Latest Posts:

Mostrando las entradas con la etiqueta sistema binario. Mostrar todas las entradas
Mostrando las entradas con la etiqueta sistema binario. Mostrar todas las entradas

27 de diciembre de 2013

Un sistema binario inventado en Polinesia siglos antes de Leibniz

Los nativos de Mangareva desarrollaron este método para contar pescados, frutas, cocos, pulpos y otros bienes de diferente valor.


El genial matemático Gottfried Leibniz (1646-1716) no fue el primero en inventar el sistema binario que ahora utilizan nuestros ordenadores y teléfonos. Los nativos de Mangareva, una pequeña isla polinésica, se le adelantaron en varios siglos. Los mangareveños no tenían la menor intención de inventar la computación digital, pero se dieron cuenta de que el sistema decimal —como el nuestro— que habían heredado de sus ancestros resultaba demasiado engorroso para hacer los cálculos en el mercado, y le superpusieron un sistema binario que facilita mucho las operaciones aritméticas más comunes. También Leibniz arguyó que su sistema binario servía para simplificar las cuentas, aunque nadie le hizo mucho caso.

No se trata del primer sistema binario conocido de la era preLeibniz –los mismos hexagramas del I-Ching que inspiraron al gran matemático alemán constituyen un sistema binario y tienen casi 3.000 años—, pero Andrea Bender y Sieghard Beller, del departamento de ciencia psicosocial de la Universidad de Bergen, en Noruega, muestran ahora cómo los habitantes de Mangareva no solo inventaron el sistema para contar pescados, frutas, cocos, pulpos y otros bienes de diferente valor en sus transacciones comerciales, sino también cómo esto les condujo a una aritmética binaria que habría merecido la aprobación de Leibniz por su sencillez y naturalidad. Los autores creen que su trabajo revela que el cerebro humano está innatamente capacitado para las matemáticas avanzadas. Publican los resultados en PNAS.

Entender el hallazgo requiere un somero repaso del álgebra elemental. El sistema decimal al que estamos habituados, y que es el más común en todo tipo de culturas humanas por basarse en los diez dedos de las manos, lleva implícitas las potencias de diez en la posición de las cifras: en el número 3.725, se entiende que el 5 va multiplicado por 1 (10 elevado a 0); el 2 va multiplicado por 10 (10 elevado a 1); el 7 va multiplicado por 100 (10 elevado a 2); y el 3 va multiplicado por 1.000 (10 elevado a 3).

En un sistema binario solo hay dos símbolos (convencionalmente 0 y 1, pero también pueden ser dos estados de magnetización, como en los ordenadores), y las potencias implícitas por la posición no son las de 10, sino las de 2. Por ejemplo, en el número binario 111, se entiende que el último 1 va multiplicado por 1 (2 elevado a 0), el segundo por 2 (2 elevado a 1) y el primero por 4 (2 elevado a 2); equivale al siete del sistema decimal.

Bender y Beller no han descubierto nada parecido a un pergamino polinesio densamente cubierto de ceros y unos, ni mucho menos una cinta perforada. Lo que han hecho es analizar el lenguaje de Mangareva —uno de los cientos de idiomas de la familia austronesia habladas en las islas del Pacífico— en el contexto de su modo tradicional de vida y las características de sus bienes más preciados de consumo y sus transacciones comerciales, ofrendas, fiestas y demás. Esta forma de vida está en acelerado proceso de extinción, y con ella el sistema aritmético y la propia lengua de los mangareveños, de la que solo quedan ahora unos 600 hablantes en la isla.

Una evidencia del uso de las potencias de 2 —es decir, del sistema binario— en el comercio tradicional de Mangareva son los valores (o taugas) asociados a los bienes más valorados en la isla: tortugas (1 tauga), pescado (2), cocos (4) y pulpo (8). Otro producto valioso es el fruto del árbol del pan (Artocarpus altilis), llamado en inglés breadfruit (fruto del pan). Los frutos del pan de segunda fila valían lo que un coco (4), pero los mejores igualaban al pulpo (8). Recuerden que 1, 2, 4, 8, … son las potencias de 2.

Otro ángulo por el que asoman esas mismas potencias, aunque más indirecto —y combinado con el sistema decimal al que los mangareveños nunca renunciaron del todo— son las palabras (numerales) de uso más común en el rango de las decenas: takau (10), paua (20), tataua (40) y varu (80). Vuelven a aparecer las potencias de dos (1, 2, 4, 8), aunque esta vez multiplicadas por 10, para cubrir otro abanico de tamaños. Las demás decenas no son palabras nuevas, sino combinaciones gramaticales de las anteriores.

La ventaja de este sistema es que facilita mucho las opèraciones aritméticas fundamentales. Mientras que en el sistema decimal sumar de cabeza (sin contar) requiere memorizar más de 50 cancioncillas (como 4+7=11), en el sistema de Mangareva basta con saber que varu es el doble de tataua, que a su vez es el doble de paua, que a su vez es el doble de takau. Lo demás emerge de un modo muy natural y fácil de utilizar.

Con otras palabras, se trata esencialmente del mismo argumento que utilizó el gran Leibniz. Los demás seguimos contando con los dedos.
Tomado de:

22 de enero de 2013

La invención del bit: la partícula fundamental de la información

Quién diría que una idea tan simple supondría una revolución de implicaciones aún en constante desarrollo. Quién diría que un planteamiento tan maniqueo como sí o no, blanco o negro, verdad o mentira acabaría siendo el fundamento de la comunicación del futuro. Así es el átomo de la información. El bit.


En 1948, Bell Laboratories anunció la creación del bit, una unidad para medir la información. Su inventor tenía 32 años y se llamaba Claude Shannon, un tipo de biografía fascinante que algún día espero explicaros en profundidad. La idea de Shannon era contrauitiva y revolucionaria: según él, los mensajes no siempre tienen sentido, y que lo tengan o no son “aspectos semánticos de la comunicación… irrelevantes para el problema de ingeniería”.

Gracias a Shannon, pues, el bit (acrónimo que significa “dígito binario“) es la unidad más pequeña posible de información en la informática digital. En informática la menor unidad indivisible posible es un simple pulso eléctrico, que puede representar un 1 o un 0. Mientras que en el sistema de numeración decimal se usan diez dígitos, en el binario se usan sólo dos dígitos. Todos los datos que se almacenan en un ordenador está compuesta de números binarios. El origen del término “dígito binario” se atribuye a John Tukey, un científico que trabajaba en los Laboratorios Bell, y los usó por primera vez en 1947.


El bit es una partícula fundamental de una especie diversa: no sólo es diminuto, sino también abstracto: un dígito binario. Tendiendo puentes entre la física del siglo XX y la del siglo XXI, John Archibald Wheeler, el último colaborador que quedaba de Einstein y Bohr (falleció en 2008), dijo “It from Bit”, es decir, que de los bits, de la información, “sale cada “eso”, cada partícula, cada campo de fuerza” que pueda existir en el mundo.

A fin de cuentas, la información (y en consecuencia el conocimiento) sólo consiste en una selección entre varias alternativas posibles. Tal y como explicaba George Miller:
Un bit de información es la cantidad de información que necesitamos para tomar una decisión entre dos alternativas con el mismo grado de probabilidad. Si tenemos que decidir si un hombre mide menos de un ochenta o más de uno ochenta y si sabemos que las probabilidades son 50-50, necesitamos un bit de información (…) Dos bits de información nos permiten decidir entre cuatro alternativas con el mismo grado de probabilidad. Tres bits de información nos permiten decidir entre ocho alternativas con el mismo grado de probabilidad. (…) si hay 32 alternativas con el mismo grado de probabilidad, debemos tomar 5 decisiones binarias sucesivas, cada una de ellas de un bit, antes de saber qué alternativa es la correcta.
En otras palabras: cada vez que el número de alternativas se incrementa en un factor dos, se añade un bit de información. El número 255 en binario, por ejemplo, es 11111111.

En la película Tron, un bit está representado por una forma poliédrica de color blanco que es un compuesto de dodecaedro e icosaedro. Solo puede decir “sí” (Encendido) y “no” (apagado).

No debemos confundir bits con bytes. Si los bits son la menor unidad “física” de información, los bytes son la menor unidad “lógica” de información, equivalente a un carácter (letra o símbolo). Un bit no tiene un significado práctico mientras que un byte, sí, ya que se trata de un carácter, letra o símbolo. Un byte está formado por 8 bits o pulsos eléctricos. Por lo tanto, en informática se toma como unidad de medida de capacidad de almacenamiento de dispositivos como el disco duro o memoria, la cantidad de caracteres de texto que se pueden almacenar en los mismos. Así un disco duro con capacidad de almacenamiento de 500 gigabytes puede almacenar hasta 500.000.000.000 (500.000 millones) de caracteres o bytes.

Pero por qué un bit son ocho bytes. La decisión fue arbitraria, pero hay una serie de motivos que empujaron a la misma, tal y como exponen Yobioit:
* La razón principal es que a partir de la década de los años 1970s los 8-bits se convirtieron en el menor común denominador de la informática; donde los microprocesadores eran de 8-bits; esto significa que podían procesar 8 bits simultáneamente en un instante particular. Con el tiempo comenzaron a aparecer microprocesadores que podían procesar 16 bits simultáneamente, luego 32 bits, 64 bits y eventualmente 128; todos múltiplos de 8. También existieron microprocesadores de 18 y 36 bits, pero dejaron de fabricarse, popularizándose los múltiplos de 8.
* Los primeros microprocesadores comerciales de los años 1970s eran de 4-bits, o sea que podían procesar 4 bits simultáneamente, en un instante particular; pero hacia la segunda mitad de dicha década comenzaron a popularizarse los de 8-bits cuando empresas como IBM y Apple comenzaron a comercializar computadoras personales.
  • En los años 1970s las placas de circuitos y periféricos eran aún caros; por lo tanto se siguió utilzando tecnología de 8-bits; en la que se podían transportar de un dispositivo a otro (por ejemplo del microprocesador a la memoria o de la memoria a la placa de video) 8 bits simultáneamente. Incluso cuando se desarrollaron los primeros microprocesadores comerciales de 16 bits (que podían procesar 16 bits simultáneamente), cuando dichos bits o pulsos eléctricos viajaban por las líneas de datos hacia la memoria lo hacían de a 8 simultáneamente; para reducir costos de material de circuitería.
* En los años 1960s el juego de caracteres ASCII de 7-bits (128 caracteres) era un nuevo estándar; pero para cuando fue internacionalmente aceptado ya habían muchas variantes. En los años 1960s IBM introdujo el juego de caracteres de 8-bits EBCDIC. Hacia finales de los años 1970s, se pensaba que UNIX iba a convertirse en el sistema operativo dominante; el lenguaje de programación de UNIX, para desarrollar las distintas aplicaciones para dicho sistema operativo, era C, el cual requería un juego de caracteres de 8-bits. Sin embargo el sistema operativo que terminó siendo más popular fue el PCDOS o MS-DOS, el cual también utilizaba un juego de caracteres de 8-bits, una versión extendida de 256 caracteres del estándar ASCII. Luego con la llegada de Windows, que utilizaba la misma estructura de DOS, se siguió utilizando el juego de caracteres y por ende el byte de 8 bits.
* En telecomunicaciones, con el desarrollo de la telefonía digital a principios de la década de los años 1960s, se estandarizó el sistema de 8-bits, en el que los datos que se transmitían eran de 8-bits o pulsos eléctricos. Este sistema fue, décadas después, adoptado y desarrollado por las modernas redes de comunicación incluyendo Internet.
Más información | Yobioit


Tomado de:

Xakata Ciencia

22 de agosto de 2012

DARPA quiere desarrollar la computación analógica

(c) DARPA

(c) DARPA

Los computadores que estamos acostumbrados a ver son digitales: procesan y almacenan datos en ceros y unos. Sin embargo, la Agencia de Investigación Avanzada de Defensa (DARPA) dependiente del Departamento de Defensa de Estados Unidos, quiere redefinir este sistema.

¿Por qué cambiar los ceros y unos que hasta ahora han funcionado bien? La clave está en la energía. DARPA está trabajando en un proyecto llamado UPSIDE (Unconventional Processing of Signals for Intelligent Data Exploitation), que busca crear chips de computadora que sean mucho más eficientes energéticamente que lo que existe hoy, aún cuando puedan cometer errores de vez en cuando.

Según DARPA, los computadores de hoy (y los que usan temibles robots, sondas espías y otros) están llegando a un límite, no de procesamiento, sino de energía. Aunque la ley de Moore, que indica que el poder máximo de procesamiento se duplica cada 18 meses, se ha cumplido, las baterías no han sido capaces de seguirles el ritmo.

Los chips construidos por UPSIDE buscan una alternativa a la lógica binaria – procesadores analógicos que puedan hacer matemática probabilística, sin forzar al transistor a un estado de “cero” o “uno” absoluto, algo que hace perder mucha energía. El problema es que los resultados no son tan exactos, pero este tipo de sistemas podrían utilizarse en operaciones donde no necesitemos resultados absolutamente exactos.

La de abajo es una imagen capturada con un prototipo de la Rice University. La primera imagen fue procesada normalmente. La del medio tiene un margen de error permitido de 0,54% y la de la derecha tiene una tasa de error de 7,54% permitida. Según la universidad, la de la derecha requirió 1/15 de la energía que se usó para procesar la primera.


Esta no es una idea completamente nueva. En la década de 1950, los computadores analógicos existían, sin embargo, fueron opacados por los procesadores digitales, que alcanzaban capacidades mucho mayores. En los últimos años, el sistema analógico comenzó a revivir, considerando las posibilidades de ahorro de energía.

El programa UPSIDE se desarrollará durante 54 meses en dos fases. En la primera, se crearán chips usando técnicas probabilísticas, y en la segunda se construirán sistemas móviles para capturar imágenes usando estos chips, permitiendo en teoría crear cámaras mucho más eficientes en cuanto a consumo de energía.

Fuente:

google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0