Latest Posts:

Mostrando las entradas con la etiqueta napoleon. Mostrar todas las entradas
Mostrando las entradas con la etiqueta napoleon. Mostrar todas las entradas

7 de octubre de 2018

Por qué la América española se dividió en muchos países mientras que Brasil quedó en un solo país


Cuando Cristóbal Colón tocó tierra tras su travesía del Atlántico, en 1492, no imaginaba todavía que cambiaría el curso de la historia para siempre.

Tampoco pensaría que de allí a pocos años desencadenaría una lucha entre las dos mayores potencias económicas y militares de la época, España y Portugal, por hacerse con las riquezas de ese territorio aún desconocido para los europeos.

Dos años después, los Reyes Católicos, Isabel y Fernando, y el de Portugal, Juan II, llegaron a un compromiso y firmaron en Tordesillas (entonces Reino de Castilla) un pacto para repartirse las tierras "descubiertas y por descubrir" fuera de Europa.


Más de 500 años después, el mapa latinoamericano sigue exhibiendo la herencia cultural de esa lucha: desde los cañones del río Bravo hasta las frías laderas de la Tierra del Fuego, los idiomas más hablados son el español y el portugués.

Pero, mientras el castellano se habla en 19 Estados distintos, el portugués sigue siendo la lengua oficial de uno solo, Brasil.

¿Por qué la América española se fracturó en tantos países mientras que la América portuguesa quedó sustancialmente igual que en la época de la colonización?

Hay varias razones que explican este acontecimiento y los historiadores no siempre coinciden.


Una de las causas tiene que ver con la distancia geográfica entre las ciudades de las antiguas colonias y la forma en que eran administradas por sus respectivas metrópolis.

Otra diferencia, según el historiador brasileño José Murilo de Carvalho, está relacionada con la formación de las elites en los dos imperios coloniales.

Según los historiadores, tal vez la razón más importante para explicar el mantenimiento de la unidad de Brasil fue la huida de la familia real portuguesa.

En 1808, después de que el ejército de Napoleón Bonaparte invadiera Portugal, el príncipe regente João huyó a Río de Janeiro y trasladó consigo toda la corte y el aparato gubernamental: archivos, bibliotecas reales, la tesorería y hasta 15 mil personas.

El artículo completo en:

BBC Mundo

29 de mayo de 2012

Napoleón Bonaparte y el Teorema del Emperador

En estos momentos en los que la inversión en ciencia en España tiene pinta de seguir la gráfica de una exponencial de exponente negativo es posible que sea interesante recordar que a lo largo de la historia podemos encontrar muchos ejemplos de personajes de las altas esferas de la aristocracia o del gobierno de algún país que han mantenido relaciones muy estrechas con la ciencia en todas sus variantes. Hasta se conocen jefes de gobierno con conocimientos matemáticos interesantes, como James Gardfield, presidente de los Estados Unidos que desarrolló una demostración del teorema de Pitágoras. Pero quizás uno de los más representativos de esta categoría de gobernantes sea Napoleón Bonaparte.

Napoleón Bonaparte, el Emperador de los Franceses, gustaba de relacionarse con lo más granado de las matemáticas de su época. Es bastante conocida su amistad con matemáticos de la talla de Gaspard Monge, Pierre Simon Laplace y Joseph Louis Lagrange, que de hecho llegaron a recibir títulos nobiliarios de Napoleón. Sobre la relación con ellos hay un par de anécdotas relativamente conocidas que vamos a contar.

La primera de ellas tiene que ver con la obra de Laplace Traité de Mécanique céleste. Estaba el matemático francés presentando dicho libro al emperador cuando éste le espetó:
Napoleón: Monsieur Laplace, me cuentan que ha escrito usted este gran libro sobre el sistema del universo sin haber mencionado ni una sola vez a su creador.
A lo que Laplace respondió:
Laplace: Sire, nunca he necesitado esa hipótesis.
Se cuenta también que cuando Lagrange supo de dicha conversación comentó:
Lagrange: Pues es una bella hipótesis, explica muchas cosas.
La segunda tiene que ver con otro matemático amigo de Napoleón: Lorenzo Mascheroni. Al parecer la amistad entre Napoleón y Mascheroni era muy fuerte. Ello, junto con el gusto del emperador por las matemáticas, propició que Napoleón conociera algunos de los resultados de Mascheroni con cierta profundidad. La anécdota viene a raíz de una conversación de Napoleón con Lagrange y Laplace donde el dirigente francés les estaba hablando sobre algunas construcciones de Mascheroni que ellos no conocían. Al parecer Laplace comentó lo siguiente:
General, esperábamos de vos cualquier cosa excepto lecciones de geometría.
Aparte de estas anécdotas, hay un detalle que relaciona a Napoleón con las matemáticas que quizás mucha gente desconozca: Napoleón da nombre a un teorema. Sí, amigos, el denominado teorema de Napoleón existe y es un resultado de geometría plana totalmente serio, aunque quizás su procedencia real no corresponda a su denominación.

El denominado teorema de Napoléon dice lo siguiente:
Teorema de Napoleón
Dado un triángulo plano cualquiera, dibujemos triángulos equiláteros apoyados en cada uno de sus lados y representemos el baricentro de cada uno de ellos. Entonces el triángulo que tiene como vértices a esos baricentros es un triángulo equilátero, sea como sea el triángulo inicial.
Interesante, ¿verdad? Pues más interesante es saber que el teorema también se cumple si tomamos los triángulos equiláteros internos del triángulo inicial, es decir, si los dibujamos hacia adentro.
Y como colofón, tenemos también relación entre las áreas de los triángulos. Concretamente, el área del triángulo inicial es igual al área del equilátero que se forma con los exteriores menos el área del equilátero que se forma con los interiores.

La situación sería algo así como lo que se puede ver en el applet de GeoGebra que mostramos a continuación. Podéis mover los vértices del triángulo inicial (en negro) y veréis cómo los ángulos del triángulo que se forma (en rojo) siempre miden 60º, esto es, que el triángulo es equilátero independientemente de la forma del triángulo inicial. Además, marcando “Triángulos interiores” podemos ver la situación interior, y marcando “Relación entre áreas” podemos ver que que la resta de las áreas del equilátero externo y la del interno da como resultado el área del inicial:

El applet Java de GeoGebra no ha podido ejecutarse.

En esta página podéis ver demostraciones tanto de la versión “externa” como de la “interna”, así como también de la relación entre las áreas de los triángulos. Y en Cut the Knot tenéis más información y algunas otras demostraciones de este resultado.

Pero no todo podía ser tan perfecto. En realidad el teorema de Napoleón no es de Napoleón, sino del citado Lorenzo Mascheroni, que según la historia es quien lo enunció y lo demostró. La razón por la que ha pasado a la historia con esta atribución parece ser que es la gran afición de Napoleón por las matemáticas y su gran amistad con Mascheroni (llegó a dedicar a Napoleón su obra Geometria del compasso), que le llevaron a estudiar sus libros y a popularizar sus resultados con tanto éxito que, incomprensiblemente, en algún momento se atribuyó este teorema a Napoleón.

Hoy en día todavía sigue habiendo gente que piensa que realmente fue Napoleón el responsable de este teorema, pero la opinión generalizada de los expertos es que, aunque la demostración no es demasiado complicada, el emperador no tenía conocimientos matemáticos suficientes para realizar la pertinente demostración. Lo que no se le puede negar a Napoleón es su preocupación por la ciencia y la educación (por ejemplo, instituyó la educación superior). Bien haría más de uno de los que nos gobierna en tomar ejemplo de él en lo que a estos temas se refiere…


Fuente:

google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0