Sólo cuando los terminales de transmisión (células rojas) y de
recepción (células verdes) se encuentran en la proporción adecuada con
respecto unos a otros, se puede producir la comunicación neuronal.
Fuente: Max Planck Institute.
Hasta ahora, se creía que en la comunicación entre las
neuronas, a la que se denomina
sinapsis, el papel activo en la reorganización del cerebro para adaptarse a los estímulos del mundo exterior lo llevaban a cabo sólo los receptores sinápticos.
Sin embargo, ahora, científicos del
Max Planck Institute of Neurobiology de Martinsried, en Alemania, aseguran que esta idea no es correcta. Al parecer, la parte transmisora de la sinapsis de las células nerviosas también sería altamente adaptable.
A grandes rasgos, la sinapsis es un proceso que implica descargas químico-eléctricas (generadas en las membranas celulares de las neuronas). Estas descargas liberan unas moléculas denominadas neurotransmisores, que viajan de una neurona a otra.
Este proceso de comunicación entre las células nerviosas de nuestro cerebro es lo que nos permite, por ejemplo, recordar las cosas importantes y olvidar las banalidades, entre otras aptitudes de nuestra conciencia humana.
Flexivilidad y capacidad de aprender
La comunicación neuronal es de hecho la base del funcionamiento de nuestro cerebro. Cada una de los cientos de miles de millones de células nerviosas que tenemos es experta en el intercambio de datos, y mantiene conexiones con miles de neuronas vecinas.
A través de ese punto de contacto que es la sinapsis, la información neuronal fluye por un canal de una única dirección. El cerebro es capaz de realizar todas las complejas tareas que realiza sólo si las neuronas logran intercambiar la información correctamente.
Según explican los científicos del Max Planck Institute en un
comunicado , la versatilidad de las sinapsis es lo que posibilita, además, que nuestro cerebro tenga una gran adaptabilidad y flexibilidad.
La mayoría de los científicos coinciden en opinar que el intercambio flexible de información entre las neuronas es lo que nos permite aprender y recordar.
Estudio simultáneo de receptores y emisores
Las sinapsis requieren de un receptor (elemento postsináptico) y de un emisor (el elemento presináptico). Los elementos postsinápticos más comunes en las neuronas son las espinas dendríticas, que son unas protuberancias con forma de hongo que se extienden desde la superficie del axón neuronal.
Este punto de contacto receptor, las espinas, juegan un papel activo en el ensamblaje y rotura de las nuevas sinapsis. Cuanta más información se procese, mayor número de nuevas bases receptoras generarán las células nerviosas.
Las nuevas espinas crecen en dirección a sus neuronas vecinas para formar nuevas sinapsis. Si el flujo de información se debilita, las sinapsis desaparecen, y las espinas se retrotraen. En comparación, solía creerse que el otro lado de la sinapsis (el emisor), conocido como botón axonal, sólo jugaría un papel pasivo en la formación de las conexiones.
Pero no es así. Tal y como explican los científicos en la revista especializada
Neuron , las últimas tecnologías para el registro de imágenes cerebrales les han permitido examinar los reajustes estructurales que se producen durante los procesos de sinapsis, en ambos extremos de éstas simultáneamente.
Estudios anteriores se habían centrado en revisar los cambios estructurales de las espinas dendríticas pero, en este caso, el estudio pudo analizar además los botones axonales de células nerviosas con depresión de larga duración
(LTD).
Uso de nuevas tecnologías
La LTD, en neurofisiología, se refiere al debilitamiento de una sinapsis neuronal durante horas o días. Se cree que la LTD es el resultado de cambios en la densidad del receptor postsináptico.
Utilizando un
microscopio láser de excitación de dos fotones , los investigadores registraron la morfología sináptica y la actividad, durante más de cinco horas, en cultivos del
hipocampo de ratones.
Los datos recogidos indicaron que hubo una contribución presináptica sustancial en la plasticidad morfológica del cerebro dependiente de la actividad sináptica. Según los científicos, ésta sería la primera vez en que se observa con éxito al mismo tiempo tanto la parte receptora como la terminal transmisora de la sinapsis durante un periodo extenso de tiempo.
Para conseguirlo, se coloreó una serie de neuronas con un tinte rojo fluorescente y se etiquetaron las células conectadas en verde. El microscopio especializado permitió revelar los cambios en ambos extremos de la sinapsis, en varias secuencias.
Número constante de transmisores
En definitiva, el experimento permitió detectar claramente que la unidad transmisora de las sinapsis juega un papel mucho más activo de lo que se creía en el ensamblaje y desintegración de dichas sinapsis.
Lo realmente sorprendente del experimento, señaló su director, el profesor
Valentin Nägerl, es que, con todo, el número de transmisores se mantiene siempre constante. Aunque el número de sinapsis se reduce cuando el flujo de información se debilita, nuevos terminales transmisores emergen en otros lugares de una manera aparentemente simétrica.
Los científicos concluyen, por tanto, que el procesamiento de la información en el cerebro no es exclusivo solamente de los receptores sinápticos, sino que las células transmisoras también reaccionarían activamente y que, por tanto, juegan un importante papel en nuestra capacidad cognitiva adaptable.