aunque sea rudimentario, de la flotabilidad de los cuerpos, las variaciones de presión del agua y hasta dónde es posible elevarla y cosas parecidas, es muy difícil establecer una civilización tecnológica. Esta versión eminentemente práctica, no demasiado preocupada por principios fundamentales y sí por las aplicaciones técnicas del conocimiento, fue denominada hidráulica por su preocupación central, el agua.

Por poner un ejemplo, los romanos utilizaron sus conocimientos de hidráulica para construir canalizaciones que alimentaban de agua potable lugares alejadísimos de sus fuentes, y disponían de sistemas de tuberías y alcantarillado bastante sofisticados. Durante muchos siglos continuamos avanzando muy lentamente en nuestra comprensión del comportamiento de los fluidos de este modo empírico. El famoso principio de Arquímedes –que destriparemos a conciencia en este bloque– es un buen ejemplo de esto. Se trata de un fenómeno que puede explicarse a partir de leyes más fundamentales, pero durante siglos fue un principio natural sin necesidad de más explicación.

La ausencia de una verdadera teoría unificada sobre el comportamiento de los fluidos y, sobre todo, de las matemáticas y ecuaciones que describieran ese comportamiento, hizo que nuestro conocimiento fuera cualitativo. Por ejemplo, desde el principio fue algo evidente que la forma de la quilla de un barco influye sobre el flujo de agua sobre el casco cuando la nave se mueve por el agua, y es posible ir probando hasta obtener formas razonablemente hidrodinámicas sin utilizar ecuaciones. Por otro lado, es muy difícil alcanzar una perfección enorme en este aspecto sin un aparato teórico más avanzado, de modo que llegó un momento en el que, en casi todo lo relacionado con los fluidos, nos quedamos estancados.

Uno de los primeros en atacar el problema de una manera más científica fue Leonardo da Vinci. El divino italiano realizó multitud de experimentos bastante metódicos sobre el flujo de agua y aire alrededor de objetos, y documentó sus descubrimientos con diagramas maravillosos, como hacía casi siempre. Leonardo llegó a introducir pequeños objetos en el agua para observar su movimiento según fluía el líquido, observó los remolinos que aparecen cuando el agua fluye rápidamente sobre un cuerpo, es decir, la aparición de la turbulencia, y llegó a realizar diseños que minimizaban esa turbulencia.

Flujo de agua por Leonardo
 
Dibujo de flujo turbulento por Leonardo da Vinci.


Sin embargo, en la época de Leonardo la Física no se había casado aún con las Matemáticas –algo que empezaría a suceder con Galileo Galilei–, con lo que una auténtica teoría de fluidos no podía surgir. El propio Galileo, que yo sepa, no dedicó demasiado esfuerzo a esa tarea, pero dos de sus discípulos, Benedetto Castelli y Evangelista Torricelli, fueron de los primeros en establecer las bases de lo que se llamaría hidrodinámica, la contrapartida teórica de la hidráulica. Fíjate en que el nombre seguía estando derivado del fluido más estudiado de todos, el agua.

El problema era la complejidad del comportamiento de los fluidos: son muy difíciles de describir teóricamente, en parte por las sutiles diferencias entre fluidos y sólidos, en parte por la interacción de unas partes del fluido con otras y con las paredes que lo contienen. Por tanto, durante mucho tiempo la hidrodinámica sólo fue útil en casos muy particulares y para situaciones concretas; fuera de ellas era un desastre como predicción del comportamiento real. Una vez más, nuestras limitaciones matemáticas eran las culpables, ya que haría falta el desarrollo del cálculo infinitesimal para describir acertadamente el movimiento de los fluidos.

En el caso de fluidos en equilibrio, dado que no había movimiento del fluido, la cosa era bastante más sencilla. Su descripción, la hidrostática –un caso partícular de la hidrodinámica–, sí era posible matemáticamente con una precisión muy razonable. Torricelli estableció algunas de sus bases, pero el auténtico padre de la hidrostática y, por tanto, uno de los pioneros de la hidrodinámica, fue el francés Blaise Pascal, del que hablaremos con seguridad en este bloque.

Isaac Newton realizó algunos avances en hidrodinámica, como el estudio del flujo del agua a través de orificios y la descripción de la viscosidad, pero su principal aporte a esta ciencia fue el desarrollo del cálculo infinitesimal –probablemente de manera independiente y casi simultánea a Gottfried Leibniz–. Con esa “madurez” de las matemáticas fue posible atacar el problema de verdad, con una herramienta realmente preparada para el problema.

Otros científicos tras Newton, como Daniel Bernoulli y Jean le Rond d’Alembert, realizaron grandes avances en hidrodinámica. A estas alturas, a mediados del siglo XVIII, los científicos ya no estudiaban casos concretos del comportamiento de los fluidos, sino que trataban de establecer principios generales; por ejemplo, una de las mejores obras de d’Alembert se llama Traité des fluides. Las matemáticas nos proporcionaron, una vez más, las herramientas para dar un salto en nuestro conocimiento de los fluidos cuando el genial Leonhard Euler desarrolló las ecuaciones en derivadas parciales y las empleó para describir, por primera vez, el comportamiento general de un fluido de manera teórica.

El problema era que las ecuaciones de Euler y otras basadas en su trabajo eran desastrosas en la mayor parte de los casos, y sólo funcionaban bien de verdad en algunas situaciones. Por lo tanto, incluso en el siglo XVIII gran parte de la hidrodinámica era considerada una curiosidad teórica. Los ingenieros seguían obteniendo mejores resultados simplemente utilizando métodos puramente empíricos que recurriendo a las ecuaciones de Euler y similares.

Todo cambió en el siglo XIX. Primero, un par de físicos –un inglés, Sir George Stokes, y un francés, Claude-Louis Navier– establecieron en 1822 una ecuación que describía razonablemente bien el comportamiento de los fluidos. Posteriormente, el alemán Gustav Kirchhoff (cuyo nombre puede sonarte por la radiación de cuerpo negro). Kirchhoff refinó las ecuaciones para determinar un coeficiente relacionado con el movimiento turbulento de un fluido a través de un agujero –una de las circunstancias en las que anteriormente los resultados teóricos y los experimentales divergían enormemente–. El coeficiente no es importante ahora mismo, pero sí lo es el hecho de que Kirchhoff predijo un valor de 0,61 utilizando las ecuaciones diferenciales. El resultado experimental resultó ser 0,60. Todo cambiaría desde entonces: ya no estábamos frente a una curiosidad, sino a algo utilísimo en la práctica.

A partir de entonces se diluyó la diferencia entre hidráulica e hidrodinámica y nació una verdadera mecánica de fluidos. El nombre es, desde luego, infinitamente mejor que cualquiera de los otros dos, porque no sugiere nada acerca del agua. Hoy en día hablamos de ella cuando nos referimos al estudio de fluidos en general, pero seguimos usando los términos antiguos de hidrostática e hidrodinámica para el estudio de los líquidos –no cualquier fluido– en equilibrio o no. También utilizamos aerodinámica, por ejemplo, para referirnos al flujo de gases; como en el caso del agua, el aire forma parte del nombre por ser el gas al que más aplicamos esta teoría.

El caso es que desde la segunda mitad del XIX los ingenieros empezaron a utilizar más y más las ecuaciones diferenciales, perfeccionadas por muchos otros científicos. Ya en el siglo XX nos encontramos con un nuevo obstáculo: las matemáticas funcionaban, pero en muchos casos el comportamiento de los fluidos resultó ser caótico, es decir, endiabladamente difícil de calcular con exactitud más allá de cierto tiempo. Las matemáticas estaban preparadas, pero nuestra capacidad de cálculo no.

En este caso quien vino a nuestro rescate fue la informática. Hoy en día, para las aplicaciones prácticas que involucran conjuntos de ecuaciones no lineales son nuestros programas informáticos quienes resuelven las ecuaciones y predicen el comportamiento de los fluidos. Pero, por más complejas que se hayan hecho las matemáticas involucradas, la base teórica sigue siendo la misma: la aplicación de la mecánica newtoniana a medios continuos capaces de fluir.

Si todo esto de ecuaciones diferenciales te ha dejado un poco apabullado, no te preocupes: como Pascal, nosotros empezaremos a estudiar los fluidos en equilibrio –es decir, la estática de fluidos– para luego ir adentrándonos en asuntos más tortuosos. Lo bueno de la mecánica de fluidos es que unas bases sólidas no demasiado extensas permiten ya entender muchas cosas del mundo que nos rodea sin necesidad de meterse en camisas de once varas.

En la siguiente entrega hablaremos sobre las diferencias entre los tres tipos de fluidos y, ya que tiene que ver con el asunto, definiremos una de las propiedades más importantes de cualquier fluido: la densidad.


Ideas clave

Para empezar el bloque con ganas, espero que te hayan quedado clarísimas las siguientes ideas, ya que son solamente tres:

  • La mecánica de fluidos estudia los fluidos en cuanto a su comportamiento mecánico (movimientos, fuerzas, presiones, etc.).
  • Un fluido es un medio capaz de fluir, es decir, cambiar su forma libremente.
  • Existen tres tipos de fluidos: líquidos, gases y plasmas.

Tomado de:

El Tamiz
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0