Latest Posts:

Mostrando las entradas con la etiqueta matematicos. Mostrar todas las entradas
Mostrando las entradas con la etiqueta matematicos. Mostrar todas las entradas

15 de febrero de 2016

Por qué es importante que hayan descubierto el número primo más largo de la historia

Un ordenador de la Universidad Central de Misouri da con un número clave para el futuro de la informática.


La cifra tiene más de 22 millones de dígitos. Es larguísima, casi eterna, y por lo tanto cuesta mucho de leer. Este rasgo, unido al hecho de que se trata de un número primo especial, la hace singular: Se prevé que sea clave para encriptar y proteger datos y que, por lo tanto, en un futuro tenga una gran aplicación en los servicios online para operaciones bancarias, compras por internet y mensajería

Los números primos solo pueden dividirse por uno o por sí mismos y, como demostró Euclides en el siglo IV a. C., son infinitos. Sin embargo, en el siglo XVII, un monje francés amigo de Descartes y amante de la música descubrió unos números primos especiales a los que se bautizó con su nombre: los primos Mersenne (N=2n-1). Hasta hace poco solo se conocían 48 números Mersenne. La nueva cifra hallada ahora es el 49 y su descubrimiento ha sido posible gracias al proyecto Great Internet Mersenne Prime Search que cuenta con miles de voluntarios. 

Más información en: La Vanguardia

8 de septiembre de 2015

Harald Helfgott, el matemático peruano que resolvió un problema de 271 años de antigüedad

El académico peruano logró responder a la llamada Conjetura débil de Goldbach.

Harald nació en Lima, Perú, pero desarrolló su carrera entre Estados Unidos y Europa. Fue el primer latinoamericano y el científico más joven en ganar la Cátedra Humboldt. Foto cortesía Ministerio de Educación de Perú.
Cuando tenía ocho años, el peruano Harald Helfgott se planteaba preguntas matemáticas que el resto de sus compañeros tal vez se harían recién en la secundaria.

¿Por qué 0.99999 hasta el infinito podía ser igual a 1? ¿Cómo hallar la raíz cuadrada de -1? ¿Cómo hallar la raíz cuadrada de un número imaginario?

Harald encontraba las respuestas y se sentía maravillado: "Era un gran placer responder a mis propias preguntas en el colegio".

Lee también: ¿Por qué dan pánico las matemáticas?

El matemático Helfgott, nacido en Lima en 1977, asistió a una escuela de la capital peruana y con los años potenció su curiosidad matemática hasta tener como resultado una brillante carrera.

Estudió becado en la Universidad de Brandeis, Estados Unidos, llevó un doctorado en Princeton y un post doctorado en Yale, y se convirtió en investigador en el Centro Nacional de la Investigación Científica de Francia.

Este año, Helfgott fue el primer latinoamericano y el científico más joven en ganar la Cátedra Humboldt, que dota a sus beneficiarios con US$3,9 millones por responder a una pregunta que rompía la cabeza de los científicos hace casi 300 años: "¿Es cierto que todo número impar mayor que cinco puede expresarse como la suma de tres números primos?".
La pregunta nacía de la llamada Conjetura débil de Goldbach.

En 1742, el matemático prusiano Christian Goldbach envió una carta a su colega suizo Leonhard Euler en la que proponía que todo número par mayor que dos puede escribirse como la suma de dos números primos y que todo impar mayor que cinco puede escribirse como la suma de tres primos.
Ninguno de los dos estudiosos pudo comprobar las afirmaciones, por lo que quedaron como conjeturas.

La segunda fue conocida como "débil" porque estaba incluida en la primera, que comenzó a llamarse "fuerte".

  
Carta del científico Golbach a su colega Euler, en un intento de resolver la famosa conjetura matemática. Foto cortesía Ministerio de Educación de Perú.

"El trabajo serio para comprobar la conjetura débil comenzó a principios del siglo XX. Antes, nadie sabía ni por dónde comenzar", dice Harald Helfgott.

En 2005, este matemático comenzó a estudiar el trabajo de otros científicos que habían comprobado la conjetura débil para cierta cantidad de números.

El enunciado de Goldbach sonaba muy simple, pero probarlo para todos los números impares hasta el infinito era muy complejo.

Lee también: ¿Cuál es el resultado matemático más asombroso?
Harald comenzó a buscar una prueba el 2006.


En febrero de 2012, cuando ya estaba muy cerca de encontrarla, se levantaba muy temprano todos los días para dedicarse a esta tarea y llegaba a su oficina por las tardes.

Solo aquí revisaba su correo electrónico y buscaba información, pues había suspendido la conexión a Internet en su casa, para no distraerse.

En la noche, volvía a concentrarse en el trabajo de la conjetura hasta la hora de dormir.

En junio de 2013, por fin halló la respuesta y demostró en un trabajo de 79 páginas que la conjetura débil de Goldbach era cierta.

¿Para qué sirve demostrar la conjetura?

La demostración de la conjetura en sí misma tal vez no sirva para nada.
"Más bien las ideas o herramientas aplicadas para hallar la demostración son las que serán útiles para la teoría de números o en algunos casos fuera de ella", explica Harald.

Gracias a su trabajo, el matemático peruano ha sido invitado a dar charlas en Australia y varios países de América, Europa y Asia.

Ahora está investigando sobre teoría de números en el Instituto Nacional de Matemática Pura y Aplicada (IMPA) de Río de Janeiro, Brasil.

En unas semanas, partirá a la Universidad de Göttingen, Alemania, para dar clases y dividir los fondos de la Cátedra Humboldt en nuevas investigaciones matemáticas.
Harald también ha recibido una beca del Consejo de Investigación de Europa, que invertirá en multiplicar los conocimientos de la teoría de números.

En su tiempo libre, Harald cocinará platos peruanos para sus amigos y retomará sus clases de tango básico.

¿Intentará ahora demostrar la conjetura fuerte de Goldbach?

"Falta desarrollar herramientas, ideas para comprobarla", dice.

"No creo que esté al alcance de la comunidad matemática por el momento". 

Probarla podría tomar otros tres siglos.

Fuente:

BBC 

8 de agosto de 2014

¿Las matemáticas se inventan o se descubren?

Las matemáticas se descubren. La labor del matemático es parecida a la del explorador de una nueva tierra. Su misión es descubrir nuevos entes para su estudio detallado mediante nuevas herramientas. Así contesté a la #Pregunta102 de los amigos del podcast la @buhardilla. Hay quien piensa que los entes matemáticos se descubren y que las herramientas matemáticas se inventan. En mi opinión no hay distinción profunda entre entes y herramientas.

El famoso matemático Michael Atiyah, contestó la #Pregunta102 en 2006 en la Universidad de Santiago de Compostela. El vídeo de su charla ”Mathematics: Discovery or invention?” merece la pena. ¿Se inventaron o se descubrieron los números naturales? ¿Y los reales? ¿Y el número pi? La posibilidad de patentar (herramientas) matemáticas es la gran diferencia entre que sean inventadas o descubiertas.

Mi postura al respecto es propia de un practicante de las matemáticas aplicadas que no considera patentables sus propios descubrimientos. Pero supongo que muchos lectores opinarán que los suyos sí lo son. Para ilustrar mi postura usaré la función zeta de Riemann. Me he basado en Guilherme França, André LeClair, “A theory for the zeros of Riemann ζ and other L-functions,” arXiv:1407.4358 [math.NT], 16 Jul 2014.

Dibujo20140725 riemann - critical line zeta function - euler

No hay que saber muchas matemáticas para que uno se pregunte cuestiones sobre series infinitas como el problema de Basilea, que Pietro Mengoli propuso en 1644, ¿cuánto vale la siguiente serie infinita?

\displaystyle\zeta(2)=\sum_{n=1}^{\infty}\frac{1}{n^2}=\frac{1}{1^2} +\frac{1}{2^2}+\frac{1}{3^2}+\cdots,



¿Se inventó Mengoli esta serie? ¿La descubrió? Euler logró calcular la solución en 1735 (con 28 años de edad), aunque lo demostró en 1741. Su resultado le hizo famoso,


\displaystyle\zeta(2)=\sum_{n=1}^{\infty}\frac{1}{n^2}=\frac{\pi^2}{6}.

¿Por qué aparece el número pi en esta serie? La herramienta “inventada” por Euler permitía calcular

\displaystyle\zeta(4)=\sum_{n=1}^{\infty}\frac{1}{n^4}=\frac{\pi^4}{90},

y en general el valor de todas las series \zeta(2n) (en función de los llamados números de Bernoulli). ¿Este resultado fue inventado o descubierto por Euler? ¿Tiene sentido que Euler patente la “invención” del método que le llevó a este resultado?

La pregunta obvia es ¿cuánto vale la serie para potencias impares, es decir, \zeta(2n+1)? El método de Euler no funciona. ¿Tiene sentido patentar un método para calcular estos valores de la función zeta? ¿Se inventa o se descubre un método para calcularlos? Mi experiencia personal es más próxima a que se descubre un método explorando las propiedades de estos objetos matemáticos. Sin embargo, reconozco que el esfuerzo a veces es tan grande que a uno le gustaría patentar la herramienta “inventada” en el proceso.

En 1737 Euler descubrió otra propiedad realmente sorprendente e inesperada, el llamado producto de Euler,

\displaystyle\zeta(z)=\sum_{n=1}^{\infty}\frac{1}{n^z}=\prod_{i=1}^{\infty}\left(1-\frac{1}{p_i^z}\right)^{-1},
donde p_i es el número primo i-ésimo (p_1=2, p_2=3, p_3=5, etc.). Se puede demostrar fácilmente que si la variable z es un número complejo z=\mbox{Re}(z)+\mbox{i}\,\mbox{Im}(z), con \mbox{i}^2=-1, estas series convergen para \mbox{Re}(z)>1 (de hecho, es muy fácil demostrar que estas series divergen para z=1).

Tenemos una serie infinita que describe una función \zeta(z) de variable compleja para \mbox{Re}(z)>1. Una pregunta obvia es ¿se puede extender de forma única la función \zeta(z) a valores con \mbox{Re}(z)<1? ¿Piensas que se descubre esta extensión o que se inventa un método para calcularla? Ya te digo, yo prefiero decir que se descubre la extensión y que se descubre la herramienta para calcularla.

La función \eta(z) de Dirichlet corresponde a la versión alternada de la serie, es decir,

\displaystyle\eta(z)=\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n^z},



no siendo difícil demostrar que converge para \mbox{Re}(z)>0 y que permite escribir


\displaystyle\zeta(z)=\frac{1}{1-2^{1-z}}\,\eta(z),



expresión que define la función \zeta(z) para \mbox{Re}(z)>0.


De nuevo, la pregunta obvia es ¿se puede extender esta función a todo el plano complejo? El genial Riemann demostró que existe la continuación analítica única de la función \zeta(z) a todo el plano complejo, excepto en el polo z=1. Riemann descubrió (yo no diría que inventó) que está dada por


\displaystyle\zeta(z)=\Gamma(1-z)\,{\cal J}(z),



donde


\displaystyle\Gamma(z)=\int_{0}^{\infty}u^{z-1}e^{-u}\,du,y
\displaystyle{\cal{J}}(z)=\frac{1}{2\pi\mbox{i}}\int_{\cal{C}}\frac{u^{z}}{e^{-u} - 1}\frac{du}{u},



ambas bien definidas en todo el plano complejo (para un contorno {\cal C} adecuado).

Explorar las propiedades de la función \zeta(z) es un viaje por terra incognita emprendido por Riemann y que todavía muchos matemáticos siguen disfrutando (y sufriendo). Riemann demostró la llamada ecuación funcional

\displaystyle\chi(z)=\chi(1-z),\qquad\chi(z)\equiv\pi^{-z/2}\,\Gamma(z/2)\zeta(z),



válida en todo el plano complejo, excepto en el polo simple z=1. Esta ecuación funcional es compañera de viaje de todo explorador del universo de la función zeta de Riemann.


\zeta(-2n) = 0

Por ejemplo, se puede demostrar que son los ceros triviales (basta sustituir z\to 1+2n para n=1,2,\dotsc en la ecuación funcional). Además, la función \zeta(z) no tiene ceros para \mbox{Re}(z) > 1, luego los ceros triviales son los únicos para \mbox{Re}(z)<0.

Parece obvio explorar ¿cuántos ceros (no triviales) hay en la banda crítica 0\le\mbox{Re}(z)\le 1? Todos estos ceros son simétricos respecto a la línea crítica \mbox{Re}(z) = 1/2. Más aún, si \rho es un cero complejo, también lo son \rho^*, 1-\rho y 1-\rho^*. La excepción son los ceros en la línea crítica \mbox{Re}(z) = 1/2, para los que \rho y 1-\rho^* coinciden. ¿Cuántos ceros hay en la línea crítica? Hardy demostró que hay infinitos. ¿Cuántos ceros hay en la banda crítica que no estén en la línea critíca? La hipótesis de Riemann afirma que ninguno. Nadie lo ha demostrado. Un millón de dólares espera a quien lo logre…

¿Se inventan las propiedades de la función zeta de Riemann o se descubren? ¿Se inventarán las herramientas para demostrar la hipótesis de Riemann o se descubrirán? Mi opinión es que la sensación que tiene el matemático es que se descubren, pero que le gustaría que se inventaran para poder patentarlas.

Fuente:

La Mula Francis
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0