Latest Posts:

Mostrando las entradas con la etiqueta orientacion. Mostrar todas las entradas
Mostrando las entradas con la etiqueta orientacion. Mostrar todas las entradas

19 de septiembre de 2013

Cómo hacer una brújula en casa

Experimento para hacer una brujula

Para encontrar el norte, un imán y una aguja.

Nuestro planeta actúa como un imán gigante, creando un campo magnético que protege a la Tierra de la radiación del espacio.

Los metales magnetizados se alinean naturalmente con ese campo y uno puede aprovechar ese efecto invisible en el experimento que les proponemos este fin de semana, en que científico Mark Miodownik nos muestra cómo magnetizar una aguja para crear una brújula.

Qué se necesita

Una aguja de coser
Un corcho o una tapa de plástico de una botella
Una barra de imán
Pegamento en barra
Un plato de sopa poco profundo con agua
Un cuchillo afilado o tijeras
Toalla (opcional)

Cómo se hace

Instrucciones para hacer una brújula

1. Corte un círculo de corcho de unos 5mm a 10mm de espesor. También puede usar una tapa de botella plástica.

Instrucciones para hacer una brújula

2. Frote la aguja unas 50 veces con la parte norte del imán. Si el imán no tiene marcado el norte, escoja un lado y use sólo ese. Separe el imán de la aguja tras cada frotada para reducir la probabilidad de que se desmagnetice. Frotar desde el agujero hasta la punta hace que los átomos de hierro de la aguja se alineen, convirtiéndola temporalmente en un imán.

Instrucciones para hacer una brújula

3. Pegue la aguja magnetizada en el corcho y póngalo cuidadosamente en el plato con agua.

Instrucciones para hacer una brújula

4. El agua provee una superficie casi sin fricción que le permite al corcho girar hasta que el polo norte de la aguja (el agujero) apunte hacia el polo norte magnético (como se ve en la brújula comprada). Si se frota la aguja con el imán en la otra dirección, será la punta la que señale el norte.

No ponga el plato cerca de computadoras u otros aparatos que contengan imanes pues pueden afectar las líneas de campo. La aguja perderá su carga magnética con el tiempo.

Por qué se magnetiza

El hierro, el níquel y el cobalto contienen pequeñas regiones llamadas dominios magnéticos, en que los electrones se alinean en la misma dirección. Estos dominios apuntan en diferentes direcciones, por lo que tienden a anularse entre sí.

Cuando uno de esos metales es expuesto a un campo magnético fuerte, los dominios se alinean, lo que los convierte en un imán temporal.

Por qué la brújula apunta al norte

Una vez que se magnetiza la aguja, ésta naturalmente se alinea con el campo magnético más fuerte de la Tierra.

Los científicos creen que este campo, llamado magnetósfera, es creado por las corrientes eléctricas generadas por la agitación del núcleo de hierro fundido en lo más profundo del planeta.

Esto significa que la Tierra actúa como si tuviera un imán que la atraviesa, con el polo sur del imán situado cerca del norte geográfico del planeta. Dado que los opuestos se atraen, el polo norte de una aguja imantada apunta en esa dirección

Tomado de:

BBC Ciencia

7 de abril de 2013

El GPS del cerebro ve la luz

Investigadores noruegos han demostrado cómo funciona el GPS del cerebro, insertando en ratas un completo equipo de iluminación para detectar las conexiones neuronales mediante interruptores lumínicos.


Las conocidas como células de lugar son un tipo de neuronas especializadas, situadas en la región conocida como hipocampo, dentro de nuestro cerebro. Este tipo de células cumplen una función realmente interesante en el proceso cognitivo.

Algunos científicos, como James J. Knierim, hablan de las células de lugar como el ejemplo más claro de "correlación celular". ¿Qué significa esto? Este tipo de neuronas presentan una conexión demostrable y directa con una conducta, sensación o actividad mental determinada. En otras palabras, para su funcionamiento, estas células no responden a estímulos motores o sensoriales inmediatos.

Las células de lugar reciben esta denominación porque son neuronas que se estimulan cuando los individuos ocupan una determinada localización en un ambiente específico. Como cada célula de lugar estaría relacionada con sitios específicos, conocer cómo se estimulan y reconocen los diferentes sitios donde puede encontrarse una persona, permitiría trazar un mapa cognitivo de los individuos. En otras palabras, estas células de lugar podrían ir reconociendo localizaciones, estimulándose en cada sitio específico, actuando así como una especie de GPS del cerebro.

Sin embargo, para entender el funcionamiento completo de este GPS del cerebro, necesitaríamos conocer cuáles son las conexiones de las células de lugar con otras neuronas, ya que su funcionamiento no es aislado ni independiente.

Con el objetivo de saber cómo trabaja el GPS del cerebro, investigadores del Kavli Institute de la Universidad Noruega de Ciencia y Tecnología han combinado una serie de técnicas para identificar qué neuronas se identifican con qué células, en diferentes momentos de la actividad cerebral, utilizando ratas para sus experimentos. Así han conseguido mapear cómo se orientan estos roedores, dibujando lo que hemos denominado como GPS del cerebro.

El problema principal es que los investigadores no pueden diseccionar un cerebro y ver directamente las conexiones neuronales, lo que facilitaría mucho el trabajo de estos científicos. Para conocer el funcionamiento del GPS del cerebro, han de trabajar con una serie de "interruptores de luz" que les indiquen qué neuronas se están activando, para así entender las conexiones neuronales.

Para ello, utilizaron un virus que serviría como "mensajero" de la receta genética que estas neuronas deberían procesar en su interior. Una vez que dichas células han recibido dicha secuencia genética, que codifica para el mismo "interruptor lumínico" que poseemos para ser capaces de ver a través de nuestros ojos, estas neuronas pasaron de estar "en la oscuridad" a ser sensibles a la luz.

Pero igual que para iluminar una habitación necesitamos una bombilla, para luego regular la luz de dicho cuarto mediante interruptores, los investigadores necesitaban algo más que simples recetas genéticas que codificaran estos interruptores. En otras palabras, para conocer cómo funcionan estas redes neuronales y trazar el GPS del cerebro, no sólo tenían que insertar interruptores lumínicos, sino activar algún tipo de "lámpara" en el cerebro de los roedores.

Para hacerlo, los científicos noruegos insertaron fibras ópticas en el cerebro de los animales, que tendrían la función de transmitir la luz entre las diferentes neuronas. Además, añadieron microelectrodos capaces de detectar cuándo se iban a activar dichas células. En otras palabras, insertaron dentro del cerebro de las ratas un completo equipo de detección lumínica para conocer cuándo las neuronas se iluminaban.

En su trabajo, publicado en la prestigiosa revista Science, los investigadores noruegos fueron capaces de conocer, a través de este sistema de iluminación y de interruptores, qué neuronas especializadas eran las encargadas de dar la información específica a las células de lugar, para que así el GPS del cerebro funcionara correctamente.

Gracias a su trabajo, hoy sabemos que las neuronas mensajeras de la información necesaria para que este GPS del cerebro funcione correctamente, según lo demostrado en ratas, son las células de dirección de la cabeza (head direction cells), las células de frontera (border cells) y las células de red (grid cells). De esta manera, las células de lugar pueden recibir información sobre las diferentes localizaciones y ambientes, a la vez que actualizan sus propios datos, de forma independiente a los estímulos sensoriales. Un trabajo brillante que "ve la luz" (nunca mejor dicho) para entender un poco más el funcionamiento de las redes neuronales, y que así sepamos cómo trabaja el GPS del cerebro.

Tomado de:

ALT1040

7 de febrero de 2013

Los salmones emplean campos geomagnéticos para regresar a casa

Salmón

Los salmones recorren miles de kilómetros para regresar al lugar en el que nacieron.

Científicos estadounidense aseguran haber resuelto el misterio de cómo los salmones logran localizar, tras navegar miles de kilómetros en mar abierto, el río en el que nacieron y al que van a morir.

Los investigadores de la Universidad Estatal de Oregón dicen haber comprobado que estos peces memorizan los campos magnéticos de la Tierra, lo que les permite encontrar el lugar en el que salieron al mar.

Una vez localizado el río, se guiarían por el sentido del olfato para encontrar el lugar exacto en el que nacieron y al que van a desovar y morir.


Fuente:

BBC Ciencia

26 de enero de 2013

La Vía Láctea orienta al escarabajo pelotero

Escarabajo pelotero

La Vía Láctea es la mejor aliada del escarabajo pelotero en las noches sin Luna.

Quizás vivan en la tierra, pero todo parece indicar que el escarabajo pelotero que se alimenta de excrementos está muy claro dónde están las estrellas.

Un grupo de científicos ahora puede comprobar cómo estos insectos usan la Vía Láctea para orientarse mientras trasladan sus bolas de excremento por el terreno.
Los humanos, las aves y las focas se orientan por las estrellas. Sin embargo, este podría ser el primer ejemplo en el cual un insecto lo hace.

El estudio, elaborado por Marie Cacke, es reseñado en la revista clic Current Biology.

"Los escarabajos peloteros no necesariamente se trasladan en el mismo sentido que la Vía Láctea o perpendicular a ésta, pueden ir en cualquier ángulo a esta banda de luz en el cielo. La usan como referencia", dijo a la BBC la investigadora de la Universidad de Lund, en Suecia.

A los escarabajos peloteros les gusta trasladarse en línea recta. Cuando encuentran una pila de excrementos, forman una pequeña bola con éstos y comienzan a rodarla a un lugar seguro donde pueden comérsela, generalmente en una cueva.

Tener una buena orientación es importante porque a menos de que el insecto use un curso recto, es riesgoso regresar al lugar donde hizo la recolección, ya que otro escarabajo seguramente tratará de robarle su preciada bola.

Se mueven en línea recta

Dacke previamente había demostrado que los escarabajos peloteros eran capaces de moverse en línea recta orientándose por el Sol, la Luna o incluso señales formadas por estas fuentes de luz.

Pero fue la capacidad de estos animales de mantener el curso, incluso en noches sin Luna, lo que intrigó a la investigadora.

Por ello Dacke se llevó a estos insectos (Scarabaeus satyrus) al planetario de Johanesburgo, en Sudáfrica, donde podía controlar las estrellas que el insecto tendría sobre sí. 

Lo más importante es que puso a los escarabajos en contenedores con paredes negras para asegurarse de que los animales no estuviesen usando información de referencias en el horizonte, lo que en su medio ambiente natural podrían ser, por ejemplo, árboles.

Los escarabajos hicieron mejor su trabajo cuando tuvieron un perfecto cielo estrellado proyectado en el domo del planetario, aunque también lo hicieron bien al mostrarles una franja de luz difusa que representa la Vía Láctea.

Dacke cree que es la franja de luz y no los puntos de luz de las estrellas lo que es más importante para estos insectos.

"Estos escarabajos tienen ojos compuestos", dice a la BBC. "Se sabe que los cangrejos, que también los tienen, pueden ver las pocas estrellas más brillantes en el firmamento. Quizás los escarabajos pueden hacer esto también, pero aún no lo sabemos, es algo que estamos investigando. Sin embargo, cuando les mostramos solo las estrellas brillantes en el cielo, se pierden. Por lo tanto no son ellas las que los escarabajos usan para orientarse".

En el terreno, Dacke ha visto a los escarabajos desorientarse cuando la Vía Láctea se ubica en el horizonte en una época particular del año.

Lea el artículo completo en:

BBC Ciencia

Contenido relacionado
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0