Latest Posts:

Mostrando las entradas con la etiqueta cern. Mostrar todas las entradas
Mostrando las entradas con la etiqueta cern. Mostrar todas las entradas

4 de julio de 2012

Descubren la 'partícula de Dios' que explica cómo se forma la materia

Especial: Partícula de Dios 

Descubren la 'partícula de Dios' que explica cómo se forma la materia


  • Descubren una nueva partícula 'consistente' con el bosón de Higgs
  • Esta partícula explica cómo la materia obtiene su masa en el Universo
  • El director del CERN califica el hallazgo como un 'hito histórico'
La Organización Europea para la Investigación Nuclear (CERN) acaba de escribir un capítulo crucial en la historia de la Física, al descubrir una nueva partícula subatómica que confirma con más de un 99% de probabilidad la existencia del bosón de Higgs, conocido popularmente como la 'partícula de Dios', un hallazgo fundamental para explicar por qué existe la materia tal y como la conocemos.

Con los resultados presentados hoy, la existencia del bosón de Higgs -la partícula subatómica teorizada por el físico británico Peter Higgs en los años sesenta, y que supone el único ingrediente del Modelo Estándar de la Física que aún no se había demostrado experimentalmente- es prácticamente un hecho.

Si no fuera por el bosón de Higgs, las partículas fundamentales de las que se compone todo, desde un grano de arena hasta las personas, los planetas y las galaxias, viajarían por el Cosmos a la velocidad de la luz, y el Universo no se habría 'coagulado' para formar materia. Por ese motivo, el editor del físico Leon Lederman creyó oportuno cambiar el título de su libro llamado originalmente 'The goddamn particle' ('La puñetera partícula') por el de 'The God particle' (La 'partícula Dios', aunque popularmente se ha traducido como 'la partícula de Dios').

En 1964, Higgs describió con la sola ayuda de un lápiz y un papel las ecuaciones que predicen la existencia de una partícula nunca vista, pero necesaria para que funcione el Modelo Estándar sobre el que se basa la física actual. Es la partícula fundamental de lo que se conoce como el mecanismo de Higgs, una especie de campo invisible presente en todos y cada uno de los rincones del universo y que hace que las partículas inmersas en él tengan masa.

El bosón de Higgs es el componente fundamental de ese campo, de la misma manera que el fotón es el componente fundamental de la luz. Si la 'partícula de Dios' no existiera, tampoco existiría nada material en el Universo.

"Puedo confirmar que se ha descubierto una partícula que es consistente con la teoría del bosón de Higgs", explicó John Womersley, director ejecutivo del Consejo de Tecnología y Ciencia del Reino Unido, durante una presentación del hallazgo en Londres.

Joe Incandela, portavoz de uno de los dos equipos que trabajan en la búsqueda de la partícula de Higgs, aseguró que "se trata de un resultado todavía preliminar, pero creemos que es muy fuerte y muy sólido".

Tras terminar su presentación, el estruendoso aplauso en el auditorio no cesaba a pesar de que Incandela trataba de pedir la palabra para agradecer a toda la organización la colaboración y el ambiente científico donde ha podido desarrollar su investigación.

Nervios y emoción

En el auditorio estaba presente el propio Peter Higgs, con cuyo apellido se bautizó al mítico bosón, quien no pudo contener las lágrimas al escuchar los resultados que han confirmado su teoría. "Sólo quiero dar las gracias a todas las personas que han estado relacionadas con este trabajo. Es lo mas increíble que me ha pasado en toda la vida", aseguró el científico emocionado.

La presentación de estos resultados ha tenido lugar en la Conferencia Internacional de Física de Altas Energías (ICHEP 2012) que se celebra en Melbourne (Australia), donde se están exponiendo los resultados obtenidos por los experimentos ATLAS y CMS del Gran Colisionador de Hadrones (LHC) en 2012. El director del CERN, Rolf Heuer, ha comenzado la conferencia nervioso y ha afirmado que "hoy es un día muy especial en todos los sentidos".

ATLAS, uno de los dos experimentos del CERN que busca el bosón de Higgs, ha confirmado la observación de una nueva partícula a un nivel de 5 sigma (una forma de medir la probabilidad de que los resultados sean ciertos que ronda el 100%). Esta medición implica que la probabilidad de error es de tres en un millón, una cifra que, oficialmente, es suficiente para dar por confirmado un descubrimiento.

"Es dificil no estar emocionado con estos resultados", ha dicho Sergio Bertolucci, director de investigación del CERN. "Con toda la precaución necesaria, me parece que estamos en un punto rompedor".
"Es un hito histórico, pero estamos solo al principio", ha declarado por su parte Heuer, el director del CERN.

Muy cerca del objetivo

Los datos del CERN no son todavía tan concluyentes como para poder afirmar con total certeza que han encontrado la 'particula de Dios', pero están realmente cerca de alcanzar ese objetivo. "Hemos encontrado un nuevo bosón con una masa de 125,3 gigaelectrónvoltios (una medida usada por los fisicos para cuantificar masas muy pequeñas), con un grado de consistencia de 4,9 sigma. Estamos de acuerdo con el modelo estándar en un 95%, pero necesitamos más datos", explicó Icandela.

"Observamos en nuestros datos claros signos de una nueva partícula, con un nivel de confianza estadística de 5 sigma (superior al 99,99994%), en la región de masas de alrededor de 125 gigaelectrónvoltios. El excepcional funcionamiento del LHC y ATLAS, y los enormes esfuerzos de mucha gente, nos han llevado a esta emocionante etapa", asegura la portavoz del experimento ATLAS, Fabiola Gianotti, "pero se necesita un poco más de tiempo para preparar estos resultados para su publicación".

El portavoz del experimento CMS, Joe Incandela, explica: "Los resultados son preliminares, pero la señal de 5 sigma alrededor de 125 gigaelectrónvoltios que estamos viendo es dramática. Es realmente una nueva partícula. Sabemos que debe ser un bosón y es el bosón más pesado jamás encontrado". Para Incandela, "las implicaciones son muy significativas y es precisamente por esta razón por lo que es preciso ser extremadamente diligentes en todos los estudios y comprobaciones".

Gran expectación

El pasado mes de diciembre ya se habló de un posible anuncio del CERN. En aquella ocasión los expertos señalaron que se "había cerrado el cerco" en torno a la partícula, por lo que ya estaban más cerca de encontrarla.

Además, el director general del CERN, Rolf Heuer, señaló la semana pasada que ya podría haber datos "suficientes" para hallar el Bosón de Higgs. En un artículo en 'The Bulletin', Heuer indicó que "hallar el Bosón de Higgs es una posibilidad real y que, a menos de dos semanas para que se celebre la conferencia ICHEP, la noticias de los experimentos se esperado ansiosamente".

A pesar de estas palabras, Heuer ha pedido a la comunidad científica que tenga "un poco más de paciencia". En este sentido, recordó que aunque ATLAS o CMS muestren datos que supongan el descubrimiento de la partícula "siempre se necesita tiempo para saber si es el Bosón de Higgs buscado durante mucho tiempo -el último ingrediente que falta en el Modelo Estándar de física de partículas- o si se trata de una forma más exótica de esta partícula de que podría abrir la puerta a una nueva física".

Nivel de certeza

Los físicos de partículas mantienen un consenso general acerca de lo que se puede considerar un 'descubrimiento': un nivel de certeza de 5 sigmas. La cantidad de sigmas mide la improbabilidad de obtener un resultado experimental fruto de la suerte en lugar de provenir de un efecto real.

Se suele poner como ejemplo el lanzamiento de una moneda al aire y ver cuántas veces sale cara. Por ejemplo, 3 sigmas representarían una desviación de la media equivalente a obtener ocho caras en ocho lanzamientos seguidos. Y 5 sigmas, 20 caras en 20 lanzamientos.

La toma de datos para la ICHEP 2012 concluyó el lunes 18 de junio después de un "exitoso primer periodo" de funcionamiento del LHC durante este año, según ha explicado del CERN. Precisamente, Heuer ha señalado que es el "impresionante trabajo" que ha tenido el LHC en 2012 lo que "ha elevado las expectativas de cara a un descubrimiento".

El equipo de expertos que trabaja para la organización en Ginebra ha diseñado la actividad del LHC para el primer periodo de 2012 de manera que obtuviera la máxima cantidad de datos posibles antes de que se celebrara el ICHEP. De hecho, se han obtenido más datos entre abril y junio de este año que en todo 2011. "La estrategia ha sido un éxito", ha indicado el director general del CERN.

Fuentes:



26 de junio de 2012

El CERN dispara los rumores sobre el hallazgo de la 'partícula de Dios'

Podría anunciarse el 4 de julio en la conferencia ICHEP 


Instalaciones del detector ATLAS. | CERN
Instalaciones del detector ATLAS. | CERN
 El director general de la Organización Europea para la Investigación Nuclear (CERN), Rolf Heuer, ha señalado que ya podría haber datos "suficientes" para hallar el bosón de Higgs. El próximo 4 de julio se celebra la Conferencia Internacional de Física de Altas Energías (ICHEP 2012) en donde se presentarán los últimos resultados obtenidos en los experimentos ATLAS y CMS del Gran Colisionador de Hadrones (LHC) y la comunidad científica ya especula con que, en ese encuentro, el CERN realizará el anuncio de un descubrimiento.

En un artículo en 'The Bulletin', Heuer ha indicado que "hallar el bosón de Higgs es una posibilidad real y que, a menos de dos semanas para que se celebre la conferencia ICHEP, la noticias de los experimentos son esperadas con ansiedad". Sin embargo, ha pedido a la comunidad científica que tenga "un poco más de paciencia".

El bosón de Higgs, conocido también popularmente como la 'partícula de Dios', es la última partícula del Modelo Estándar de la Física que todavía no ha sido descubierta, la que da sentido a la Física tal y como la conocemos. Es por el momento, la única explicación disponible sobre una cuestión tan fundamental como el origen de la materia en las partículas del Universo. No es posible detectar el bosón de Higgs de forma directa. Lo que buscan los detectores del LHC son las huellas que dejaría al desintegrarse.

Expectación ante el 4 de julio

La toma de datos para la ICHEP 2012 concluyó el lunes 18 de junio después de un "exitoso primer periodo" de funcionamiento del LHC durante este año, según ha explicado del CERN. Precisamente, Heuer ha señalado que es el "impresionante trabajo" que ha tenido el LHC en 2012 lo que "ha elevado las expectativas de cara a un descubrimiento".

El equipo de expertos que trabaja para la organización en Ginebra ha diseñado la actividad del LHC para el primer periodo de 2012 de manera que obtuviera la máxima cantidad de datos posibles antes de que se celebrara el ICHEP. De hecho, se han obtenido más datos entre abril y junio de este año que en todo 2011. "La estrategia ha sido un éxito", ha indicado el director general del CERN.

Además, ha recordado que aunque ATLAS o CMS muestren datos el próximo 4 de julio que supongan el descubrimiento de la partícula, "siempre se necesita tiempo para saber si es el bosón de Higgs buscado durante mucho tiempo -el último ingrediente que falta en el Modelo Estándar de física de partículas- o si se trata de una forma más exótica de esta partícula de que podría abrir la puerta a una nueva física".

Por otra parte, Heuer se ha mostrado "feliz" porque el Consejo ha aprobado los presupuestos del CERN para el año 2013. Además, la organización ha recibido la notificación de Rusia acerca de su futura asociación al CERN.

A principios de 2012 los responsables del CERN aseguraron que este año se tendrían resultados concluyentes sobre la existencia o no del bosón de Higgs, de la que los científicos de este organismo creen haber visto "señales" durante las mediciones y análisis de datos realizados durante 2011.

El LHC, un anillo de 27 kilómetros de circunferencia localizado a entre 50 y 150 metros bajo tierra, cuenta con cuatro detectores. De ellos, dos -ATLAS Y CMS- están dedicados a buscar de manera paralela, pero independiente, nuevas partículas, incluida la de Higgs.

Fuente:

El Mundo Ciencia

9 de junio de 2012

CERN: Einstein tenía razón

Instalaciones del CERN en Ginebra. | Reuters
Instalaciones del CERN en Ginebra. | Reuters
  • Un experimento del CERN sugirió que los neutrinos eran más rápidos que la luz
  • Los investigadores confirman que hubo un error en los instrumentos de medición
Einstein tenía razón. El equipo de investigadores del CERN (Organización Europea para la Investigación Nuclear) que el pasado año revolucionó el mundo de la ciencia con un experimento que sugería que los neutrinos eran más veloces que la luz han confirmado este viernes que su trabajo contenía errores.

En concreto, se trató de un fallo en los instrumentos de medición (el cable de fibra óptica que transportaba la señal de GPS al reloj principal del experimento estaba mal conectado). Así que el hallazgo de un simple error técnico ha bastado para 'resolver' el caso de los neutrinos superveloces.

Según han explicado este viernes durante la 25 conferencia internacional sobre física de neutrinos y astrofísica que se celebra en Kioto (Japón), las nuevas mediciones realizadas en los cuatro experimentos del laboratorio Gran Sasso (Borexino, ICARUS, LVD y OPERA) demuestran que la Teoría de la Relatividad también es válida para estas partículas subatómicas.

"Aunque este resultado no es tan emocionante como a algunos les hubiera gustado, es lo que todos esperábamos. Esta historia ha capturado la imaginación del público y les ha dado la oportunidad de ver el método científico en acción. Se publica un resultado inesperado para que sea escrutado, se investiga en profundidad y se resuelve, en parte, gracias a la colaboración entre experimentos que normalmente compiten. Así es como la ciencia avanza", ha afirmado el director de investigación del CERN, Sergio Bertolucci, durante la presentación de los resultados de las nuevas mediciones que se han llevado a cabo.

A la búsqueda del fallo

En septiembre de 2011 un equipo del CERN de Ginebra publicó un trabajo que mostraba que estas partículas subatómicas, denominadas neutrinos, podían viajar más rápido que la luz. El resultado ponía en entredicho la Teoría de Relatividad formulada por Albert Einstein en 1905, que constituye uno de los grandes pilares en los que se sustenta la Física.

La conferencia en la que Dario Autiero, uno de los autores del estudio, expuso los resultados suscitó una gran expectación y fue recogida en medios de comunicación de todo el mundo. Los neutrinos saltaban a la fama.

Comenzó también uno de los debates más apasionantes entre físicos de todo el mundo. Muchos científicos de prestigio pusieron ya en duda que los resultados del CERN pudieran ser ciertos y la prudencia fue la reacción más común entre los investigadores. Pero había que encontrar el error.

Los propios autores del estudio fueron los primeros en mostrar su perplejidad ante los resultados del experimento OPERA, que habían sido repetidos en numerosas ocasiones antes de hacerse públicos. Asimismo, animaron al resto de la comunidad científica a estudiar el caso y a intentar localizar dónde estaba el fallo.

Una carrera de 730 kilómetros

 El experimento OPERA calculó el tiempo que los neutrinos tardan en recorrer 730 kilómetros (que es la distancia que separa las instalaciones del CERN de Ginebra y del laboratorio subterráneo de Gran Sasso, en Italia). Los resultados indicaban que los neutrinos recorrieron esta distancia en un tiempo 60 nanosegundos inferior que la luz.

"Las primeras mediciones realizadas hasta 2011 entre el CERN y Gran Sasso fueron revisadas teniendo en cuenta los efectos de los instrumentos", ha explicado el equipo en Kioto.

El pasado mes de febrero, los físicos que habían estudiado el funcionamiento de OPERA habían sugerido ya la hipótesis de que sus resultados eran erróneos debido a que los datos habían sido alterados por una mala conexión entre un GPS y un ordenador. Al mes siguiente, el físico Antonio Ereditano, coordinador del experimento OPERA, presentó su dimisión de su cargo en el Instituto Nacional de Física Nuclear italiano.

Las comprobaciones llevadas a cabo por el equipo del experimento OPERA en los últimos meses han confirmado el fallo en la conexión. Este fallo técnico hizo que se atribuyera a los neutrinos una marca 74 nanosegundos superior al tiempo que tardaron en realidad. Es decir, la velocidad de los neutrinos fue inferior a la que habían indicado los primeros resultados. Además, el reloj de alta precisión utilizado por OPERA estaba ligeramente desfasado, lo que hizo que se añadieran otros 15 nanosegundos.

Una vez que estos fallos técnicos fueron corregidos, se volvió a calcular el tiempo que tardaban los neutrinos en recorrer el túnel de 730 kilómetros. En esta ocasión, estas partículas subatómicas no pudieron batir la velocidad de la luz. Como dijo Einstein.

Fuente:

El Mundo Ciencia

14 de marzo de 2012

El CERN consigue medir la antimateria



alpha-cernEl experimento ALPH del Centro Europeo para la Investigación Nuclear (CERN) ha conseguido manipular la antimateria por primera vez gracias al empleo de ondas microondas. El trabajo se publica en la revista Nature y demuestra que es posible desarrollar experimentos para modificar las propiedades internas de los átomos de antihidrógeno.


¿Por qué es tan difícil de medir la antimateria? Los átomos de antimateria son complementarios a los átomos de materia, es decir, tienen las mismas propiedades pero sus cargas eléctricas están invertidas. Por este motivo, la materia y la antimateria se desintegran al entrar en contacto y hasta ahora había sido imposible estudiar la antimateria usando herramientas convencionales. En junio del 2012 el CERN publicó un trabajo en el que informaba que habían conseguido retener átomos de antimateria durante más de 16 minutos al aislarlos dentro de un recipiente magnético. El siguiente paso, descrito en el estudio recién publicado, ha sido iluminar los átomos con ondas microondas para obtener la primera medida del espectro de frecuencias del antihidrógeno. Estas medidas demuestran por primera vez que es posible medir las propiedades internas de la antimateria iluminándola con ondas microondas.

"El hidrógeno es el elemento más abundante del universo y entendemos perfectamente su estructura", indica Jeffrey Hangst, del experimento ALPHA. "Y por fin empezamos a comprender los misterios del antihidrógeno. ¿Son diferentes? Ahora podemos decir con confianza que el tiempo nos lo dirá."

Fuente:

Muy Interesante

24 de febrero de 2012

Un cable flojo parece reivindicar a Einstein

Albert Einstein

Parece que, después de todo, Einstein tenía razón y nada viaja más rápido que la luz.

Los resultados del polémico estudio en el que partículas subatómicas se desplazaban más rápido que la velocidad de la luz podrían explicarse por la mala conexión de un cable, informó la revista Science Insider.

El experimento, efectuado en septiembre pasado, puso en duda un principio fundamental de la física, central en la la Teoría de la Relatividad de Albert Einstein.

Pero, según la revista, el sorprendente hallazgo podría haber sido resultado de una mala conexión entre un computador y el Sistema de Posicionamiento Global (GPS, por sus siglas en inglés), empleado para medir el tiempo de viaje de los partículas.

Para el experimento, se enviaron neutrinos desde el Centro Europeo para la Investigación Nuclear (CERN), ubicado en Ginebra, Suiza, a otro laboratorio sitiado a 730 kilómetros de distancia.

Y al revisar los datos los científicos encontraron que estos parecían completar el viaje 60 milmillonésimas de segundo más rápido que lo que hubiese hecho la luz recorriendo la misma distancia sin ningún obstáculo.

clic Lea: Desconcierto por hallazgo de partícula que parece superar la velocidad de la luz

Al revisar la conexión y medir el tiempo que toman los datos en recorrer la longitud del cable de fibra óptica, sin embargo, los investigadores encontraron que los datos llegan 60 nanosegundos antes de lo esperado.

Y como este intervalo de tiempo se le resta al tiempo total del viaje, eso podría explicar la llegada temprana de los neutrinos en el estudio pasado.

Nuevos estudios

Neutrinos en el CERN

El experimento había sido conducido por el Centro Europeo para la Investigación Nuclear, CERN.

Nuevos datos, sin embargo, serán necesarios para confirmar esta nueva hipótesis.

Y es que el error que pudo haber llevado a los científicos a sobrestimar el tiempo de viaje de los neutrinos también puede haber sido generado por el oscilador electrónico que provee las marcas de tiempo para las sincronizaciones del GPS.

Por eso los científicos de CERN esperan realizar nuevos estudios, con otras tecnologías de fibra óptica, en mayo próximo.

Como explicó en su momento el periodista de la BBC Jason Palmer, varios científicos ya habían manifestado su escepticismo frente al estudio y advertido de la posibilidad de un error, pues el descubrimiento cuestionaba la teoría de Einstein según la cual nada puede viajar más rápido que la luz.

clic Lea: "¿Tenía razón Einstein?: dudan que los neutrinos viajen más rápido que la luz"

Y es que, desde que Einstein reveló sus descubrimientos en 1915, la ciencia no había hecho sino corroborarlos.

Y ahora parece que un cable flojo vuelve a reivindicarlo.

Fuentes:

BBC Ciencia

Lea además:

Dos errores cuestionan la velocidad de los neutrinos

Neutrinos desconectados de la realidad

Contenido relacionado

9 de diciembre de 2011

Expectación sobre la partícula de Higgs en el acelerador LHC

El descubrimiento está cada vez más cerca, pero aun no parece definitivo, según el anuncio de una conferencia al respecto convocada en el Laboratorio Europeo de Física de Partículas.

Simulación por ordenador de una colisión de protones en el detector CMS en la que se genera el bosón de Higgs en el acelerador LHC.- LUCAS TYLOR / CMS

La caza del bosón de Higgs, objetivo número uno del gran acelerador de partículas LHC, junto a Ginebra, podría estar acercándose al final, y con éxito, aunque los físicos todavía no parece que puedan cantar victoria de modo rotundo y definitivo. El Laboratorio Europeo de Física de Partículas (CERN) ha anunciado una conferencia para el próximo martes en la que los responsables de los dos grandes detectores, Atlas y CMS, presentarán los análisis de los datos obtenidos en los últimos meses de colisiones de partículas en el LHC. Se ha levantado mucha expectación en la comunidad científica al respecto y tanto Atlas como CMS se mantienen herméticos respecto a los resultados que van a presentar, pero muchos esperan que se anuncie que el Higgs está acorralado, aunque no se tengan aún los datos acumulados necesarios para afirmar que ha sido descubierto.

El director del CERN, Rolf Heuer, ha comunicado a todo el personal del CERN que esos nuevos resultados suponen "progresos significativos" en la búsqueda del bosón de Higgs, pero que efectivamente no son suficientes como para afirmar su existencia o descartarla. Son análisis de bastantes más datos que los presentados este verano.

En la conferencia del martes, a primera hora de la tarde, la portavoz de Atlas, Fabiola Gianotti expondrá los últimos resultados de este detector y a continuación lo hará el portavoz de CMS, Guido Tonelli, con el otro. Tras las dos presentaciones, de media hora cada una, en el auditorio central del CERN, habrá otra hora de debate entre los físicos del laboratorio.

El bosón de Higgs está predicho en la teoría de física de partículas pero nunca se ha visto en un experimento y su importancia reside en que permitiría explicar por qué tienen masa las partículas que la tienen, completando el Modelo Estándar que describe las partículas elementales y las interacciones entre ellas. Los especialistas afirman que el LHC es suficientemente potente para descubrirlo o para descartar su existencia. De cualquier modo será un gran descubrimiento.

Fuente:

El Paìs Ciencia

20 de octubre de 2011

El error de OPERA parece estar ligado a los relojes


Seguro que os acordáis cuando, hace unas semanas, el experimento conocido como OPERA provocó una ola de entusiasmo entre la comunidad científica y llamó la atención en todo el mundo por poner patas arriba la Teoría de la Relatividad.

Han sido muchos los investigadores que han tratado de encontrar algún error, algo que se les tuvo que pasar por alto a los científicos del CERN. Desde entonces han aparecido más de 80 artículos en arXiv tratando de desacreditar o explicar el efecto.

El último de estos artículos, firmado por Ronald van Elburg, de la Universidad de Groningen (Holanda), cree tener la clave del error y presenta un argumento interesante.

La relatividad especial y el movimiento de los relojes abordo de los satélites GPS que midieron el proceso tienen la explicación.

Para empezar, el científico ha tenido en cuenta la distancia y el tiempo empleados en el experimento. El equipo de OPERA estableció que la distancia entre los dos puntos era de 730 km (con un margen de error de 20 cm).

La posición del inicio de la carrera de neutrinos en el CERN era bastante fácil de medir con GPS, pero la del Laboratorio de Gran Sasso, en cambio, resulta algo más difícil de ubicar al estar enterrado a un kilómetro bajo tierra.

Medir el tiempo de vuelo de los neutrinos es otro tema. Los científicos del CERN señalaron que pueden evaluar con precisión el instante en que se crean los neutrinos y el instante en el que se detectan usando relojes en ambos extremos.

Obviamente hay que mantener los relojes de ambos extremos exactamente sincronizados. Para ello, el equipo utilizó satélites GPS, cada uno emitiendo una señal temporal de alta precisión desde una órbita a unos 20.000 km de altura. Esto introduce una serie de complicaciones adicionales que el equipo tuvo que tener en cuenta, tales como el tiempo de viaje de las señales GPS hasta el suelo.

Pero es aquí precisamente donde Van Elburg estima que hay un efecto que el equipo de OPERA pudo haber pasado por alto: el movimiento relativista de los relojes GPS.

En este caso, hay dos marcos de referencia: el experimento en tierra y los relojes en órbita. Estas sondas orbitan de oeste a este en un plano inclinado de 55 grados respecto al ecuador, un ángulo alineado con la ruta de los neutrinos.

Desde el punto de vista del reloj en un satélite GPS, las posiciones de la fuente y el detector de neutrinos están cambiando.

Desde la perspectiva del reloj, el detector se mueve hacia la fuente y, por lo tanto, la distancia recorrida por las partículas observada desde el reloj es más corta

Comentó Van Elburg.

Van Elburg cree que el equipo del CERN pasó esto por alto y calcula que este efecto podría haber provocado que los neutrinos llegasen 32 nanosegundos antes. Pero esto debe duplicarse, dado que se genera el mismo error en cada extremo del experimento. Por lo que la corrección total es de 64 nanosegundos, casi exactamente lo que observó el equipo de OPERA.

Esta teoría todavía debe ser revisada por otros científicos, especialmente por los responsables del experimento de los neutrinos.

Si se confirma que Van Elburg tiene razón, el experimento no solo no rompería con la Teoría de la Relatividad de Einstein sino que la reafirmaría.

Vía | Archiv.org

Tomado de:

Xakata Ciencia

4 de octubre de 2011

Por qué los neutrinos de OPERA no pueden ser taquiones

Figura 13 del artículo de la colaboración OPERA = http://arxiv.org/abs/1109/1109.4897

Según la relatividad de Einstein, aplicada a los taquiones, partículas con una masa en reposo negativa que se mueven a una velocidad mayor que la luz, conforme la energía de un taquión crece, su velocidad decrece y se aproxima de forma asintótica a la velocidad de la luz (por encima). Los famosos neutrinos superlumínicos observados por el experimento OPERA tienen una velocidad constante, que casi no depende de la energía; más aún, la velocidad crece ligeramente con la energía, en lugar de decrecer. Por tanto, podemos afirmar con rotundidad que los neutrinos de OPERA no son taquiones. Pueden ser partículas superlumínicas exóticas, pero no pueden ser taquiones.

E(v) = m(v)\,c^2 = \frac{\displaystyle m_0\,c^2}{\sqrt{\displaystyle 1- \frac{v^2}{c^2}}}, \qquad \qquad v<c,

E(v) = m(v)\,c^2 = \frac{\displaystyle m_0\,c^2}{\sqrt{\displaystyle -1+ \frac{v^2}{c^2}}}, \qquad \qquad v>c.

La energía de una partícula tiene dos componentes, la energía en reposo, llamada masa, y la energía en movimiento, llamada energía cinética, que depende de la velocidad de la partícula. Las medidas cosmológicas de la masa de los neutrinos indican que su masa en reposo es muy pequeña, luego para neutrinos de alta energía toda su energía es cinética; además, a mayor velocidad, mayor energía. Si un experimento mide la velocidad de un grupo de neutrinos que tienen cierta energía y la velocidad de otro grupo emitidos por la misma fuente que tienen el triple de dicha energía, dicho experimento tiene que observar que la velocidad de ambos grupos de neutrinos es diferente. Los del segundo grupo, los más energéticos, tienen que ser más rápidos.

El experimento OPERA ha medido la velocidad de neutrinos emitidos en el CERN que alcanzan un observatorio en Gran Sasso, en el centro de Italia, tras recorrer unos 730 km en línea recta por el interior de la Tierra. Todos los neutrinos han sido emitidos por la misma fuente pero su energía se distribuye en un cierto intervalo con una media de 17 GeV (la energía en reposo (masa) de un protón es casi 1 GeV) [véase el lado derecho de la figura que abre esta entrada]. Los investigadores han separado los neutrinos observados en Gran Sasso en dos grupos, los que tienen energía menor de 20 GeV (con una media de 14 GeV) y los que tienen una energía mayor (con una media de 43 GeV) [véase el lado izquierdo de la figura que abre esta entrada]. Para su sorpresa y para la sorpresa de todos los que lean esto, han observado que la velocidad de los neutrinos en ambos casos es idéntica (dentro de los márgenes de error considerados); una velocidad mayor que la velocidad de luz en el vacío, pero independiente de la energía de las partículas [de hecho, como se ve en el lado izquierdo de la figura que abre esta entrada, el punto medio crecio un poco en lugar de decrecer, pero una banda de error muy grande].

Según la relatividad de Einstein, aplicada a los taquiones, partículas con una masa en reposo negativa que se mueven a una velocidad mayor que la luz, conforme la energía de un taquión crece, su velocidad decrece y se aproxima de forma asintótica a la velocidad de la luz. Los datos experimentales de OPERA son inconsistentes con lo predicho para los taquiones según la teoría de la relatividad. Más aún, los resultados de estudios previos, en los que los neutrinos tienen menor energía, como en MINOS y las observaciones de neutrinos producidos por la supernova SN 1987A, complican aún más el asunto, pues requieren que la energía de los neutrinos depende de la velocidad de forma no monótona. Un sinsentido para cualquier físico.

Aberrón me entrevistó el pasado lunes porque iba a escribir un artículo sobre los neutrinos (“Agárrame esos neutrinos,” 28 sep. 2011) que apareció el miércoles en lainformacion.com. El artículo está muy bien y recomiendo su lectura a todos. Por teléfono traté de explicarle a Aberrón por qué tengo dudas sobre la estimación de los errores sistemáticos en el experimento de OPERA, en especial en relación a la medida del instante en el que salen los neutrinos. Sin posibilidad de garabatear en una hoja de papel, le puse como ejemplo la determinación del momento en que llega un tren a una estación y la diferencia que hay entre que se trate de un talgo o un AVE (recordad que tiene la forma del pico de un martín pescador). Fui incapaz de lograr que Aberrón se enterara de lo que quería decir, a veces una imagen vale más que mil palabras. Traté de ponerle como ejemplo la foto finnish en una competición de atletismo, pero creo que empeoré aún más la cosa. En la versión final de su artículo Aberrón se limitó a mencionar de pasada la foto finnish. Aunque puede que me repita una vez más, quizás una imagen vale más que mil palabras.

Figura 11, inferior-izquierda, del artículo de OPERA = http://arxiv.org/abs/1109/1109.4897

Mira esta figura. Verás clarísimamente que hay un desfase de unos 60 ns entre la curva roja y la curva imaginaria que une los puntos negros. ¿No lo ves? Vuelve a mirar la figura. Los picos de la curva roja también se ven muy claros en la curva imaginaria que une los puntos negros. ¡Cómo que no lo ves! Los científicos de la colaboración OPERA dicen que se ve clarísimo. Bueno, … a lo mejor es un problema de escala, de la escala del eje de abscisas. Lo mejor será usar el efecto lupa. Los científicos de OPERA han hecho un zoom de los frentes trasero y delantero de la figura anterior. Su resultado es la siguiente figura.

Figura 12, abajo, del artículo de OPERA = http://arxiv.org/abs/1109/1109.4897

Esta figura es la que se ha utilizado para medir la diferencia de 60 ns entre la curva roja y la curva imaginaria que pasa por los puntos negros. ¿Ves ahora la diferencia de 60 ns entre ambas curvas? ¡Cómo que no! Mira bien, anda, vamos. Hay zonas donde la diferencia parece más pequeña que 60 ns y zonas donde parece mayor. Pero el ajuste obtenido por la colaboración OPERA indica que la diferencia total entre ambas curvas es de 60 ns. ¿Lo ves ahora? Mira bien la banda de error horizontal de los puntos negros, observa que tiene una anchura de 50 ns (el binning de los datos que ha utilizado la colaboración OPERA). ¿Qué pasaría si los centros de los puntos gordos estuvieran desplazados 25 ns a la izquierda o a la derecha? En mi opinión habría un cambio en las curvas que podría hacer que la diferencia de 60 ns cambie bastante. Me gustaría poder hacer un análisis estadístico de estos datos, pero el artículo de OPERA incluye la figuras pixeladas y en muy baja resolución (si fueran figuras PS generadas por Matlab yo podría extraer los datos originales con precisión).

A mí me molesta mucho esta figura desde que el viernes 23 de septiembre en la conferencia del CERN una de las personas del público preguntó por esta cuestión al conferenciante y éste salió por la tangente. Mis dudas sobre el resultado del experimento OPERA nacieron en ese momento y se ratificaron cuando leí el artículo. Conforme pasa el tiempo se refuerzan cada vez más. Todo apunta a errores sistemáticos…

Por cierto, uno de los miembros senior de OPERA (la Dra. Caren Hagner), que no ha querido firmar el famoso artículo, ha sido entrevistada por un periódico alemán (FAZ). Bee nos lo ha traducido del alemán al inglés en “FAZ: Interview with German member of OPERA collaboration,” Backreaction, October 2, 2011. La entrevista no tiene desperdicio, aunque muchos la calificarán de sensacionalista. Según Hagner si se hubiera esperado dos meses más, se podría haber repetido el análisis del experimento de forma independiente, confirmando o refutando el resultado de la propagación superlumínica. ¡Toma ya!

Frau Hagner, usted es uno de los líderes del grupo alemán del experimento OPERA, pero si se busca su nombre en el artículo (preprint), no aparece.

Una docena de colegas y yo hemos decidido no firmar el artículo (preprint). No tengo dudas sobre el experimento, solo creo que es prematuro que se hayan hecho público los resultados. Un resultado tan extraordinario como la propagación más rápido que la luz requiere que se hubieran hecho más pruebas. Pero entonces el artículo se hubiera retrasado unos dos meses. Algunos miembros de OPERA y yo misma hubiésemos querido que estas pruebas adicionales se hubieran hecho.

¿Qué tipo de pruebas?

Lo primero, un segundo análisis independiente. En física de partículas, si alguien cree que ha descubierto una nueva partícula o efecto, en general no hay un solo grupo analizando los datos sino varios. Y si todos obtienen el mismo resultado, entonces podemos estar convencidos de que es correcto. Este proceso no se ha hecho con OPERA.

¿Por qué no?

Porque no había tiempo. Un efecto como la propagación a una velocidad mayor que la luz requiere controles muy cuidados. Podría haber un error en los programas de ordenador, por ejemplo. Sin embargo, la mayoría de los miembros de la colaboración han preferido una publicación rápida.

Sin palabras.

PS: Quizás convenga que detalle los cálculos que indico en esta entrada con números. Los autores del artículo de OPERA han dividido los neutrinos en dos grupos con energías medias de E_1=13.9 GeV, y E_2=42.9 GeV, y han medido los tiempos de llegada anticipada de los neutrinos correspondientes dando como resultado \delta t_1 = 53.1 \pm 18.8 \pm 7.4 ns, y \delta t_2 = 67.1 \pm 18.2 \pm 7.4 ns, resp., lo que conduce a valores de \Delta=v/c-1=c\delta t/L dados por \Delta_1 = (2.18 \pm 0.77 \pm 0.30)\times 10^{-5}, y \Delta_2 = (2.76 \pm 0.75 \pm 0.30)\times 10^{-5}. Aplicando la fórmula de la teoría de la relatividad para taquiones, E={mc^2}/{\sqrt{1-v^2/c^2}} pero con masa m^2<0 y v>c, resulta que se esperaría un valor de \Delta={-m^2c^4}/((1+v/c)E^2)\simeq -m^2 c^4/2E^2. Si los neutrinos fueran taquiones, un incremento en el triple de la energía significaría un cociente \Delta_1/\Delta_2 = 9, cuando el cociente observado es del orden de la unidad (nueve veces más pequeño). Los cálculos en más detalle los podéis encontrar, por ejemplo, en Jerrold Franklin, “Superluminal neutrinos,” ArXiv, 2 Oct 2011.

Fuente:

Francis Science News

30 de septiembre de 2011

La noticia de los neutrinos superlumínicos de OPERA en Nature y en Science

Adrian Cho nos cuenta que la mayoría de los físicos ha mirado con incredulidad el resultado obtenido por los físicos de la colaboración OPERA (Oscillation Project with Emulsion-tRacking Apparatus). Las apuestas apuntan a un “error sistemático” no identificado aún. Pero no todos opinan lo mismo, algunos ven en dicho resultado una oportunidad única para proponer nuevas extensiones del modelo estándar. V. Alan Kostelecky, físico teórico de la Universidad de Indiana, Bloomington, EE.UU., inventó hace 15 años el Modelo Estándar Extendido (SME) que viola la teoría de la relatividad introduciendo un “campo de fondo” que actúa de “sistema de referencia preferido.” Si dicho campo de fondo solo actúa sobre los neutrinos, Kostelecky afirma que su teoría explica el resultado observado por OPERA. Su teoría no permite el envío de información hacia al pasado, evitando los problemas de causalidad que implica la existencia de neutrinos superlumínicos. Según Cho, el resultado de OPERA podrá repetido en menos de un año en MINOS (Main Injector Neutrino Oscillation Search), en la mina de Soudan (Minnesota), que recibe neutrinos del Fermilab (Fermi National Accelerator Laboratory), en Batavia, Illinois (yo creo que Cho peca aquí de optimista). También podrá ser repetido por el experimento japonés T2K (Tokai to Super-Kamiokande), en el que se estudian neutrinos producidos por el JPARC (Japan Proton Accelerator Research Complex) en Tokai, dirigidos hacia los detectores localizados ne la mina de Kamioka. Nos lo ha contado en Adrian Cho, “Special Relativity: From Geneva to Italy Faster Than a Speeding Photon?,” News & Analysis, Science 333: 1809, 30 September 2011.

El rumor surgió en un blog el 15 de septiembre, el artículo fue liberado el 22 y la rueda de prensa en el CERN fue el 23, aunque el resultado se descubrió en marzo de 2011. “Han pasado los últimos 6 meses tratando de buscar un error en su análisis, pero no lo han encontrado, por lo que han liberado sus resultados para recabar la ayuda de toda la comunidad,” afirma Dario Autiero, del Instituto de Física Nuclear en Lion (IPNL), Francia, coordinador de OPERA. Algunos físicos senior de la colaboración, como Caren Hagner de DESY, han preferido no firmar el artículo de OPERA; según Hagner era necesario haber seguido chequeando el resultado durante más tiempo antes de hacerlo público. OPERA está en boca de todo el mundo, ya el anuncio sobre los neutrinos superlumínicos ha generado una expectación mediática sin precedentes. Sin embargo, “la mayoría de los físicos sospechan que hay errores sistemáticos sutiles, aún por descubrir, pues el experimento es muy complicado,” como recuerda Rob Plunkett del experimento MINOS (Main Injector Neutrino Oscillation Search) en el Fermilab, cerca de Chicago. La mayoría de las dudas apuntan a dos elementos, la sincronización mediante GPS y las diferencias entre la forma de la señal en el CERN (el tren de protones) y en Gran Sasso (el tren de neutrinos). Nos lo ha contado Eugenie Samuel Reich, “Speedy neutrinos challenge physicists. Experiment under scrutiny as teams prepare to test claim that particles can beat light speed,” News, Nature 477: 520, 29 September 2011.

En mi opinión personal, la fuente del error puede estar en el ajuste del frente de los trenes de protones y de neutrinos. En óptica no lineal, cuando se observa la propagación superlumínica de señales siempre es debido a este problema, definir correctamente cuando ha llegado el tren de fotones (paquete de ondas) debido a que su forma no coincide con el tren emitido y utilizar el mismo criterio en ambos no está justificado. Para los aficionados al deporte quizás ayude saber que este problema es el mismo que el de la foto finish. Se supone que el instante de llegada del corredor es cuando su pecho supera la línea de meta, pero que pasa si el atleta torsiona su cintura al llegar y lo que se observa en la foto finish es la llegada del hombro; o si estira el brazo y lo que llega primero a meta es la parte del pecho cercana al cuello; o que si pasa si hay atletas más altos y más bajos; cuándo llegó el centro del pecho a cruzar la línea es un problema que requiere el criterio de los jueces de la competición y este criterio puede variar de un juez a otro. La forma del frente del tren de protones (donde se inicia la cuenta de tiempos en el CERN) se utiliza como referencia (línea roja) y se ajusta a la forma del frente del tren de neutrinos (donde finaliza la cuenta de tiempos en Gran Sasso). Obviamente, los científicos de OPERA han considerado esta posibilidad en detalle, pero en este tipo de experimentos la duda siempre surge. Abajo os muestro la figura original de los frentes y la misma figura con la línea roja en blanco, ¿por dónde dirías que debería pasar la línea roja? Por cierto, la incertidumbre horizontal de los puntos de unos 50 ns y se ha medido una diferencia de tiempos de solo 60 ns. No quiero decir nada más. Entre los que opinan como yo recomiendo leer a Jon Butterworth, “Those faster-than-light neutrinos. Four things to think about,” Life and Physics, 24 sep. 2011.



Fuente:

Francis Science News

29 de septiembre de 2011

Agárrame esos neutrinos: guía para entender el experimento del CERN

El experimento anunciado el pasado viernes en el CERN ha causado una conmoción dentro y fuera de la comunidad científica. La posibilidad de que los neutrinos viajen más rápido que la luz tiene difícil encaje con la teoría de la Relatividad Especial de Einstein y la mayoría de físicos se inclina por pensar que existe un error. Estos son los detalles del experimento y los escenarios que se barajan.


Si la física de partículas fuera una novela de detectives, al neutrino se le estaría poniendo cara de mayordomo. El experimento anunciado el pasado viernes en el CERN siembra aún más incertidumbre sobre esta partícula de guante blanco, capaz de atravesarnos a nosotros y al planeta Tierra por trillones cada segundo y resultar prácticamente indetectable. La última noticia, si se confirma con nuevas pruebas experimentales, es que los neutrinos son capaces de viajar más rápido que la luz, lo que en principio viola la teoría de la Relatividad Especial de Albert Einstein y tiene desconcertados a los físicos. La tarea pendiente, como siempre que algo desafía todo lo conocido hasta ahora, es buscar un posible error en el experimento. ¿Dónde puede estar esa "incertidumbre no considerada", si es que la hay? ¿Qué implicaciones tendría que el experimento fuera correcto? Como en toda novela de misterio, lo primero es presentar a los protagonistas.

La partícula escurridiza

La primera vez que se planteó la existencia de los neutrinos no fue porque nadie los pillara in fraganti en plena acción sino porque faltaba algo de la nevera, por decirlo de algún modo. En 1930, el físico Wolfgang Pauli comprobó que en la radioactividad beta, en la que un neutrón se transforma en un protón emitiendo un electrón, había algo que faltaba para que la energía y la cantidad de movimiento se conservaran como marcan los principios de la física. El sospechoso era una partícula neutra (sin carga) que pasaba por allí sin interaccionar aparentemente con nadie y que se mantuvo oculta a los ojos de los científicos durante otros 25 años.

Desde entonces se han instalado varios detectores de neutrinos por todo el mundo que registran una porción diminuta de estas sigilosas partículas cuando, casualmente, alguna de ellas interacciona con el núcleo de un átomo y el proceso acaba generando un fotón. Para hacerse una idea de lo escurridiza que es la partícula y de lo raro que es que interaccionen con algo, se suele poner este ejemplo: si lanzásemos un chorro de neutrinos sobre una placa de plomo de un año luz de grosor (más de 9 billones de kilómetros) la mitad de los neutrinos pasaría por el otro extremo sin haber interaccionado con el material. “Estamos hablando de partículas que se descubrieron hace 80 años”, asegura a lainformacion.com Javier Cuevas Maestro, investigador del Gran Colisionador de Hadrones (LHC) en el CERN, “y aún no sabemos mucho sobre ellos porque prácticamente no interaccionan con nada”.

¿De dónde proceden estos neutrinos? La inmensa mayoría de los que detectamos en la Tierra proceden de las reacciones nucleares del Sol, que nos envía un chorro de neutrinos permanente. La otra gran fuente son las explosiones de las supernovas, pero debido a las distancias cósmicas- y al poco tiempo que llevamos mirando – sólo hemos localizado una fuente de neutrinos en una ocasión, en el año 1987 cuando los neutrinos procedentes de la Supernova SN 1987A, en la Gran Nube de Magallanes (satélite de la Vía Láctea), pudieron ser detectados en tres laboratorios.

El experimento

Una vez que tenemos una idea aproximada de qué son los neutrinos pasemos a describir en qué consiste el experimento ÓPERA dentro del CERN. Tenemos dos puntos en el mapa. Uno es el Super Sincrotón de Protones (SPS), en Ginebra, un acelerador de partículas que envía un haz de neutrinos muónicos de alta intensidad y energía, y el otro es el laboratorio subterráneo LNGS, en Gran Sasso, Italia, que los recibe. La distancia es de 730 kilómetros y los neutrinos – que como hemos visto no interacciona con casi nada - se envían a través de la corteza terrestre (y ojo con esto porque la propia ministra de Ciencia italiana cometió un gazapo al interpretar que existía un túnel entre ambas instalaciones). Para hacerse una idea de la precisión, entre la salida y la llegada de los neutrinos, a varios metros de profundidad bajo tierra, transcurren menos de 3 milisegundos.

Después de asegurarse de que han tenido en cuenta todas las variables (las distancias en la Tierra varían con la rotación, las mareas, etc. y hay que utilizar mediciones muy precisas de GPS) lo que descubrieron los científicos es que los escasos neutrinos detectados (16.000 eventos registrados tras la emisión de unos 10^20 neutrinos muónicos) llegaban en promedio hasta Gran Sasso más rápido de lo esperado: alrededor de 60 nanosegundos antes del registro que habrían marcado a la velocidad de la luz en el vacío.

Pero lo que de verdad ha descolocado a los físicos es que esto, con la teoría de la Relatividad Especial en la mano, no debería ser posible. Ninguna partícula puede acelerarse hasta alcanzar una velocidad mayor que la de la luz porque necesitaría una energía infinita. Y es por esto que la mayoría de científicos se han lanzado a la búsqueda de lo que Álvaro de Rújula calificaba desde el CERN como el “error sutil” en el experimento.




En busca del “error sutil”

Cuando un experimento no encaja con lo que se conoce hasta ese momento en ciencia lo primero que hay que descartar es que haya un error o incertidumbre sistemática que podría modificar el resultado. “Esperamos con impaciencia las mediciones independientes para calcular plenamente la naturaleza de esta observación”, aseguró el viernes el propio portavoz del experimento, Antonio Ereditato. Y la mayoría de los físicos sospechan que las mediciones ayudarán a localizar el fallo. “Esto ha pasado muchas veces”, asegura el astrónomo Javier Armentia, “y al cabo de los meses se encontraba por casualidad un signo menos en una ecuación o algo que no se había tenido en cuenta y que lo cambiaba todo”. “La base por la que creo que hay un error es sobre todo la impresionante ubicuidad de la Relatividad Especial”, asegura el físico teórico Mariano Santander. “Yo también creo que debe haber algún matiz muy sutil. Probablemente no será nada obvio, pues la gente que ha efectuado el experimento ha dedicado un par de años a analizar todas las posibles causas de error”.

“Es muy fácil equivocarse con los neutrinos”, asegura Enrique Fernández, catedrático de física atómica de la UAB que ha trabajado muchos años con neutrinos en el Fermilab (EEUU) y en Japón. “Son experimentos difíciles, lo sabemos los que tenemos la experiencia“. El físico Javier Cuevas Maestro, que lleva 20 años trabajando en proyectos del LHC, insiste en la complejidad de este experimento. Para hacerse una idea, apunta, “en el LHC se registran alrededor de 40 millones de colisiones de partículas por segundo y aquí sólo hay 16.000 sucesos, lo que, estadísticamente, aunque se lleven tres años tomando datos, es relativamente poco”. Esto quiere decir que tanto las incertidumbres sistemáticas como estadísticas son importantes, teniendo en cuenta, por ejemplo, que el instrumento de medición está separado por 730 kilómetros del punto de producción de neutrinos.

Diferencias con la Supernova

Lo primero que llama la atención del experimento de Gran Sasso es que contrasta con las observaciones de neutrinos procedentes de la supernova 1987A. En aquella ocasión los neutrinos y los fotones (la luz) llegaron al mismo tiempo y si los neutrinos viajaran a la velocidad que indica Gran Sasso, los neutrinos tendrían que haber empezado a llegar cuatro años antes que los fotones. Aquí se abren varias incógnitas que surgen al comparar ambas mediciones. Los neutrinos de la supernova llegan a través del vacío y los de Gran Sasso atraviesan la corteza terrestre, con lo que podría haber alguna diferencia a causa del medio. O de energía, porque la de los neutrinos de la supernova es mucho más pequeña que la de los neutrinos estudiados por OPERA. Además, los detectores de 1987 no eran tan sofisticados y precisos como los de ahora, aunque detectaron la señal en varios lugares.

En 2007, otro experimento de neutrinos de larga distancia, el proyecto MINOS dependiente del Fermilab, en EEUU, también se encontró un efecto parecido, pero no significativo. MINOS tiene un detector a casi exactamente la misma distancia que la del CERN al Gran Sasso, 730 km, situado en una mina en el estado de Minnessotta. Y en el experimento pionero, llamado K2K, realizado en Japón y que utiliza como detector lejano el llamado Super-Kamiokande, a 250 km de distancia del acelerador donde se producen los neutrinos, también es necesario medir la velocidad de estos. Pero como aclara Fernández, que participó en el experimento K2K, en estos experimentos no se midió la velocidad con la precisión de OPERA, simplemente porque no era necesario.

Imprecisión en el tiempo de salida

La otra variable que preocupa a los físicos es la manera en que se miden los instantes de salida y llegada de los neutrinos. El problema es que no se puede conocer con certeza el momento en que el neutrino ha salido del acelerador o llegado al detector. "Yo no sé qué tiempo ha tardado un neutrino concreto en llegar, asegura el físico y doctor en matemáticas Francisco Villatoro. "Solo tengo una distribución estadística. Ambas distribuciones tienen una forma muy parecida, pero no igual". Si se tratara de un tren, no sabríamos el momento en que llega o se va. “Cuando estas partículas interaccionan con el blanco dejan un rastro, pero la posición de entrada a la partícula tiene una incertidumbre”, asegura Cuevas Maestro. El problema, para el coordinador del grupo de Física Experimental de Altas Energías de la Universidad de Oviedo, es aún mayor: no es que no sepamos cuándo entra el tren, sino que la mayoría de los trenes que pasan no se registran. “Como los neutrinos no tienen carga y no interaccionan con la materia”, explica, “la mayoría pasan por la estación sin que nos enteremos y cuando interaccionan con los centelleadores no sabemos si ha sido al principio o un poquito después”.

“Los neutrinos no salen todos a la vez porque los protones que los producen no chocan a la vez con el blanco”, asegura Enrique Fernández, que también es miembro del Institut de Física d'Altes Energies (IFAE). “Chocan durante 10,5 microsegundos- es un tren continuo de protones, pero cuando se detecta un neutrino en el gran Sasso no se sabe qué protón lo produjo, se sabe solo en promedio”.





¿Y si el experimento es correcto?

Si después de todas las comprobaciones, resulta que lo que han medido los físicos del CERN es correcto, se abre un mundo de posibilidades e interpretaciones. Los físicos no coinciden a la hora de interpretar la trascendencia que tendría el hallazgo. Para Francisco Villatoro, por ejemplo, el descubrimiento afectaría a la física de neutrinos pero no sacudiría los pilares de lo que sabemos. “Esto es una cosa importante para los físicos, pero para el público general no tiene ninguna importancia”, asegura, “no es algo que vaya a cambiar los libros de texto, salvo los libros especializados en neutrinos”. “Creo que estos cambios deberían entenderse sobre todo como una delimitación de los límites de validez de la relatividad especial”, asegura el físico teórico Mariano Santander, “pero cabe muy poca duda de que la relatividad especial en su forma actual subsistirá como una muy buena descripción de la estructura del espacio y el tiempo”.

Para Cuevas Maestro y para Fernández la cosa es un poco distinta. “Si efectivamente los neutrinos pudiesen viajar a mayor velocidad que la luz, se abriría una puerta a una descripción de fenómenos físicos que hasta ahora ni siquiera imaginábamos”, dice Cuevas. “Uno de los pilares de la física que es la constancia de la velocidad de la luz y que es máxima, nos produciría un sobresalto tremendo. Si la teoría de la relatividad fuera 99,999% correcta, estaríamos ante una variación significativa de la ciencia básica tal y como la conocemos”. “No estoy de acuerdo con la idea de que no cambiaría la relatividad”, añade Fernández, “la cambia profundamente, tanto que los libros de texto no sobrevivirían”.

Algunas especulaciones

Los 60 nanosegundos de diferencia en la “foto finish” ya han dado pie a las primeras especulaciones sobre una posible explicación. Una de ellas es que los neutrinos pudieran desplazarse por una dimensión paralela que les permite llegar antes (como apunta la teoría de cuerdas), otra es que existieran dos velocidades de la luz, una para fotones y otra para neutrinos. “Habría que añadir dos velocidades tope a la relatividad especial”, asegura Villatoro, “pero nadie ha profundizado en qué pasaría en este caso a nivel cosmológico y astrofísico”. “Esto implicaría que hubiera dos métricas en el espacio-tiempo, que coinciden en el límite de baja energía”, asegura Santander, “lo que sería una extensión natural de la Relatividad Especial y son ideas exploradas en otros contextos, aunque no se hayan aplicado a problemas como el del experimento OPERA”.

También hay quien ha insinuado que el hallazgo abre la posibilidad de viajar en el tiempo o, más concretamente, enviar señales al pasado. La relatividad especial admite la posibilidad de que existan partículas que viajen por encima de la luz, lo que “prohíbe” es que se acelere por encima de esa velocidad. Existen unas partículas hipotéticas, llamadas taquiones, que podrían existir pero por su propia naturaleza no podrían ser detectadas. Si los neutrinos fueran taquiones, su velocidad dependería de su energía. En el experimento de OPERA se han separado los neutrinos en dos grupos, de baja y alta energía, con energías medias de 14 y 43 GeV, pero se ha observado que la velocidad de ambos grupos es casi idéntica, lo que no cuadra con la naturaleza de los taquiones.

¿En qué se basan estas especulaciones sobre el tiempo? Para entenderlo, Enrique Fernández nos pone un ejemplo muy visual. “Si nos subimos a un neutrino viajando a más velocidad que la de la luz”, asegura, “veríamos los fotones quedándose atrás”. Ahora imaginemos que alguien sale de la Tierra montando en un neutrino: la luz de la tierra saldría después y no vería nada, pero si se detuviera “vería la luz de la Tierra llegar más tarde y por tanto se habría ido al futuro y vería llegar luz que salió antes que él”. En cualquier caso, para Fernández estas especulaciones no son correctas porque si la relatividad especial no es cierta, tendríamos que cuestionarlo todo, incluida estas ideas sobre el tiempo.

“Si aceptamos esta idea de viajar en el tiempo”, asegura Mariano Santander en el mismo sentido, “entonces, por consistencia y honradez, también debiéramos decir que la Física Cuántica nos permite atravesar las paredes”. “En serio”, añade, “la respuesta es un sonoro “no” para todos los propósitos prácticos. Aunque el resultado fuera correcto, esto no nos pone en situación de viajar en el tiempo a nuestro gusto”.

“Todos, aunque nos quedemos quietecitos, estamos viajando en el tiempo, hacia el futuro y a la respetable velocidad de un segundo por segundo (parece una tontería, pero dista de serlo)”, añade el profesor Santander. “Y si queremos viajar mas rápido hacia el futuro, basta con que nos movamos en el espacio lo más deprisa posible”. “Viajar nosotros al pasado requeriría ‘montarnos' en un autobús taquiónico”, añade. “Pero necesitaríamos literalmente una energía mas allá de infinito para dar el salto, desde nuestro estado de reposo, a tal autobús. Y a esto es aplicable mejor que nunca lo del torero: lo que no puede ser, no puede ser y además es imposible”.

El siguiente paso

Lo importante ahora es conseguir replicar el experimento cuanto antes para ver si se repiten los resultados. El candidato más probable es el proyecto MINOS, en EEUU, que ya hizo una prueba semejante pero que necesitaría muchos meses, quizá años, para repetir un experimento tan complejo y aparatoso.

Lo interesante es que en este período lo físicos teóricos van a proponer infinidad de soluciones para explicarlo y esto puede traer nuevas ideas. El estudio de los neutrinos, por ejemplo, es fundamental en la búsqueda de pruebas sobre la naturaleza de la materia y la energía oscuras que ocupan el 90% de nuestro Universo. “Aunque el experimento resulte ser erróneo”, asegura Villatoro, “los físicos jóvenes van a proponer explicaciones exóticas, nuevas ideas en las que sin la chispa de este resultado nunca habrían pensado. Y es así cómo se producen las grandes revoluciones".

Ver también: A la busca de la materia oscura en el túnel de Canfranc [Vídeo]

Fuente:Enlace

La Información

26 de septiembre de 2011

La apoteosis de los neutrinos

Las instalaciones del CERN donde se ha llevado a cabo el experimento. | AP.

Las instalaciones del CERN donde se ha llevado a cabo el experimento. | AP.

"Un experimento impulsa el sueño de los viajes a través del tiempo". Éste fue el impresionante e insólito titular principal de la portada de EL MUNDO, en su edición impresa del sábado. Un día antes, en nuestra web, la principal noticia sobre los neutrinos que superaron el límite cósmico de la velocidad establecido por Albert Einstein no sólo se mantuvo durante toda la jornada como la más leída del día, sino que fue recomendada por 4.000 usuarios de Facebook, y casi 800 usuarios de Twitter.

Además, otras cuatro informaciones que publicó la sección de Ciencia de ELMUNDO.es sobre el mismo tema a lo largo del día también escalaron a las primeras posiciones de las noticias más populares. Y por si esto fuera poco, la narración en vivo de la presentación de los resultados del experimento que ofreció nuestra web, incluyendo una conexión con la retransmisión del seminario en Ginebra, tuvo una audiencia masiva.

Una cosa sí ha quedado demostrada: la ciencia interesa, la ciencia fascina, la ciencia está más viva que nunca

En los 15 años que este periodista se ha dedicado a contar lo que se cuece en los laboratorios de todo el planeta, jamás me había sorprendido tan gratamente el inmenso impacto social que puede llegar a tener la ciencia en nuestra sociedad. Es cierto que no era la primera vez que la ciencia se convertía en el principal tema de una portada de nuestro periódico. También lo fueron la oveja Dolly, la secuenciación del genoma humano y la primera clonación de embriones humanos (que después resultó ser un fraude). Pero la fascinación por los neutrinos que habían desafiado a Einstein al viajar más rápido que la luz superó todas nuestras expectativas.

Fascinación por los neutrinos

Cuando mis compañeros y yo nos encontrábamos narrando en vivo la complejísima y enrevesada (aunque sin duda apasionante) presentación que hizo Dario Autiero de su experimento como si se tratara de un partido de fútbol seguido por miles de personas, creo que ni nosotros mismos nos podíamos creer del todo lo que estaba pasando. De repente, la física parecía haberse transformado en un espectáculo de masas, y nosotros éramos los comentaristas de este insólito 'carrusel' científico.

Pero, ¿por qué se produjo esta repentina fascinación por las partículas subatómicas? ¿Cómo podemos explicar la apoteosis de los neutrinos? ¿Puede alguien seguir manteniendo que la ciencia no interesa a 'la gente'? ¿O tendrá razón Eduardo Punset, al que tantas veces hemos oído decir que "la irrupción de la ciencia en la cultura popular es un hecho imparable"?

Creo que, una vez pasado el 'bombazo' mediático, merece la pena reflexionar un poco sobre sus causas, por lo que demuestran sobre la atracción irresistible de la ciencia en la sociedad, cuando se produce una gran historia y los medios de comunicación se ocupan de contarla bien.

La naturaleza de la materia

En primer lugar, es evidente que el campo de investigación en el que trabajan los científicos del CERN toca una fibra especial a cualquiera que tenga un mínimo de curiosidad (y esto suele incluir a la mayoría de los primates de la especie 'Homo sapiens', los únicos animales que se pasan la vida haciéndose preguntas). Al fin y al cabo, estos espeleólogos del mundo subatómico se dedican a intentar desentrañar la naturaleza profunda de la materia (¿de qué está hecho todo?) y la relojería cósmica que mueve el universo (¿cómo funciona todo?).

Pero además, no sólo sus preguntas son inmensas, sino también las instalaciones donde se intentan buscar las respuestas. Las entrañas del CERN son gigantescas cavernas subterráneas donde se lanzan partículas subatómicas a velocidades inimaginables para resolver los grandes enigmas de la Física, y por tanto no es de extrañar que haya alimentado novelas de tanto impacto como 'Angeles y Demonios', de Dan Brown, que también fue llevada al cine. Por eso, casi todo lo que sale de esta gran instalación científica siempre tiene mucho tirón popular, como ya demostró hace tres años la inauguración del Gran Colisionador de Hadrones (LHC), conocido popularmente como la 'máquina del Big Bang'.

Einstein, cuestionado

Sin embargo, en este caso al 'sex appeal' del CERN se le añadió el 'shock' de que podría derrumbarse el gran icono de la ciencia de todos los tiempos, el mismísimo Albert Einstein. En el imaginario popular, nadie encarna con más fuerza que el padre de la Teoría de la Relatividad la idea del genio científico, y por eso el desafío de los neutrinos podría simbolizar la caída de un mito, el posible fin de una era, un terremoto que podría volver a poner todo el edificio de la Física moderna patas arriba.

En el imaginario popular, nadie encarna con más fuerza que el padre de la Teoría de la Relatividad la idea del genio científico

Y si a todo este cóctel le añadimos el ingrediente de viajar en el tiempo, una de las fantasías más antiguas de la ciencia ficción, el espectáculo estaba definitivamente servido. El propio Einstein había dicho que si pudiéramos enviar un mensaje a la velocidad de la luz, sería equivalente a "mandar un telegrama al pasado". Y el gran físico español Álvaro de Rújula lo reafirmó el viernes en declaraciones a ELMUNDO.es. Con eso bastó, como dijo el titular de nuestra edición impresa, para "impulsar el sueño" de los viajes en el tiempo, aunque de momento sólo sea eso, una utopía alimentada por un experimento alucinante.

Puede que al final nadie pueda verificar sus resultados, y que todo se deba a un error. Puede que al final tengan razón las muchas voces científicas que han pedido cautela y han arrojadEnlaceo jarros de escepticismo sobre el impactante anuncio del CERN. Pero una cosa sí ha quedado ya totalmente demostrada: la ciencia interesa, la ciencia fascina, la ciencia está más viva que nunca.

Fuente:

El Mundo Ciencia

24 de septiembre de 2011

CERN: 'No haremos ninguna interpretación que ponga en duda las leyes de la Física'

Especial: Neutrinos

El investigador Dario Autiero durante la presentación de los resultados en Ginebra. | CERN.

El investigador Dario Autiero durante la presentación de los resultados en Ginebra. | CERN.

La publicación de un trabajo realizado en el CERN (Organización Europea para la Investigación Nuclear) de Ginebra que demuestra que unas partículas, llamadas neutrinos, pueden viajar más rápido que la velocidad de la luz ha agitado a la comunidad científica durante todo el día y ha ocupado titulares en todos los medios de comunicación del mundo. Tal ha sido el revuelo que los autores de la investigación se han visto obligados a presentar sus resultados a sus colegas en un seminario abierto en la sede del CERN.

En una abarrotada sala de actos, uno de los firmantes del estudio publicado en 'High Energy Phisycs' de la Universidad de Cornell, Dario Autiero, ha presentado el experimento Opera y los resultados que han obtenido. Las mediciones corresponden a tres años de trabajo (2009, 2010 y 2011) en los que se han enviado neutrinos en multitud de ocasiones, según explicó Autiero durante casi dos horas de presentación.

[foto de la noticia]


Tras analizar los datos obtenidos, el equipo internacional al que pertenece el investigador italiano de la Universidad Claude Bernard de Lyon pudo sacar una conclusión sorprendente, pero que por más que han intentado refutar repasando toda la metodología, no han conseguido encontrar dónde está el error. Una corriente de neutrinos puede reorrer los 730 kilómetros que separan el CERN del laboratorio subterráneo del Gran Sasso en un tiempo 60 nanosegundos menor que lo que tardaría la luz.

"Hemos estado seis meses analizando los datos observados y que eran inexplicables", dice Auteiro. "No pretendemos hacer ninguna interpretación teórica de los resultados", sentenció Autiero al final de la presentación. Como ya dijo un portavoz de la investigación, los resultados son una locura y ponemos nuestros resultados a disposiión de los colegas para que alguien nos saque de esta locura. La prudencia ha sido la tónica general de la exposición del trabajo.

Las dudas de los popes de la física

Los científicos más reputados del mundo son escépticos con los resultados e incluso han manifestado su desconfianza en que la metodología o la explicación teórica de los resultados sean las correctas. "Es prematuro comentar este experimento se necesitan más experimentos y clarificaciones", ha asegurado Stephen Hawking a 'Reuters'.

Los resultados se comenzaron a tomar en 2009 y se han seguido tomando en 2010 y 2011. Y durante todo ese tiempo los científicos han estado comprobando que las medidas estaban bien tomadas. La incertidumbre que se haya podido producir por diferentes causas (diseño de base, calibración, etcétera) es de tan sólo 7,4 nanosegundos, según han podido calcular los autores. Sigue siendo menor que los 60 nanosegundos que separaron a los neutrinos de la luz en el experimento. Un nanosegundo equivale a 0,0000000001 segundo, por lo que el experimento debe tener una precisión de medida fuera de toda duda.

A pesar de los envites de sus colegas, Autiero se defendió con solvencia ante las dudas y el escepticismo generalizado en la audiencia, que no pudo más que felicitar al autor por el trabajo y aplaudir con una sonada ovación el final del seminario.

"En 2005 el Fermilab dio a conocer unos resultados de este tipo, aunque la precisión en las medidas era baja, con lo que todo podría venir de fuentes de error experimental. El trabajo de OPERA ha sido precisamente disminuir esas imprecisiones, pero ello ha llevado a una complejidad instrumental, y sobre todo en el análisis que hace difícil -muy difícil- juzgar a la vista de la presentación si alguna de las muchas explicaciones alternativas es la correcta", escribió Javier Armentia, director del Planetario de Pamplona, en el En vivo de ELMUNDO.es

"La presentación ha sido impecable y ha presentado todas las objeciones que ellos mismos han puesto, y como han solventado las fuentes conocidas de error. Esto es un poderoso argumento a favor... pero ahora los físicos se irán a casa, leerán con calma el artículo y los datos y... me imagino, encontrarán lo que comentaba Rújula, el error cometido", aseguraba Armentia.

Fuente:Enlace

El Mundo Ciencia

google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0