Latest Posts:

Mostrando las entradas con la etiqueta solidos. Mostrar todas las entradas
Mostrando las entradas con la etiqueta solidos. Mostrar todas las entradas

26 de noviembre de 2011

El agua puede permanecer en estado líquido hasta los -48,33 ºC

El agua pura en estado líquido puede empezar a congelarse a temperaturas muy inferiores a 0 ºC, tras un cambio estructural previo en el que algunas moléculas se organizan en tetraedros. Estas estructuras, de localización aleatoria, determinan el ritmo de la formación de hielo a temperaturas de hasta -48,33 ºC, según un estudio que esta semana publica Nature.


La caja está llena de agua líquida (blanco). El líquido súper enfriado empieza a convertirse en ‘hielo intermedio’ (verde), de camino a la congelación (rojo), en una temperatura muy inferior a los 0 ºC. Finalmente se congela a -48,33 ºC. Imagen: Universidad de Utah.


¿Cuál es la menor temperatura a la que puede ‘resistir’ el agua líquida antes de convertirse en sólido? Un grupo de científicas de la Universidad de Utah (EE UU) han analizado con técnicas computacionales los factores que controlan la formación de hielo en agua ‘súper enfriada’ y ha comprobado que aguanta hasta los -48 ºC sin congelarse.

El cambio de estado de agua líquida a sólida, comienza en una región pequeña con un proceso llamado nucleación. En ese punto se crean los primeros cristales, sobre los cuales arranca el fenómeno de solidificación del líquido.

Las impurezas que a menudo lleva el agua actúan como núcleos que inducen su cristalización. Sin embargo en el agua pura, donde no hay partículas ni cristales que actúen como núcleos, es necesario que caigan mucho más las temperaturas para que se produzca una nucleación homogénea de hielo.

“En temperaturas cercanas a los -50 ºC la cristalización ocurre de manera muy rápida. Por encima de esta temperatura, el ritmo de formación de hielo está limitado por la capacidad de crear minúsculas semillas de hielo, a partir de las cuales crece la congelación”, explica a SINC Valeria Molinero, coautora del estudio y química de la Universidad de Utah.

Hasta ahora, se había conseguido observar experimentalmente este estado líquido súper enfriado del agua pura con temperaturas cercanas a la de nucleación, pero el mecanismo de cristalización del hielo no se había descifrado. Se desconocía tanto el tamaño como la estructura del núcleo crítico, donde empieza el proceso.

“La rapidez con la que el agua a muy bajas temperaturas cambia de estado está determinada por la transformación previa de la estructura del agua líquida en una disposición similar al hielo, aunque todavía desordenada”, explica la investigadora. “La formación de hielo está determinada por la movilidad de las partículas”.

Las investigadoras de la Universidad de Ohio han estudiado este proceso mediante simulaciones con ordenador, y han observado que está determinado por un cambio de estructura, en la que predominan las moléculas ligadas en forma de tetraedro, donde cada una está unida debilmente a las otras cuatro.

“El agua es un liquido anómalo. Por ejemplo, decrece su densidad con temperaturas más bajas que -40 ºC, y aumenta su capacidad calorífica”, señala Molinero. “Nosotras hemos mostrado que estas extrañas propiedades vienen del proceso intermedio de cambio de estructura”.

Agua líquida a menos de 0 ºC

El cambio de estado en el agua pura no sucede siempre a 0 ºC, como nos enseñan en el colegio. “0 ºC es la temperatura de fusión. La congelación ocurre en este punto cuando hay algún sustrato que ayude a la formación de los primeros cristales, sobre los que crecerá el hielo”, detalla Molinero. En esa región pequeña pero estable se produce el fenómeno de nucleación, que da comienzo al cambio de fase.

Las impurezas del agua actúan como ‘disparadores’ que inducen la cristalización, pero en sistemas puros la temperatura puede descender muy por debajo de los 0º (hasta los -48,33 ºC, según estos recientes resultados).

Las científicas han observado un cambio de estructura intermedio, entre el agua líquida y sólida, caracterizada por la disposición de las moléculas en tetraedros. “La sustancia cambia físicamente, en una forma en la que cada molécula de agua está ligada de manera flexible a otras cuatro moléculas, parecida a la del hielo, y que determina la temperatura en la que se congela el líquido”, describe Molinero.

El aumento de la proporción de las cuatro partículas coordinadas entre sí en la masa todavía líquida provoca la cristalización. “El cambio de fase no está controlado solo por la temperatura, sino también por la transformación estructural del líquido”, afirma la investigadora.

Computación del líquido

El proceso de cristalización se inicia súbitamente cuando se alcanza la temperatura requerida, con una velocidad tan alta que dificulta su observación. Las investigadoras han utilizado modelos computacionales de agua, bastante sencillos, sobre los que han podido realizar simulaciones del líquido súper enfriado.

“Los ordenadores, a través de la simulación, nos han dado una visión microscópica que los experimentos por ahora no pueden alcanzar”, asegura Molinero.

Estos resultados hacen posible prever la rapidez de la cristalización del agua, lo que puede ser útil para desarrollar modelos predictivos de ritmos y temperaturas de congelación del agua en materiales complejos o en condiciones particulares.

Fuente:

Agencia SINC

1 de julio de 2010

¿Supersólido fluido? No, plástico cuántico

Jueves, 02 de julio de 2010

¿Supersólido fluido? No, plástico cuántico

Es una de las cosas más extrañas previstas por la mecánica cuántica: un sólido que fluye, como un fantasma, a través de sí mismo. Si esto no es suficiente como para volarle la cabeza, los experimentos que claman haber fabricado este “supersólido” pueden haber originado, en realidad, algo completamente distinto

“Todavía no entendemos el fenómeno. Es algo nuevo”, dice John Reppy, de la Universidad de Cornell en Ithaca, Nueva York, que afirma haber vislumbrado un nuevo efecto, la plasticidad cuántica.

En un sólido, los átomos están unidos formando una red regular y mantienen su estructura rígida en circunstancias normales. Pero se cree que a determinadas temperaturas puede producirse la supersolidez. Enfriando algunos sólidos a temperaturas cercanas al cero absoluto, éstos se convertirán en elementos sin fricción y fluirán como líquidos, aunque manteniendo su estructura reticular.

En 2004, Moses Chan y Eun-Seong Kim, en ese entonces en la Universidad del Estado de Pennsylvania en University Park, anunciaron que habían producido un supersólido enfriando un cilindro de helio-4 casi hasta el cero absoluto.


El oscilador de Chan y Kim

Colocaron el cilindro de modo que oscilara alrededor de un eje central, rotando una corta distancia en una dirección y luego en la otra. A medida que iban disminuyendo la temperatura del helio, Chan y Kim notaron que el cilindro oscilaba más lentamente. Asumieron que la causa era la disminución de la fracción de helio sólido que giraba con el cilindro. Como es la fricción la que causa que el helio en el interior del cilindro gire junto con éste, los investigadores atribuyeron este descenso a una disminución de la fricción del helio. Llegaron a la conclusión de que el efecto supersólido se había producido a bajas temperaturas.

Si bien los hallazgos de Chan y Kim fueron reproducidos, Reppy señaló que su interpretación puede ser errónea. Para sondear más en la supersolidez, el investigador añadió un diafragma flexible en la parte superior del cilindro, lo que le permitió aplastar el helio, creando de esta forma defectos adicionales en su estructura. Los experimentos anteriores sugerían que esto podía intensificar la supersolidez, pero Reppy no halló pruebas de esto.

Es más, encontró que al elevar la temperatura cerca de 200 milikelvin, la frecuencia de oscilación disminuía, aunque la transición a la supersolidez no debía ocurrir con estas temperaturas.

Llegó a la conclusión de que el vínculo entre la temperatura y la frecuencia de oscilación se debe a un efecto cuántico totalmente nuevo, y no a la supersolidez. Este nuevo efecto, dice Reppy, ocurre debido a los defectos inherentes a todos los sólidos de helio-4, que cambian su comportamiento a diferentes temperaturas.

Reppy concluyó que a medida que la temperatura se eleva los defectos se vuelven más móviles, lo que hace que la estructura del helio se vuelva menos rígida. Esta inestabilidad es la que enlentece las oscilaciones. Debido a que difiere del ablandamiento normal y a que probablemente se debe a efectos cuánticos, al fenómeno se lo llama plasticidad cuántica. “Es diferente a la plasticidad normal”, dice Reppy.

El investigador no descarta por completo la existencia de la supersolidez, pero sostiene que aquellos que dicen que la han visto estaban observando en realidad la plasticidad cuántica.

Kim, que ahora está en Daejeon, Corea del Sur, rechaza la idea de que Chan y él interpretaran mal los resultados, pero considera que los hallazgos de Reppy son intrigantes.


Fuente:

Axxon

26 de abril de 2010

¿En qué se parece un televisor de plasma a un tubo fluorescente?

a

Lunes, 26 de abril de 2010


¿En qué se parece un televisor de plasma a un tubo fluorescente?

¿Qué tienen en común un televisor de pantalla de plasma, un tubo fliorefluorescente, el interior de un reactor nuclear, un relámpago en una tormenta, una aurora boreal y el Sol?

Antes de responder a esta pregunta vamos a aclarar algunos conceptos. Desde pequeños repetimos de memoria, como si de un catecismo se tratara, la frase: “los estados de la materia son tres, sólido, líquido y gaseoso.” Sabemos también que si calentamos un sólido lo suficiente, éste pasará a ser líquido, y que si lo seguimos calentando, se transformará en gas.

Los estados de la materia hacen referencia al grado de cohesión que las moléculas de un cierto compuesto tienen entre sí, es decir a lo fuertemente unidas que están, a cierta temperatura (si consideramos la presión constante). Cuando un cuerpo se encuentra a una temperatura baja sus moléculas tienen un grado bajo de movimiento y se mantienen unidas unas a otras por fuerzas electromagnéticas. Según vamos calentando el cuerpo, aumentamos su temperatura o, lo que es lo mismo, aumentamos el grado de movimiento de sus moléculas. Éstas empiezan a vibrar más rápidamente hasta que, llegado el momento (el punto de fusión), rompen las uniones que las mantenían juntas y empiezan a fluir unas sobre las otras. Hemos pasado al estado líquido. Si seguimos calentando el compuesto las moléculas seguirán aumentando su grado de movimiento hasta que terminen perdiendo todo tipo de unión y se desplacen libremente por el espacio que las contiene.

¿Y si seguimos calentando el gas? Nuestros libros de primaria nunca respondían a esta pregunta...

Para responderla tenemos que ir al interior del Sol. Allí nos encontraremos con un gas (principalmente hidrógeno con un poco de helio) a muy altas temperaturas. Como es de suponer, a temperaturas tan elevadas los átomos de hidrógeno se mueven a velocidades extraordinarias, lo que provoca una gran cantidad de choques entre ellos. Estas colisiones son muy energéticas, tanto que consiguen separar el electrón del núcleo del átomo de hidrógeno ionizándolo, es decir, creando un catión con carga positiva (el núcleo del átomo), y un anión con carga negativa (el electrón). El gas en estas condiciones empieza a comportarse de manera muy diferente a como lo hacía antes de ser ionizado, tan diferente como si estuviera en estado líquido o sólido. Por esta razón se considera que un gas ionizado presenta en realidad otro estado de agregación de la materia. Este nuevo estado se denomina plasma. Lo podemos encontrar en el Sol, pero también en el interior de un reactor nuclear o en los motores de propulsión de los cohetes espaciales.

A diferencia de los otros tres estados más tradicionales, en los que las transiciones se producen a base de aumentar o disminuir la temperatura, podemos conseguir un plasma de otro modo además de calentando un gas.

Si introducimos el gas en un campo eléctrico, las partes positivas de los átomos (el núcleo) se verán atraídas hacia el polo negativo del campo, mientras que las partes negativas (los electrones) lo harán hacia el polo positivo. Aumentando la intensidad del campo eléctrico conseguiremos que las fuerzas de atracción contrarias sean tan grandes que finalmente rompan el átomo, produciendo de nuevo un catión y un ión, o lo que es lo mismo, ionizando el gas, es decir, transformándolo en plasma. Esto es lo que ocurre, por ejemplo, en un relámpago, cuando la diferencia de potencial entre la nube y la tierra llega a ser de millones de voltios, o en el tubo fluorescente que ilumina nuestra cocina.

Los plasmas, como podemos ver, son mucho más comunes y están mucho más cerca de lo que pensamos.

De hecho, hay una manera sencilla de producir un plasma en nuestra propia casa. [No hacer este experimento sin la presencia de un adulto]. Para ello necesitaremos una uva fresca, un vaso alto y un microondas. Cortamos la uva por la mitad, sin que las dos mitades lleguen a separarse del todo, y la introducimos dentro del microondas después de haber sacado el plato giratorio y su base. Tapamos la uva con el vaso, y conectamos el microondas a máxima potencia durante cinco segundos (ojo, más tiempo podría dañar el electrodoméstico). Al cabo de un par de segundos veremos cómo por encima de la uva se produce una especie de globo luminoso que flota en el interior del vaso. ¡Hemos creado nuestro propio plasma! Algo parecido a lo que ocurre en este experimento sucede también en una aurora boreal.

Ahora podemos responder a la pregunta con la que hemos comenzado este artículo. ¿Qué tienen en común un televisor de pantalla de plasma, un tubo fluorescente, el interior de un reactor nuclear, un relámpago en una tormenta, una aurora boreal y el Sol? Que todos ellos son, están compuestos o contienen algún tipo de plasma.

Pero hay otra característica común a estos seis elementos: todos emiten luz (efectivamente, el núcleo de un reactor nuclear emite luz). ¿Por qué se produce este fenómeno? Hemos dicho que el plasma es un gas en el que los electrones, ya sea por calor ya sea por la presencia de un campo eléctrico, se han separado del núcleo formando iones. Pero esto no sucede de una manera estática, sino que los electrones están continuamente entrando y saliendo de los átomos. Si pudiéramos seguir un electrón concreto, veríamos cómo se separa del núcleo de uno de los átomos del gas, flota por el plasma libremente hasta que choca con otro núcleo y queda atrapado en él, para de nuevo separarse y continuar flotando, chocar con otro núcleo, quedarse atrapado en él, etc. La energía que necesita el electrón para escaparse del núcleo la saca, como ya hemos visto, bien de los choques de los átomos, bien del campo eléctrico. Pero en el proceso inverso, cuando el electrón es atrapado por un núcleo, esa energía tiene que ser devuelta de alguna manera. En nuestro caso se hace en forma de radiación, de forma que cada vez que un electrón es atrapado por un átomo, se emite un fotón de luz. Dependiendo del gas de que se trate, el color de esa radiación (su longitud de onda) será diferente.

En el caso de los tubos fluorescentes, que contienen gas de mercurio a baja presión, esa radiación es ultravioleta, es decir, no es visible por el ojo humano. Para transformar esa radiación en luz se utiliza una propiedad poco común del fósforo y de otros compuestos similares (conocidos genéricamente como fósforos), la fluorescencia. Ése es precisamente el cometido que tiene el recubrimiento blanco de los tubos fluorescentes: transformar la radiación ultravioleta producida por el plasma de mercurio en radiación blanca, visible por el ojo humano.

Pero, ¿cómo se puede aplicar todo esto a la formación de imágenes en un televisor de pantalla de plasma?

En el artículo Televisor: por qué hay que cesar de llamarlo "caja tonta" ya contamos cómo se aprovecha la propiedad de fluorescencia del fósforo para crear una serie de puntos de luz con distintas intensidades. En el caso del televisor convencional hablábamos de una fluorescencia producida por los rayos catódicos (chorros de electrones), y no por la luz ultravioleta como en los tubos fluorescentes. Explicábamos cómo esos chorros de electrones impactan con distintas intensidades en cada píxel de la pantalla para formar la imagen, y que cada píxel está compuesto por tres líneas, recubiertas por fósforo rojo, fósforo verde y fósforo azul.

Para comprobar que una pantalla de plasma no utiliza chorros de electrones para provocar la fluorescencia, basta con pasar el brazo cerca de una pantalla de un televisor convencional, y luego cerca de una de plasma. En la primera notaremos cómo se erizan los pelos del brazo debido a la electricidad estática producida por los electrones que chocan contra la pantalla. En la segunda no notaremos nada.

En realidad una pantalla de plasma no es más que una serie de minúsculos tubos fluorescentes, iguales a los de las lámparas de nuestra cocina, agrupados de tres en tres. Cada uno de estos grupos forma un píxel y está compuesto por un tubo recubierto de fósforo rojo, otro de fósforo verde y otro de fósforo azul. Aplicando un campo eléctrico a cada uno de los tubos producimos un plasma al ionizar el gas que contienen. Este plasma emite una radiación ultravioleta que es transformada en luz visible por los fósforos. Mientras que los tubos fluorescentes de la cocina transforman la luz ultravioleta en luz blanca, los pequeños tubos que forman un píxel la transforman en luz roja, verde o azul, dependiendo del recubrimiento que tengan. Variando la intensidad del campo eléctrico que aplicamos a cada tubo obtendremos los distintos colores para cada píxel, que, unidos, nos darán una imagen clara y luminosa.

Fuente:

Caos y Ciencia

5 de marzo de 2010

La evolución de los minerales

Viernes, 05 de marzo de 2010

La evolución de los minerales

Mirar el reino mineral desde la honda perspectiva del tiempo, nos lleva a una sorprendente conclusión: la mayoría de las especies de minerales deben su existencia a la vida.


* Tan sólo una docena de minerales (compuestos cristalinos) se sabe que ya existieron entre los ingredientes que formaron el sistema solar hace 4,6 mil millones años, pero la Tierra tiene hoy más de 4.400 especies de minerales.
* La mineralogía tan diversa de la Tierra se ha desarrollado a lo largo de los eones, en nuevos procesos de generación de minerales que han entrado en juego.
* Cabe destacar que más de la mitad de las especies minerales de la Tierra deben su existencia a la vida, que inició la transformación de la geología del planeta hace más de dos millones de años.

En otros tiempos, en el cosmos no había minerales en ninguna parte. En la vorágine sobrecalentada tras el Big Bang, los sólidos de ningún tipo no se podían formar, y mucho menos sobrevivir. Pasó medio millón de años, antes de que los primeros átomos de hidrógeno, helio y un poco de litio, surgieran de la caldera de la creación. Tuvieron que pasar unos millones de años más, antes de que la gravedad reuniera estos gases primordiales en nebulosas, y más tarde, éstas colapsaran en las primeras incandescentes y densas estrellas.

Sólo entonces, cuando las estrellas gigantes explosionaban para convertirse en las primeras supernovas, fue cuando se sintetizaron todos los demás elementos químicos y lanzados al espacio. Sólo entonces, en esa expansión, con el enfriamiento de los gases estelares, empezaron a formarse los primeros minerales sólidos. Pero incluso entonces, la mayoría de estos elementos y sus compuestos, eran demasiado escasos y dispersos, o muy volátiles, existiendo como átomos y moléculas de forma esporádica en forma de gases y polvo de nuevo cuño. El material, así desordenado, no puede formarse en distintas composiciones químicas y átomos organizados como conjunto ordenado de unidades que se repiten, es decir, no reunía las condiciones para establecerse como minerales.

Tomado de:

Bit Navegantes

10 de octubre de 2007

Premio Nóbel de Química - 2007 -

Nobel a la química de las superficies

Gerhard Ertl / Max Planck Society
El ganador trabaja en el Instituto Fritz-Haber de Berlín, Alemania.
El científico alemán Gerhard Ertl ha sido galardonado con el Premio Nobel 2007 de Química por sus estudios sobre "las reacciones químicas sobre superficies sólidas", según anunció la Real Academia de las Ciencias de Suecia.

En conversación con la academia sueca tras conocer la noticia el profesor Ertl, quien este miércoles cumple 71 años, dijo no tener palabras para describir la emoción y afirmó que "este es el mejor regalo de cumpleaños que le podéis dar a alguien".

"Cuando ayer me enteré de que un alemán había ganado el Premio Nobel de Física, tuve claro que no iban a premiar a otro alemán en la categoría de química. Este es el mayor honor en la vida de un científico", dijo emocionado Ertl.

Este profesor de química física trabaja en el Instituto Fritz-Haber de Berlín, Alemania.

Múltiples aplicaciones

Gerhard Ertl
Ertl, quien este miércoles cumple 71 años, dijo no tener palabras para describir la emoción.
Tras conocerse el nombre del ganador del galardón, el presidente del Comité Nobel de Química, Gunna von Heijne, dijo: "Tendemos a pensar en la química como algo que tiene que ver con los líquidos y los gases, pero la química de las superficies es muy interesante científicamente hablando y es muy práctica. La química tiene lugar en superficies sólidas".

"En casos como la oxidación del hierro, los catalizadores de los coches o las pilas de combustible estamos hablando de química de superficies", añadió von Heijne.

Según explicó en un comunicado el comité que otorgó el premio, "las reacciones químicas sobre las superficies catalíticas juegan un papel vital en numerosas operaciones industriales, como la producción de fertilizantes artificiales, e incluso puede explicar la destrucción de la capa de ozono".

La ciencia moderna de la química de superficies se inició en los años 60, a partir de procesos utilizados en la industria de los semiconductores.

El profesor Ertl creó una metodología para la química de superficies demostrando los diferentes procedimientos experimentales que pueden utilizarse para ofrecer una imagen completa de una reacción en una superficie.

Este campo científico requiere equipos avanzados para observar como capas individuales de átomos y moléculas actúan en las superficies extremadamente puras de un metal.

Escuela experimental

Pila de combustible
La tecnología de las pilas de combustible le debe mucho a la química de superficies.
La contaminación puede estropear las mediciones, por lo que para tener una idea clara de la reacción se necesita una gran precisión y una combinación de diversas técnicas experimentales.

Según el Comité del Premio Nobel, el profesor Ertl fundó una escuela experimental de pensamiento, mostrando la cantidad de resultados confiables que se pueden obtener en esta complicada área de investigación

Este martes los científicos Albert Fert, de Francia, y Peter Grunberg, de Alemania, ganaron el Premio Nobel de Física 2007.

La Real Academia de Ciencias de Suecia premió a los dos científicos europeos por su descubrimiento de la "magneto-resistencia gigante" (GMR, siglas en inglés), un hallazgo que ha permitido expandir la capacidad de almacenamiento de los discos duros y miniaturizarlos radicalmente en los últimos años.



Fuente:

BBC en español
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0