En estos momentos en los que la inversión en ciencia en España tiene
pinta de seguir la gráfica de una exponencial de exponente negativo es
posible que sea interesante recordar que a lo largo de la historia
podemos encontrar muchos ejemplos de personajes de las altas esferas de
la aristocracia o del gobierno de algún país que han mantenido
relaciones muy estrechas con la ciencia en todas sus variantes. Hasta se
conocen jefes de gobierno con conocimientos matemáticos interesantes,
como James Gardfield, presidente de los Estados Unidos
que desarrolló una demostración del teorema de Pitágoras. Pero quizás
uno de los más representativos de esta categoría de gobernantes sea Napoleón Bonaparte.
Napoleón Bonaparte, el Emperador de los Franceses,
gustaba de relacionarse con lo más granado de las matemáticas de su
época. Es bastante conocida su amistad con matemáticos de la talla de Gaspard Monge, Pierre Simon Laplace y Joseph Louis Lagrange,
que de hecho llegaron a recibir títulos nobiliarios de Napoleón. Sobre
la relación con ellos hay un par de anécdotas relativamente conocidas
que vamos a contar.
La primera de ellas tiene que ver con la obra de Laplace Traité de Mécanique céleste. Estaba el matemático francés presentando dicho libro al emperador cuando éste le espetó:
Napoleón: Monsieur Laplace, me cuentan que ha escrito usted este gran libro sobre el sistema del universo sin haber mencionado ni una sola vez a su creador.
A lo que Laplace respondió:
Laplace: Sire, nunca he necesitado esa hipótesis.
Se cuenta también que cuando Lagrange supo de dicha conversación comentó:
Lagrange: Pues es una bella hipótesis, explica muchas cosas.
La segunda tiene que ver con otro matemático amigo de Napoleón: Lorenzo Mascheroni.
Al parecer la amistad entre Napoleón y Mascheroni era muy fuerte. Ello,
junto con el gusto del emperador por las matemáticas, propició que
Napoleón conociera algunos de los resultados de Mascheroni con cierta
profundidad. La anécdota viene a raíz de una conversación de Napoleón
con Lagrange y Laplace donde el dirigente francés les estaba hablando
sobre algunas construcciones de Mascheroni que ellos no conocían. Al
parecer Laplace comentó lo siguiente:
General, esperábamos de vos cualquier cosa excepto lecciones de geometría.
Aparte de estas anécdotas, hay un detalle que relaciona a Napoleón con las matemáticas que quizás mucha gente desconozca: Napoleón da nombre a un teorema. Sí, amigos, el denominado teorema de Napoleón
existe y es un resultado de geometría plana totalmente serio, aunque
quizás su procedencia real no corresponda a su denominación.
El denominado teorema de Napoléon dice lo siguiente:
Teorema de Napoleón
Dado un triángulo plano cualquiera, dibujemos triángulos equiláteros apoyados en cada uno de sus lados y representemos el baricentro de cada uno de ellos. Entonces el triángulo que tiene como vértices a esos baricentros es un triángulo equilátero, sea como sea el triángulo inicial.
Interesante, ¿verdad? Pues más interesante es saber que el teorema también se cumple si tomamos los triángulos equiláteros internos del triángulo inicial, es decir, si los dibujamos hacia adentro.
Y como colofón, tenemos también relación entre las áreas de los triángulos. Concretamente, el
área del triángulo inicial es igual al área del equilátero que se forma
con los exteriores menos el área del equilátero que se forma con los
interiores.
La situación sería algo así como lo que se puede ver en el applet de GeoGebra
que mostramos a continuación. Podéis mover los vértices del triángulo
inicial (en negro) y veréis cómo los ángulos del triángulo que se forma
(en rojo) siempre miden 60º, esto es, que el triángulo es equilátero
independientemente de la forma del triángulo inicial. Además, marcando
“Triángulos interiores” podemos ver la situación interior, y marcando
“Relación entre áreas” podemos ver que que la resta de las áreas del
equilátero externo y la del interno da como resultado el área del
inicial:
El applet Java de GeoGebra no ha podido ejecutarse.
En esta página
podéis ver demostraciones tanto de la versión “externa” como de la
“interna”, así como también de la relación entre las áreas de los
triángulos. Y en Cut the Knot tenéis más información y algunas otras demostraciones de este resultado.
Pero no todo podía ser tan perfecto. En realidad el teorema de Napoleón no es de Napoleón, sino del citado Lorenzo Mascheroni,
que según la historia es quien lo enunció y lo demostró. La razón por
la que ha pasado a la historia con esta atribución parece ser que es la
gran afición de Napoleón por las matemáticas y su gran amistad con
Mascheroni (llegó a dedicar a Napoleón su obra Geometria del compasso),
que le llevaron a estudiar sus libros y a popularizar sus resultados
con tanto éxito que, incomprensiblemente, en algún momento se atribuyó
este teorema a Napoleón.
Hoy en día todavía sigue habiendo gente que piensa que realmente fue
Napoleón el responsable de este teorema, pero la opinión generalizada de
los expertos es que, aunque la demostración no es demasiado complicada,
el emperador no tenía conocimientos matemáticos suficientes para
realizar la pertinente demostración. Lo que no se le puede negar a
Napoleón es su preocupación por la ciencia y la educación (por ejemplo,
instituyó la educación superior). Bien haría más de uno de los que nos
gobierna en tomar ejemplo de él en lo que a estos temas se refiere…
Fuente: