Latest Posts:

Mostrando las entradas con la etiqueta cosmos. Mostrar todas las entradas
Mostrando las entradas con la etiqueta cosmos. Mostrar todas las entradas

8 de noviembre de 2016

La fascinante historia de por qué el norte queda arriba en los mapas

Trata de imaginar la Tierra vista desde el espacio. ¿Dónde quedaría la parte de arriba?
Si dices el Polo Norte, lo más probable es que coincidan muchas personas contigo. Sin embargo, pudieras estar equivocado.

La incómoda verdad es que a pesar de que todos nos imaginamos el mundo de esa manera, no hay razones para pensar que el techo del mundo es el norte.

La forma como quedó determinado de esa forma es una excitante mezcla de historia, astrofísica y psicología.

Y además, nos lleva a una conclusión importante: el concepto utilizado para diseñar los mapas tiene que ver con la manera como nos sentimos al respecto.

Este mapa, el Tabula Rogeriana de Muhammad al Idrissi, dibujado en 1154, solo podemos entenderlo si lo volteamos, como se ve en la foto.

Navegación cerebral

Entender dónde estás ubicado en el mundo es una habilidad básica de supervivencia, lo cual explica por qué los humanos, como la mayoría de las especies, tienen áreas especializadas del cerebro con numerosas conexiones para crear un mapa cognoscitivo de lo que nos rodea. 

Sin embargo, lo que hace únicos a los humanos, con la excepción de las abejas, es que nosotros tratamos de transmitir estos conocimientos del mundo a otros miembros de nuestra especie.

Esto es así desde hace mucho tiempo también en lo que se refiere a cartografía. La primera versión de un mapa fue descubierta en la pared de una cueva hace 14.000 años.

Mirando hacia el emperador

Dada esa larga trayectoria, es sorprendente pensar que fue solo hace pocos siglos que el norte comenzó a ser considerado como el tope del planeta.

De acuerdo con Jerry Brotton, un historiador de la Universidad Queen Mary en Londres especializado en mapas, "el norte fue rara vez colocado en el tope, por el simple hecho que de ahí es donde viene la oscuridad".

"El oeste tampoco fue una elección, porque por ahí desaparecía el sol".

Brotton dice que aun cuando ya tenían brújulas en esa época, no existe una razón sólida para que el norte esté en la parte de arriba de los mapas.

Las primeras brújulas hechas en China estaban diseñadas para apuntar hacia el sur, que entonces era considerado más deseable que el oscuro norte.

Pero en los mapas chinos el Emperador, quien vivía en el norte del país, siempre fue colocado en el tope de los mapas, con todos los demás súbditos mirando en dirección hacia él.

"En la cultura china el emperador mira hacia el sur, porque de ahí es donde viene el viento, por eso es una buena dirección. El norte no es muy bueno, pero te encuentras en una posición de subordinación hacia el emperador, así que tienes que mirarlo", explica Brotton.

El artículo completo en la web de la BBC

 

9 de mayo de 2016

El astronauta que creció 5 cm tras pasar un año en el espacio

El aumento en la estatura es una consecuencia de la ingravidez, ya que la columna vertebral se alargs.



El astronauta Scott Kelly de la NASA ha crecido 5 centímetros después de pasar un año flotando en la Estación Espacial Internacional (ISS), según informa la CNN, que cita fuentes de la agencia espacial estadounidense. El aumento en la estatura es una consecuencia de la ingravidez, ya que la columna vertebral se alarga. Ahora, Kelly será más alto que su hermano gemelo Marc, un astronauta retirado que se ha utilizado como control de los experimentos fisiológicos y psíquicos a los que Scott ha sido sometido. Eso sí, su ventaja no durará para siempre. Volverá a su altura normal tras un tiempo en la Tierra.

Scott Kelly regresó a la Tierra el pasado miércoles a bordo de una cápsula Soyuz tras pasar 340 días en la plataforma orbital. Aparentemente con buena salud y excelente ánimo, el astronauta será sometido ahora a una serie de pruebas médicas para conocer cómo responde el cuerpo humano a las condiciones prolongadas de microgravedad. El estudio resulta de fundamental importancia para un futuro viaje a Marte u otras ambiciosas misiones interplanetarias.

Los informes se fijarán en transformaciones genéticas, afección a la vista, efectos sobre el sistema cardiovascular, impacto en el tracto digestivo o cambios en el comportamiento, que se cotejarán con los de su hermano gemelo.

El estudio del ADN y el conjunto de biomoléculas en el cuerpo humano proporcionará a la NASA «una información única» acerca de la reacción de los astronatuas a factores de estrés como los asociados con los vuelos espaciales.

Corazón, músculos y cerebro

Las investigaciones fisiológicas analizarán cómo un entorno tan especial puede inducir cambios en diferentes órganos como el corazón, los músculos o el cerebro, mientras que los estudios sobre salud mental ayudarán a prevenir qué efectos puede tener vivir en el espacio sobre la percepción y el razonamiento, la toma de decisiones y el estado de alerta.

Las investigaciones de microbiología-microbioma explorarán los efectos de la dieta y el estrés, y los estudios moleculares observarán cómo las células se activan y desactivan por el vuelo espacial, y cómo afectan la radiación o los cambios rápidos de microgravedad en muestras biológicas como sangre, saliva, orina y heces.

En la NASA esperan que estas investigaciones ayuden a identificar, de una forma como antes no se había hecho, los peligros y las consecuencias para la salud de los vuelos espaciales prolongados, especialmente cuando Marte se propone como próximo destino para la humanidad.

Kelly ya ha regresado a Estados Unidos, su país natal, procedente de Kazajistán, donde aterrizó la nave Soyuz que le trajo de la ISS. Lo esperaban sus hijas, su pareja y su hermano gemelo, además del director de la NASA, Charles Bolden, entre otros. 

Tomado de:

El Mundo Ciencia

9 de enero de 2016

Difunden imágenes de la "acuarela cósmica"


Difunden imágenes de la "acuarela cósmica"


Composición de la Acuarela Cósmica

Un fragmento de la "acuarela cósmica" que fue fotografiada con un telescopio de 2,2 metros.

Algunos artistas pasan meses e incluso años diseñando piezas con las que expresarse, pero hay otras obras, como la que este miércoles ha difundido el Observatorio La Silla, en Chile, que simplemente aparecen ante los ojos de los científicos, eso sí, a años luz de distancia.
En este caso, la "fuente de inspiración" fue la zona que rodea a la estrella "R. Coronae Australis" y dio lugar a una "acuarela cósmica" que parece una pintura impresionista.

La composición fue creada con imágenes tomadas por la Agencia Espacial Europea (AEE) y revela nuevos detalles de este área del cielo.

Según explicó la agencia europea en un comunicado, "la estrella R Coronae Australis se ubica en el corazón de una región cercana de formación estelar y está rodeada por una delicada nebulosa de reflexión azulada que se encuentra en una enorme nube de polvo".

El retrato fue tomado con el Wide Field Imager (WFI), un telescopio de 2,2 metros del Observatorio La Silla, en Chile, y es una combinación de doce imágenes tomadas a través de filtros rojo, verde y azul.

La imagen muestra un trozo del cielo que abarca aproximadamente el tamaño de la Luna llena, lo que equivale a unos cuatro años luz de extensión en el lugar donde se encuentra la nebulosa, ubicada a unos 420 años-luz de distancia, en la constelación de Corona Australis (la Corona Austral).

Acuarela cósmica
Vista de campo amplio de la zona de la estrella R. Coronae Australis 

El complejo fue nombrado así en honor a la estrella R Coronae Australis, que es una de las numerosas estrellas en esta zona que se clasifican como muy jóvenes y que varían en brillo, rodeadas aún por las nubes de gas y polvo de donde se formaron.
"La intensa radiación que se desprende de estas estrellas jóvenes y calientes interactúa con el gas que las rodea y es reflejada o reemitida en diferentes longitudes de onda", explicó la AEE quien atribuyó "los magníficos colores de la nebulosa" a estos procesos que se producen en ella.

Según el comunicado, la nubosidad celeste que se observa en la composición "se debe mayormente al reflejo de la luz de la estrella en pequeñas partículas de polvo (mientras que) las estrellas jóvenes (...) poseen masas similares al Sol y no emiten suficiente luz ultravioleta como para ionizar una parte importante del hidrógeno que las rodea".

La agencia espacial europea explicó que estos objetos sólo pueden ser observados en longitudes de onda más largas, usando una cámara capaz de detectar la radiación infrarroja.

La propia R Coronae Australis no es observable a simple vista, pero la diminuta constelación con forma de corona donde se encuentra es fácilmente detectable desde los sitios oscuros, debido a su proximidad en el cielo a la gran constelación de Sagitario y a las nubes ricas en estrellas hacia el centro de nuestra galaxia, la Vía Láctea.

Fuente:

BBC Ciencia

21 de diciembre de 2015

¿Qué había antes del Big Bang?

Distintas investigaciones proponen que hay una historia anterior a ese instante cero de nuestro universo.


Es una pregunta habitual cuando se habla del origen del universo. Y, aunque parezca mentira, no es nueva. Hace 1.600 años, la cuestión fue suscitada en el ámbito teológico: "¿Qué hacía Dios antes de crear los Cielos y la Tierra?". Sin duda una buena pregunta, a la que San Agustín respondió con humor que Dios “preparaba el infierno para los que hacen este tipo de preguntas”. Aparte de esta broma, San Agustín fue más lejos y afirmó, con sagacidad, que no tiene sentido preguntar en qué empleaba Dios su tiempo antes de crear el tiempo. De forma semejante, la pregunta "¿qué pasó antes del instante inicial?" no tiene mucho sentido. Pero, naturalmente, esto puede parecer un mero juego de palabras. Nuestra intuición nos dice que cada instante está precedido por otro, por lo que la idea de un "instante inicial", parece absurda. El problema es que nuestra intuición se basa en nuestra experiencia directa, y esa experiencia es muy limitada. En cuanto nos salimos de las escalas físicas humanas", nuestra intuición suele fallar clamorosamente.

Por ejemplo, a los pensadores de todas las civilizaciones antiguas (con la maravillosa excepción de la griega) les pareció evidente que la Tierra debía ser plana. Estaban extrapolando, erróneamente, la percepción que tenemos cuando nos desplazamos en distancias no mucho mayores que unas decenas de kilómetros. Por supuesto, ahora sabemos que, vista globalmente, la Tierra es redonda. Del mismo modo, el espacio y el tiempo, cuando se consideran globalmente, son muy diferentes de como los percibimos en nuestra experiencia ordinaria.

La teoría

La teoría del Big Bang se basa, a su vez, en la teoría general de la relatividad, formulada por Albert Einstein en 1915, y que representa una de las cumbres del pensamiento humano. Según la teoría de la relatividad, el espacio y el tiempo no son, como podría parecer, magnitudes inertes e inmutables. Por el contrario, el espacio-tiempo, como un todo, se puede estirar y encoger, curvar y retorcer. Su textura se parece más a la de la goma que a la del cristal. Y su geometría está determinada por la materia y energía que contiene. Todo esto son conceptos revolucionarios y fascinantes. El espacio y el tiempo no son el escenario impasible de un gran teatro, dentro del cual tiene lugar una representación. La teoría nos dice que la forma de ese teatro y su evolución temporal están determinados por los actores que pululan dentro de él, es decir, la materia y energía que pueblan el universo.

Es importante subrayar que la teoría de la relatividad no es una mera especulación. Sus predicciones se han comprobado en una enorme variedad de situaciones físicas, hasta el momento sin un solo fallo. Pensemos, por ejemplo, que, desde el punto de vista relativista, algo tan familiar como la fuerza de la gravedad es simplemente la consecuencia de la curvatura del espacio-tiempo, producida a su vez por la presencia de grandes masas, como planetas y estrellas. De hecho, la teoría de Einstein predice que las fuerzas gravitatorias han de ser tal como prescribe la venerable ley de la gravitación de Newton... con pequeñas correcciones (a veces no tan pequeñas). Y hasta ahora la naturaleza, "cuando ha tenido que elegir", siempre ha dado la razón a Einstein frente a Newton.

Pues bien, cuando se aplica la teoría de la relatividad al universo como un todo, se encuentra que, necesariamente, este ha de pasar por una fase de expansión; es decir, el espacio mismo (con todo su contenido) ha de expandirse, igual que se hincha un pastel en el horno. Vista con los ojos de la teoría de Einstein, la expansión del universo se produce porque el espacio entre las galaxias está dilatándose; o, en otras palabras, se está creando espacio entre ellas. No solo eso, sino que el universo entero que observamos hubo de surgir de un solo punto, en un instante inicial denominado Big Bang.

Por supuesto, los conceptos anteriores no son fáciles de visualizar. Podemos intentarlo utilizando un modelo de universo simplificado, de una sola dimensión espacial (en vez de las tres ordinarias) y una temporal (el tiempo ordinario). En esta imagen, el espacio-tiempo del universo tendría una forma parecida a un gigantesco dedal, como el de la figura. En ese dibujo el tiempo avanza hacia arriba. Cada sección circular del dedal (es decir cada anillo) representa el universo en un instante dado. A medida que avanza el tiempo (y por tanto subimos por la superficie del dedal), los anillos son cada vez más grandes, como consecuencia de la expansión del universo.

El vértice inferior del dedal corresponde al Big Bang: el instante cero, en el que todo el universo estaba comprimido en un punto. En esta imagen, viajar imaginariamente hacia atrás en el tiempo significa deslizarnos hacia abajo por la superficie del dedal. Pero, si una vez alcanzado el instante inicial (Big Bang) intentáramos proseguir en la misma dirección, encontraríamos que regresamos hacia adelante en el tiempo. Es como si paseando por la superficie terrestre nos dirigimos hacia el Sur. En nuestras pequeñas escalas podemos seguir caminando en esa dirección de forma indefinida, pero si llegáramos a alcanzar el polo Sur terrestre, comprobaríamos que no es posible ir más allá. Si insistimos en continuar nuestro viaje, nos encontraremos caminando en dirección Norte.

Notemos que en el dibujo, la superficie de dos dimensiones, que representa el espacio-tiempo, está inmersa en un espacio de tres dimensiones. Esto es consecuencia de una limitación de nuestro cerebro para imaginar superficies curvadas: tenemos que representarlas sumergidas en un espacio tridimensional. Pero matemáticamente no hay ninguna dificultad para formular una superficie o un espacio curvos, sin tener que recurrir a un mundo de dimensionalidad mayor. En nuestro ejemplo, la superficie en forma de dedal que representa el espacio-tiempo no tiene por qué estar sumergida en otro espacio de más dimensiones. Es un universo consistente en sí mismo.

Por tanto, la respuesta a la pregunta "¿qué había antes del Big Bang?" es que nunca hubo un "antes del Big Bang”. ¿Fin de la historia? Podría ser, pero no es seguro.



El artículo completo en:

El País

13 de diciembre de 2015

¿Cuál es la probabilidad de que exista vida en otros planetas?

Un nuevo estudio reveló que en el total del universo existe suficiente materia oscura como para crear 1,000,000,000,000,000,000,000 planetas parecidos al nuestro.


La ciencia ha estado intentando responder a todas estas cuestiones desde el primer momento, y en mayor o menor medida ya ha tenido un gran porcentaje de éxito.  Se han descubierto evidencias de la existencia de microorganismos, agua o planetas similares, casi semanalmente tenemos una nueva prueba. El problema es que las respuestas no han convencido demasiado al público; que en pocas palabras quiere saber, y a ser posible ver, a un grupo amistoso de seres verdes con antenas.

Pero, ¿y si es que la vida fuera de la Tierra aún no se ha producido y está por venir? Un reciente investigación del Space Telescope Science Institute en Baltimore sugiere que el ecosistema existente en nuestro planeta, incluida la vida, es el primero de de una explosión masiva de nuevos planetas potencialmente habitables que en un futuro formarán parte del universo.
Los datos de este estudio revelan que en el total del universo existe suficiente materia oscura como para crear 1,000,000,000,000,000,000,000 planetas parecidos al nuestro, y esto sin tener en cuenta a los que ya han quedado atrás en el tiempo. Eso se traduce en que tendremos diez veces los mil millones de mundos del tamaño de la Tierra que ya se piensan que existen, y más de diez veces las 100 galaxias que ya tenemos indexadas.

Dicho de otro modo, y para entender estas macrocifras. De ser esto así, la posibilidad de que no seamos la única raza inteligente es de casi un 92%; este porcentaje no responde a la pregunta de si conoceremos a otros seres , pero al menos lanza una certeza sobre si estamos solos. Además, con este nuevo cálculo se desmienten anteriores investigaciones en las que se estimaba que la formación de la Tierra se había producido después de que el 80% de planetas parecidos ya hubiesen visto la luz. Por lo que habríamos pasado de ser una de las últimas civilizaciones del universo, a ser una de las más antiguas. Al menos para todos los que vienen.

Para hacer estos cálculos, teóricos desde todo punto, el grupo de científicos se basó en el del universo observable ¿Y por qué no hacerlo con el “total” del universo? Muy sencillo, el resultado sería también infinito, incalculable, y por la simple cuestión de que no hay manera de saber qué ocurre en un sistema infinito. Además, las evidencias de la investigación concluyen que pese a estos cálculos aunque sí predicen la futura de formación de vida, no quiere decir que sea igual que la que conocemos o con los mismos procesos evolutivos.

Tomado de:

Tecno (América Economía)

19 de mayo de 2015

¿Por qué se mueren las galaxias?


Logran mostrar, por primera vez, cuál fue el proceso que hizo que las galaxias "muertas" dejaran de formar estrellas hace miles de millones de años.


Viejas galaxias colosales mueren de dentro hacia afuera. /NASA/ESA

Un equipo internacional de científicos ha logrado mostrar, por primera vez, cuál fue el proceso que hizo que las galaxias "muertas" dejaran de formar estrellas hace miles de millones de años.

A través del telescopio VLT (Very Large Telescope) de ESO y Hubble de la NASA y la Agencia Espacial Europea (ESA), se ha revelado que tres mil millones de años después del Big Bang, estas galaxias todavía formaban estrellas en sus zonas exteriores, pero no en su interior. La disminución en el ritmo de formación estelar parece haberse iniciado en los núcleos de las galaxias, extendiéndose luego a las partes exteriores.

Uno de los grandes misterios de la astrofísica se ha centrado en cómo las masivas e inactivas galaxias elípticas, tan comunes en el universo moderno, frenaron hasta "desconectar" su otrora frenético ritmo de formación estelar. Estas colosales galaxias, a menudo también llamadas esferoides debido a su forma, típicamente contienen, en su atestado centro, una densidad de estrellas diez veces mayor a la de la Vía Láctea, y tienen cerca de diez veces su masa.

Los astrónomos se refieren a estas grandes galaxias como rojas y muertas, ya que exhiben una amplia abundancia de antiguas estrellas rojas, pero muestran la ausencia de jóvenes estrellas azules y no presentan evidencia de formación de nuevas estrellas.

La edad estimada de las estrellas rojas sugiere que estas galaxias dejaron de crear nuevas estrellas hace 10.000 millones de años.Este "apagón" comenzó justo en el clímax de la formación de estrellas en el Universo, cuando muchas galaxias aún estaban dando a luz a estrellas a un ritmo casi veinte veces más rápido que el actual.

"Los esferoides masivos muertos contienen aproximadamente la mitad de todas las estrellas que el universo ha producido durante toda su vida", ha señalado Sandro Tacchella, del Instituto Federal de Tecnología de Zúrich (ETH, Suiza). "No podemos pretender una comprensión de cómo el universo evolucionó y se convirtió en lo que hoy vemos a no ser que comprendamos a su vez cómo estas galaxias han llegado a ser lo que son", ha explicado.
El artículo completo en:

16 de febrero de 2015

¿Existió el Big Bang? Proponen que el universo no tuvo principio


Estudios realizados en universidad en Canadá buscan añadir nueva ecuación cuántica a teoría del Bing Bang, demostrando así que el universo no inició en una masa densa. 

La tradicional Teoría del Big Bang que explica el origen del universo podría verse relegada por una nueva teoría basada en una ecuación cuántica. Los estudios, que fueron realizados en la Universidad de Lethbridge cuestionan la conocida teoría ya que es “muy singular”.
Como conocemos, la teoría explica que al inicio había una masa densa infintesimalmente pequeña que, luego de una explosión, se expandió hasta formar el universo como lo conocemos.
La singularidad del Big Bang es el problema más grande de la relatividad general, porque las leyes de la física parecen romperse ahí abajo. No explican qué pasó antes o en su momento como única masa densa”, cuestionó Ahmed Farag Ali, uno de los científicos encargados de la investigación.
Es por ello que Ali se une a Saurya Das y proponen que la nueva teoría cuántica podría demostrar que, en realidad, el universo no tuvo ni inicio ni fin. ¿Cómo lo lograron? Ambos usaron ideas del físico teórico David Bohm, conocido por sus contribuciones a la filosofía de la física. Fue Bohm quien en 1950 exploró la geodesia clásica (el camino más corto entre dos puntos de una superficie curva) con trayectorias cuánticas.
Ali y Saurya Das aplican esta teoría a una ecuación más: la ecuación desarrollada por el físico Amal Kumar Raychaudhuri, pero corregida cuánticamente por científicos. De este modo, aplican esta última ecuación a las que propuso Friedman para explicar la expansión y la evolución del universo.
En la relatividad general, un posible destino del Universo es que comienza a contraerse hasta que se derrumba sobre sí mismo en una gran crisis y se convierte en un punto infinitamente denso, una vez más.
Ali y Das explican que tiene una diferencia clave entre geodesias clásicas y trayectorias de Bohm. Las geodesias clásicas finalmente se cruzan entre sí, y los puntos en los que convergen son singularidades. En cambio, las trayectorias de Bohm nunca se cruzan entre sí, por lo que las singularidades no aparecen en las ecuaciones. Es decir, no hay inicio ni fin.
En términos cosmológicos, los científicos explican que las correcciones cuánticas pueden ser consideradas como una constante cosmológica (sin la necesidad de la energía oscura) y un plazo de radiación. Estos términos mantienen el Universo en un tamaño finito, y por lo tanto le dan una edad infinita.
Fuente:

9 de agosto de 2014

¿Qué galaxia pesa más: la Vía Láctea o Andrómeda?

Por primera vez, un grupo internacional de astrofísicos ha sido capaz de calcular la masa de la Vía Láctea y Andrómeda basándose no solo en las galaxias enanas que las rodean, sino con referencias de otras aglomeraciones de estrellas más grandes, pertenecientes, como las dos citadas, al llamado Grupo Local.
Además, los expertos han conseguido conjugar en sus mediciones (algo que tampoco se había hecho nunca) dos variables: la gravedad que atrae a las galaxias y la fuerza repulsiva que expande el universo y, por lo tanto, las aleja entre sí.
El resultado ha sido sorprendente, ya que Andrómeda parece tener el doble de masa que la Vía Láctea. Antes de publicarse este cálculo en la revista especializada Monthly Notices of the Royal Astronomical Society, el más preciso hasta la fecha, se pensaba justo lo contrario: que nuestro hogar estelar era bastante más pesado que su vecina. Además, nada menos que el 90 % de la masa de ambas es materia oscura, o sea, que no emite luz y cuya naturaleza es todavía un misterio.

Fuente:

Muy Interesante
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0