07 Jun 2023 undefined comments

El tamaño de las partículas es ínfimo y de plásticos muy comunes, como polietileno y acrílico. Se detectaron trazas de micropartículas de plástico en 6 de cada 10 muestras de semen de hombres sanos ...

Read More
02 Jun 2023 undefined comments comments

Un informe cuantifica los límites climáticos, naturales y de contaminantes que aseguran el mantenimiento seguro y justo de la civilización.Un amplio grupo de científicos identificó en 2009 nueve lí...

Read More
08 Mar 2023 undefined comments comments comments

Aquí van las razones geográficas y socioeconómicas por las que el río más largo y caudaloso del mundo nunca tendrá una estructura que sirva para cruzar de orilla a orilla.Cuando vemos en algún doc...

Read More
07 Mar 2023 undefined comments comments comments comments

El 43,7% de loretanos no tiene acceso al servicio de agua potable o tratada. Es el mayor déficit en todo el país, según el INEI, y afecta principalmente a la niñez de las zonas rurales de la región...

Read More
06 Mar 2023 undefined comments comments comments comments comments

Perú se ubica en la escala de desigualdad por encima de México. El informe señala que el 1% de la población más rica del mundo concentra entre el 25% y 30% de los ingresos totales de su país...

Read More
15 Oct 2022 undefined comments comments comments comments comments comments

Al principio de su historia, el planeta rojo habría sido probablemente habitable para los metanógenos, microbios que viven en hábitats extremos de la Tierra.El Marte noáquino habría sido un hábitat...

Read More
15 Oct 2022 undefined comments comments comments comments comments comments comments

La astrofísica del Centro de Astrofísica Harvard & Smithsonian en Cambridge, detalló que se trata de un fenómeno completamente nuevo ya que “estamos observando la evolución estelar en tiempo r...

Read More
13 Aug 2022 undefined comments comments comments comments comments comments comments comments

El dispositivo podría suministrar energía constante a una amplia variedad de aparatos electrónicos alimentándose de la transpiración humana.Investigadores de la Universidad de Massachusetts Amherst...

Read More

Latest Posts:

15 de abril de 2010

Número áureo: Belleza matemática


Jueves, 15 de abril de 2010

Número áureo: Belleza matemática

Hay números que han intrigado a la humanidad desde hace siglos. Valores como PI -la razón matemática entre la longitud de una circunferencia y su diámetro- o e -la base de los logaritmos naturales-, suelen aparecer como resultado de las más dispares ecuaciones o en las proporciones de diferentes objetos naturales. El número áureo -a menudo llamado número dorado, razón áurea, razón dorada, media áurea, proporción áurea o divina proporción- también posee muchas propiedades interesantes y aparece, escondido y enigmático, en los sitios más dispares.


Se encuentra en las espiraless del interior de los caracoles como el nautilus.

El primero en hacer un estudio formal sobre el número áureo fue Euclides, unos tres siglos antes de Cristo, en su obra Los Elementos. Euclides definió su valor diciendo que "una línea recta está dividida en el extremo y su proporcional cuando la línea entera es al segmento mayor como el mayor es al menor." En otras palabras, dos números positivos a y b están en razón áurea si y sólo si (a+b) / a = a / b. El valor de esta relación es un número que, como también demostró Euclides, no puede ser descrito como la razón de dos números enteros (es decir, es irracional y posee infinitos decimales) cuyo su valor aproximado es 1,6180339887498...

Casi 2000 años más tarde, en 1525, Alberto Durero publicó su “Instrucción sobre la medida con regla y compás de figuras planas y sólidas”, en la que describe cómo trazar con regla y compás la espiral basada en la sección áurea, la misma que hoy conocemos como “espiral de Durero”. Unas décadas después, el astrónomo Johannes Kepler desarrolló su modelo del Sistema Solar, explicado en Mysterium Cosmographicum (El Misterio Cósmico). Para tener una idea de la importancia que tenía este número para Kepler, basta con citar un pasaje de esa obra: “La geometría tiene dos grandes tesoros: uno es el teorema de Pitágoras; el otro, la división de una línea entre el extremo y su proporcional. El primero lo podemos comparar a una medida de oro; el segundo lo debemos denominar una joya preciosa”. Es posible que el primero en utilizar el adjetivo áureo, dorado, o de oro, para referirse a este número haya sido el matemático alemán Martin Ohm (hermano del físico Georg Simon Ohm), en 1835. En efecto, en la segunda edición de 1835 de su libro “Die Reine Elementar Matematik” (Las Matemáticas Puras Elementales), Ohm escribe en una nota al pie: “Uno también acostumbra llamar a esta división de una línea arbitraria en dos partes como éstas la sección dorada." El hecho de que no se incluyera esta anotación en su primera edición es un indicio firme de que el término pudo ganar popularidad aproximadamente en el año 1830.

El número áureo también está “emparentado” con la serie de Fibonacci. Si llamamos Fn al enésimo número de Fibonacci y Fn+1 al siguiente, podemos ver que a medida que n se hace más grande, la razón entre Fn+1 y Fn oscila, siendo alternativamente menor y mayor que la razón áurea. Esto lo relaciona de una forma muy especial con la naturaleza, ya que como hemos visto antes, la serie de Fibonacci aparece continuamente en la estructura de los seres vivos. El número áureo, por ejemplo, relaciona la cantidad de abejas macho y abejas hembras que hay en una colmena, o la disposición de los pétalos de las flores. De hecho, el papel que juega el número áureo en la botánica es tan grande que se lo conoce como “Ley de Ludwig”. Quizás uno de los ejemplos más conocidos sea la relación que existe en la distancia entre las espiras del interior espiralado de los caracoles como el nautilus. En realidad, casi todas las espirales que aparecen en la naturaleza, como en el caso del girasol o las piñas de los pinos poseen esta relación áurea, ya que su número generalmente es un término de la sucesión de Fibonacci.


Las partes del Partenón se relacionan también con el número áureo.

Este número también aparece con mucha frecuencia en el arte y la arquitectura. Por algún motivo, las figuras que están “proporcionadas” según el número áureo nos resultan más agradables. Aunque recientes investigaciones revelan que no hay ninguna prueba que conecte esta proporción con la estética griega, lo cierto es que a lo largo de la historia se ha utilizado para “embellecer” muchas obras. Por ejemplo, el uso de la sección áurea puede encontrarse en las principales obras de Leonardo Da Vinci. Es bien conocido el interés de Leonardo por la las matemáticas del arte y de la naturaleza, y esta proporción no le era indiferente. De hecho, en su estudio de la figura humana, plasmado en el Hombre de Vitruvio, puede verse cómo todas las partes del cuerpo humano guardan relación con la sección áurea. Algunos expertos creen que la gran pintura inacabada de Leonardo, San Jerónimo, que muestra a este santo con un león a sus pies, fue pintada ex profeso de forma que un rectángulo con estas proporciones encajase perfectamente alrededor de la figura central. También el rostro de la Mona Lisa encierra un “rectángulo dorado” perfecto. Obviamente, Leonardo no fue el único en utilizar esta proporción en su obra. Miguel Ángel, por ejemplo, hizo uso del número áureo en la impresionante escultura El David, desde la posición del ombligo con respecto a la altura, hasta la colocación de las articulaciones de los dedos.

Alineación al centro
El Hombre de Vitruvio, de Leonardo Da Vinci.

La arquitectura no es ajena a este valor matemático. La relación entre las partes, el techo y las columnas del Partenón de Atenas, por ejemplo, también se relacionan mediante el número áureo. Muchos productos de consumo masivo se diseñan siguiendo esta relación, ya que resultan más agradables o cómodos. Las tarjetas de crédito o las cajas de cigarrillos poseen dimensiones que mantienen esta proporción. El número áureo puede encontrarse por todas partes, y a menudo ni siquiera somos consientes de que está allí. Pero en general, cuando algo nos resulta atractivo, esconde entre sus partes esta relación. ¿No es asombroso?

Fuente:

Neo Teo
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0