Latest Posts:

10 de diciembre de 2012

La demostración más elemental de la irracionalidad de raíz de dos

A estas alturas de la película creo que es bastante conocido que el número raíz de dos, \sqrt{2}, es un número irracional. Es decir, que no puede expresarse como una fracción con numerador y denominador números enteros.

Hay muchas formas de demostrarlo. De hecho aquí en Gaussianos hemos visto ya varias: la típica que usa reducción al absurdo (junto con una que usa descenso infinito) y una demostración geométrica muy interesante. Hoy vamos a ver la, posiblemente, demostración de la irracionalidad de raíz de dos más elemental que he visto nunca.

Comencemos con ella. Está bastante claro que las únicas posibilidades que pueden darse en una fracción son las siguientes: impar/impar, impar/par, par/impar y par/par.

La opción par/par se puede reducir a alguna de las otras tres, por lo que no es necesario considerarla.

Dicho esto, veamos que ninguna de las tres opciones puede dar como resultado \sqrt{2}. O lo que es lo mismo, que el cuadrado de cada una de ellas no puede valer 2. O lo que es igual, que al elevar al cuadrado cada una de ellas el numerador no puede ser el doble que el denominador. Hasta ahora bien, ¿verdad? Bien, pues vamos caso por caso:
  • impar/impar Si elevamos un número impar al cuadrado obtenemos un número impar, por lo que al elevar esta fracción al cuadrado obtenemos otra fracción tipo impar/impar, y está bastante claro que un número impar no puede ser el doble que otro número impar, por lo que \sqrt{2} no puede ser igual a una fracción de este tipo.
  • impar/par Si elevamos un número par al cuadrado obtenemos también un número par, por lo que aquí al elevar al cuadrado obtendremos una fracción del tipo impar/par. Pero un número impar no puede ser el doble de un número par, por lo que \sqrt{2} tampoco puede ser igual a una fracción de este tipo.
  • par/impar Por lo visto anteriormente, el cuadrado de esta fracción daría también una del tipo par/impar, y aquí en principio sí que podría ser que el numerador fuera el doble del denominador. Pero en realidad no es así, ya que un número par al cuadrado da un múltiplo de 4, y es claro que un múltiplo de 4 no puede ser el doble de un número impar (porque en realidad es el doble de un número par). Por tanto \sqrt{2} tampoco puede ser igual a una fracción así.
Lo que hemos obtenido es que \sqrt{2} no puede ser igual a ninguno de los tipos de fracciones posibles donde el numerador y el denominador son números enteros. En consecuencia, \sqrt{2} no es un número racional, hecho que unido a que sí es un número real nos lleva a que \sqrt{2} es un número irracional

Sencilla, ¿verdad? ¿Conocéis alguna otra demostración más elemental que ésta?

Fuente:

Gaussianos
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0