07 Jun 2023 undefined comments

El tamaño de las partículas es ínfimo y de plásticos muy comunes, como polietileno y acrílico. Se detectaron trazas de micropartículas de plástico en 6 de cada 10 muestras de semen de hombres sanos ...

Read More
02 Jun 2023 undefined comments comments

Un informe cuantifica los límites climáticos, naturales y de contaminantes que aseguran el mantenimiento seguro y justo de la civilización.Un amplio grupo de científicos identificó en 2009 nueve lí...

Read More
08 Mar 2023 undefined comments comments comments

Aquí van las razones geográficas y socioeconómicas por las que el río más largo y caudaloso del mundo nunca tendrá una estructura que sirva para cruzar de orilla a orilla.Cuando vemos en algún doc...

Read More
07 Mar 2023 undefined comments comments comments comments

El 43,7% de loretanos no tiene acceso al servicio de agua potable o tratada. Es el mayor déficit en todo el país, según el INEI, y afecta principalmente a la niñez de las zonas rurales de la región...

Read More
06 Mar 2023 undefined comments comments comments comments comments

Perú se ubica en la escala de desigualdad por encima de México. El informe señala que el 1% de la población más rica del mundo concentra entre el 25% y 30% de los ingresos totales de su país...

Read More
15 Oct 2022 undefined comments comments comments comments comments comments

Al principio de su historia, el planeta rojo habría sido probablemente habitable para los metanógenos, microbios que viven en hábitats extremos de la Tierra.El Marte noáquino habría sido un hábitat...

Read More
15 Oct 2022 undefined comments comments comments comments comments comments comments

La astrofísica del Centro de Astrofísica Harvard & Smithsonian en Cambridge, detalló que se trata de un fenómeno completamente nuevo ya que “estamos observando la evolución estelar en tiempo r...

Read More
13 Aug 2022 undefined comments comments comments comments comments comments comments comments

El dispositivo podría suministrar energía constante a una amplia variedad de aparatos electrónicos alimentándose de la transpiración humana.Investigadores de la Universidad de Massachusetts Amherst...

Read More

Latest Posts:

28 de agosto de 2015

El Teorema de Tales (para niños) - II

–Oye, Sal, ¿esto de Tales no te recuerda a lo que nos contó Mati en la playa?
–¿A qué te refieres, Ven?
–A cuando nos enseñó a calcular la altura de la silla del socorrista.
–Ummmm… -el gafotas se quedó pensando –puede ser, sí…
–Efectivamente, Ven –confirmó Mati que acababa de llegar –Es la misma idea.
–¡Hola, Mati! –dijeron los dos hermanos a la vez.
–¡Guau! –dijo Gauss, no estaba para muchas conversaciones.
–Hola, chicos –respondió ella –La idea que usamos aquel día en la playa es la misma que, según cuenta Herodoto, usó Tales para medir la pirámide de Keops.
–¿La pirámide de qué? –preguntó Ven con los ojos apretados.
–La gran pirámide de Guiza, una de las siete maravillas del mundo, que está en Egipto –les contó Mati.

–¡Toma! –se asombró el pequeño –¿Y cómo lo hizo , Mati?
–Pues usando su teorema –dijo la pelirroja y le guiñó un ojo –Tales pensó que cuando su sombra midiera lo mismo que él, los rayos de Sol estarían formando un ángulo de 45 grados con su cabeza y con la cima de la pirámide, y por lo tanto, la altura de la pirámide sería igual a la sombra de la misma en ese instante.

–En ese caso –continuó Mati — si llamamos h a la altura de Tales y s a la sombra del mismo, cuando s sea igual a h, los rayos de Sol forman un ángulo de 45 grados en la cabeza de Tales. Y como los rayos de Sol son paralelos unos con otros, el rayo de Sol en la cima de la pirámide también forma 45 grados y por lo tanto H es igual a S. Sólo hay que medir S  para conocer H, porque estamos mirando triángulos semejantes.
–¿Cómo sabes que son semejantes, Mati? –preguntó Sal.
–Pues porque la suma de todos los ángulos internos de un triángulo es 180 grados –empezó a decir la gafotas –Como H y S forman 90 grados, igual que h y s, y el Sol forma 45 grados en la cabeza y en la cima, el ángulo que forma el Sol con el suelo en los 2 casos, tiene que ser de 45 grados; con lo cual, los tres ángulos son iguales.
–¡Toma. toma. toma! ¡Cómo mola! –Ven estaba entusiasmado.
–¿Y cómo podía Tales medir su sombra? –preguntó Sal receloso –Si se agachaba a medirla, ya no podía medirla… ¿Tenía un ayudante?
–Hay varias versiones –dijo Mati –Algunas hablan de que en realidad usó un bastón, pero hay otras que dicen que Tales pintó un círculo de radio su altura y se puso en el centro; cuando su sombra tocara el círculo, ya sabía que era tan larga como su altura.
–¡Es verdad! –Sal respiró tranquilo.
–¡Me encanta Tales! –gritó el pequeño saltando provocando que nuestro Anubis particular ladrara del susto.
–Pues no se vayan todavía, aún hay más –anunció cómicamente Mati.
–¿Qué más, Mati? –preguntó Sal intrigado.
–Pues, por ejemplo –anunció Mati –gracias a este teorema de Tales podemos dividir un segmento en el número de partes iguales que queramos. usando sólo regla y compás.
–¿¿Sí?? –preguntó el pequeño –¿¿Cómo??
–Ya veréis –dijo la pelirroja –pintamos un segmento en nuestro cuaderno, ¿en cuántas partes iguales queréis dividirlo?
–¡En 5! –gritó Ven.

–Bien –siguió ella –ahora pintamos otro segmento formando un ángulo, el que queramos, con el segmento AB. 

–¿Y ahora? –preguntó el gafotas.
–Ahora abrimos el compás, con la medida que queráis, y marcamos 5 veces sobre el segmento AC

–Ahora sólo tenemos que unir la última marca –les dijo Mati –con el extremo B

–…y trazar paralelas a ese segmento por las otras 4 marcas –terminó de decir Mati.

–¡Toma, toma, toma! –el pequeño Ven estaba emocionado.
–Sí que mola, Tales, sí –corroboró el gafotas.

Fuente:

Mati
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0