Latest Posts:

11 de mayo de 2015

Esto es lo QUE NO SABÍAS de un embarazo

Antojos

Los antojos durante el embarazo son muy misteriosos. Pueden ser una respuesta a deficiencias minerales o un esfuerzo instintivo para protegernos contra la enfermedad. Pero quizás son psicológicos. La evidencia no es concluyente.
Los antojos por ingerir sustancias no alimenticias durante el embarazo reciben el nombre de "pica".
Un tercio de los antojos en estos días no son de alimentos, lo cual sugiere que estos pueden estar relacionados más con la textura y el olor que con el sabor.
Los antojos varían en distintos lugares del mundo: casi ninguna mujer danesa come arcilla o tierra durante el embarazo, pero en partes costeras de Kenia lo hacen un 56% de las mujeres.
En Malawi, si se ve a una mujer comiendo arcilla se asume que está embarazada.
La arcilla destinada a ser consumida se vende también en tiendas de Estados Unidos. No es mala para la salud, salvo por el riesgo de sufrir estreñimiento.

Cómo tener una niña


Hay poca evidencia confiable de que podamos influir sobre el género de los bebés.
Un estudio con 700 mujeres embarazadas concluyó que las mujeres que comen al menos un cuenco de cereales al día tienen una probabilidad 87% mayor de dar a luz a un varón que aquellas que no comen más de uno a la semana.
Las mujeres que dieron a luz a un varón también comieron 400 calorías más al día que las que dieron a luz a una niña, de media. Pero estos resultados han sido muy criticados desde su publicación.
Aristóteles (384 a.C.-322 a.C.) pensaba que la dieta de la madre y la posición sexual durante la concepción marcaba diferencia.
Anaxágoras, (500 a.C.-428 a.C.) creía que los niños y las niñas provenían de distintos testículos y recomendaban atar el no deseado antes de mantener relaciones sexuales.
Hipócrates (460 a.C.-370 a.C.) tenía una teoría similar: que los fetos masculinos provienen del ovario derecho y los femeninos del izquierdo.

Comer por dos

A pesar de la popular idea de que las mujeres embarazadas deben "comer por dos", las mujeres necesitan pocas calorías extra durante el embarazo.
Las futuras madres no necesitan cambiar su dieta durante los seis primeros meses, e incluso en los últimos tres sólo necesitan 200 calorías extra al día, el equivalente a un pequeño sándwich.

Superfecundación

Aristóteles creía que las liebres podían quedar embarazadas aunque ya lo estuvieran.
Esto causó controversia durante dos milenios, pero finalmente un estudio con liebres europeas marrones realizado por el Instituto Leibniz para la investigación zoológica y de vida silvestre de Berlín y publicado en 2010 en la revista Nature, probó que Aristóteles estaba en lo cierto.
Los machos liebre pueden fecundar a las hembras incluso cuando están muy embarazadas.
El nuevo embrión se desarrolla cuatro días antes de que nazca el primer lebrato.
Dado que el útero está lleno, el nuevo embrión espera en el oviducto hasta que está listo.
Es un truco evolutivo para acortar el tiempo entre las crías y así producir más.
Este procedimiento, conocido como superfetación, ocurre cuando dos óvulos son fecundados durante distintos ciclos menstruales.
Esto sucede con más frecuencia entre liebres, pero también puede suceder (aunque con mucha menos frecuencia) entre tejones, visones americanos, panteras, búfalos y ualabíes de pantano.
Únicamente puede suceder si la ovulación continúa durante el embarazo, algo que no pasa normalmente.
Hay un truco similar llamado superfecundación, que supone que dos óvulos distintos son fecundados durante el mismo ciclo.
Aristóteles también pensaba que era posible en el caso de los humanos, y, a pesar de las burlas que recibió, parece que también tenía razón en esto.
En 2010, una mujer de Arkansas dio a luz a gemelos concebidos con dos semanas de diferencia.
Esto significa que dos bebés que compartan el mismo útero podrían tener distintos padres.
Fuente:

7 de mayo de 2015

El papel de la ciencia en la extensión de la democracia y los derechos humanos

He señalado en una anotación anterior que la influencia de la ciencia y la tecnología sobre el desarrollo socioeconómico de los países, principalmente occidentales, no se ha limitado a los aspectos materiales y de salud, sino que la misma Ilustración no podría entenderse sin su contribución. Por ello, a la hora de valorar el papel que puede tener sobre el cumplimiento de objetivos de desarrollo, no debe desdeñarse su posible influencia en la configuración de sociedades abiertas, libres y democráticas.

No se trata de que exista un relación necesaria y directa entre el desarrollo científico y la democracia y la libertad, sino de que hay razones para pensar que esas dos esferas de la civilización se encuentran relacionadas y pueden ser, hasta cierto punto, interdependientes. No es este el momento de analizar ese asunto con la debida profundidad pero creo que merece la pena que cite el dato de que, considerando a todos los países del mundo con más de medio millón de habitantes, existe una fuerte y muy significativa correlación positiva (r2= 0,72, n= 150) entre índice de transparencia (un buen indicador de historial democrático) y desarrollo científico (producción de artículos científicos per capita). Hay razones de fondo que apoyan la existencia de esa correlación. Por un lado, ciencia y democracia comparten valores y, por el otro, la educación constituye un fuerte nexo entre esas dos esferas. La ciencia necesita un importante esfuerzo formativo en la sociedad, y la formación genera, a su vez, ciudadanos críticos.
Por todo ello, yo también creo que es importante que en la formulación de los objetivos del milenio para 2030 se haga mención expresa del sustento científico de algunos de los objetivos y metas. Y de que la ciencia tenga una presencia significativa en la agenda para el desarrollo de los países menos favorecidos. Porque estoy convencido de que no sólo por sus efectos sobre la generación de riqueza, la alimentación y la salud, sino por su influencia sobre el carácter de las sociedades, la ciencia es un potente agente de desarrollo.
Tomado de:

Cortando un palo en tres trozos para hacer un triángulo

Paseando por la red nos encontramos con listas de preguntas que supuestamente hacen en la empresa Google para contratar gente. Podrían pareceros peregrinas, pero son problema más o menos conocidos en los que se busca una manera de razonar o de aproximarse a un problema, más que la repetición de conocimientos previos, o la aplicación directa de fórmulas.

Muchas de ellas son lo que se llaman Problemas de Fermi, problemas de estimación de cosas aparentemente imposibles de calcular, pero que finalmente resultan fáciles de aproximar con cálculos sencillos. Como el más popular: ¿Cuántos afinadores podrían trabajar en la ciudad de Chicago?

Para mentes enfermas es peligroso jugar con estas cosas, porque rápido te picas y te pones a hacer alguno… y te lías y te lías… A nosotros nos picó éste:
Si rompo un palo en tres trozos, ¿cuál es la probabilidad de que pueda formar un triángulo con los trozos?
Pero tranquilos, no hay que ponerse así de chulos para cortar el palito. Si quieres, basta coger un espagueti e intentar cortarlo en dos… a ver si puedes.

Vamos a dejarnos de bromas y os vamos a mostrar dos formas de atacar este problema. Dos formas diferentes con dos interpretaciones diferentes.

Antes de empezar, hay que plantearse algo: ¿hay alguna condición para que tres segmentos puedan formar un triángulo? ¿Tres segmentos cualesquiera podrían formar un triángulo? La respuesta es no.


Mira este triángulo y piensa que para que los dos lados de arriba puedan apoyarse sobre la base, tienen que ser (entre los dos) más largos que la base, quiero decir, sumando los dos lados deben tener más longitud que la base. Imagina que los dos lados miden 0.3 y que la base mide 1. Ni siquiera poniéndolos uno a continuación del otro, eres capaz de abarcar la base, no puede hacerse.
A este hecho,  a < b + c\, se le llama Desigualdad Triangular y debe cumplir para todos los lados del triángulo. Cada uno de ellos tiene que medir menos que la suma de los otros dos.

Supongamos que nuestro palo mide 1 e imagina que uno de los trozos mide más que (o incluso igual) 1/2. Entonces la suma de los otros dos trozos será menor (o igual) que 1/2, por lo que no se verificaría la Desigualdad Triangular. Así que para que al cortar un palo (de longitud 1) en tres trozos se pueda formar un triángulo necesitamos que todos los trozos midan menos que 1/2, es decir, que la desigualdad triangular nos asegura que cada trozo no será demasiado grande.

Y ahora, vamos al lío y cortemos el palito. El problema es que el enunciado no deja claro cómo se rompe el palo y esto crea algo (en realidad, bastante) de incertidumbre.  Esencialmente hay 2 formas de cortar un palo en 3 trozos.
  1. Corto en 2 trozos, elijo uno de ellos y lo corto de nuevo en 2.
  2. Corto directamente el palo en 3 trozos.
La diferencia radica en que en el primer caso la acción de realizar el segundo corte no es independiente de la primera; mientras que en el segundo método estamos interpretando que ambos cortes son independientes.

Vamos a ver que, de hecho, de cada una de estas formas, sale una probabilidad diferente. 

Comencemos con el primer caso.

Método 1:

Para ello, podemos plantear el problema así.
  1. Suponemos que nuestro palo es el intervalo [0,1] (por simplificar).
  2. Rompemos por un punto x
  3. Rompemos uno de los trozos restantes por otro punto y
x e y van a ser dos números entre 0 y 1. Puede pasar que el primer corte quede a la derecha del segundo corte o viceversa.
Si suponemos que el segundo corte se hace a la derecha del primero, estamos diciendo que x<y. Así, los tres trozos serán de longitud x, y-x y 1-y.


La condición que hemos obtenido para que se forme un triángulo (que todos los trozos tengan longitud menor que 1/2), se reduce ahora a que x<1/2, y-x<1/2, o equivalentemente, y<x+1/2, y 1-y<1/2, o lo que es lo mismo, y>1/2. En resumen, x<1/2,\ 1/2<y<x+1/2.

Ya tenemos las restricciones que nos permiten formar un triángulo, ahora veamos cuál es la probabilidad de que nuestros cortes caigan dentro de esas restricciones.

Imagina que damos un corte x y esperamos dar el corte y. Como hemos supuesto que y>x, la longitud accesible para hacer el segundo corte es 1-x. Pero sólo nos sirve si 1/2<y<x+1/2 como hemos dicho. ¿Cuál es la longitud de ese trozo? Restando (x+1/2)-1/2 sale precisamente x.
Por lo tanto la probabilidad de habiendo dado un corte en x acertar con el corte en y es el cociente entre la longitud que nos sirve dividida por la longitud total: \displaystyle\frac{x}{1-x}.
Ahora tendríamos que sumar para todos los valores de x que nos sirven, que, como dijimos antes, no pueden irse más allá de 1/2.
Como x es una variable continua esto lo podemos hacer con la integral: \displaystyle\int_0^{1/2}\frac{x}{1-x}\,dx.
Resolviendo nos sale \ln2-1/2\approx 0,19 (un 19%).

Ya, pero nos faltaría el otro caso, cuando el corte y nos queda a la izquierda del primer corte (es decir, y<x). Si lo miras bien,  verás que la situación es igual a la primera, pero simétrica, así que multiplicamos por dos el resultado.

Por lo tanto, si generamos los tres trozos, dando un primer corte y luego otro, la probabilidad de que los tres trozos resultantes puedan formar un triángulo es 2\ln2-1\approx 0,38 , aproximadamente un 38%.

Método 2:

Aquí suponemos que los 2 cortes se hacen a la vez. Si llamamos x al primer punto de corte e y al segundo, estamos en una situación muy parecida a la anterior.

¿Cuáles son las posibles configuraciones de los puntos de corte x  e y? La única restricción es que x<y, luego todas las posibles opciones son 0<x<y<1.

Si representamos gráficamente en el plano XY este conjunto, resulta ser el triágulo de vértices (0,0), (0,1) y (1,1):


Ahora bien, ¿Cuáles de esas posibles configuraciones hacen que pueda formarse un triángulo? Esas restricciones las calculamos un poco más arriba, acudiendo a las desigualdades triangulares, y eran: x<1/2,\ 1/2<y<x+1/2. Si representas de nuevo este conjunto en el plano, te sale otra vez un triángulo, pero ahora el de vértices  (0,1/2), (1/2,1/2) y (1/2,1):







En resumen, tenemos un montón de casos posibles (los del primer triángulo) de los cuales sólo los que están en el segundo triángulo son favorables. Aplicamos la Regla de Laplace, hallamos el área de cada triángulo y su cociente es… 1/4, es decir, tenemos un 25% de probabilidad.

Conclusiones:

¿Cómo es posible que un mismo problema se resuelva de dos formas diferentes y den resultados diferentes? ¿Acaso algún método está equivocado?

En primer lugar, eso es más habitual de lo que parece. Te recomendamos que veas la charla Intuiciones improbables de nuestro compañero Iñaki Úcar.

En segundo lugar, lo que ocurre aquí es una guerra de interpretaciones. Quizás una guerra entre paradigmas. Entre el clásico paradigma frecuentista, en el que todo es ideal, todo está perfectamente definido y está basado en unos axiomas concretos (como en el Método 2); y el nuevo paradigma bayesiano para el que las cosas no son ideales, sino que hay que someterlas a la cruda realidad y todo depende de las circunstancias concretas (como en el Método 1). Quizás estar de acuerdo con un método sí y el otro no, indique en qué bando estás. Pero en cualquier caso, si has resuelto por ti mismo este problema, siempre te quedará la satisfacción de haberlo hecho.

El artículo original en:

NAUKAS




google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0