07 Jun 2023 undefined comments

El tamaño de las partículas es ínfimo y de plásticos muy comunes, como polietileno y acrílico. Se detectaron trazas de micropartículas de plástico en 6 de cada 10 muestras de semen de hombres sanos ...

Read More
02 Jun 2023 undefined comments comments

Un informe cuantifica los límites climáticos, naturales y de contaminantes que aseguran el mantenimiento seguro y justo de la civilización.Un amplio grupo de científicos identificó en 2009 nueve lí...

Read More
08 Mar 2023 undefined comments comments comments

Aquí van las razones geográficas y socioeconómicas por las que el río más largo y caudaloso del mundo nunca tendrá una estructura que sirva para cruzar de orilla a orilla.Cuando vemos en algún doc...

Read More
07 Mar 2023 undefined comments comments comments comments

El 43,7% de loretanos no tiene acceso al servicio de agua potable o tratada. Es el mayor déficit en todo el país, según el INEI, y afecta principalmente a la niñez de las zonas rurales de la región...

Read More
06 Mar 2023 undefined comments comments comments comments comments

Perú se ubica en la escala de desigualdad por encima de México. El informe señala que el 1% de la población más rica del mundo concentra entre el 25% y 30% de los ingresos totales de su país...

Read More
15 Oct 2022 undefined comments comments comments comments comments comments

Al principio de su historia, el planeta rojo habría sido probablemente habitable para los metanógenos, microbios que viven en hábitats extremos de la Tierra.El Marte noáquino habría sido un hábitat...

Read More
15 Oct 2022 undefined comments comments comments comments comments comments comments

La astrofísica del Centro de Astrofísica Harvard & Smithsonian en Cambridge, detalló que se trata de un fenómeno completamente nuevo ya que “estamos observando la evolución estelar en tiempo r...

Read More
13 Aug 2022 undefined comments comments comments comments comments comments comments comments

El dispositivo podría suministrar energía constante a una amplia variedad de aparatos electrónicos alimentándose de la transpiración humana.Investigadores de la Universidad de Massachusetts Amherst...

Read More

Latest Posts:

21 de diciembre de 2009

Mátemáticas para repartir una pizza a dos personas

Lunes, 21 de diciembre de 2009

Mátemáticas para repartir una pizza a dos personas

Imaginemos que vamos 2 personas a un italiano y pedimos una pizza. Cuando la trae el camarero, nos disponemos a partirla en 8 trozos. Para ello hacemos primero 2 cortes perpendiculares y luego otros 2 por las bisectrices de los cortes anteriores. Justo cuando vamos a empezar a comerla, nos damos cuenta que hemos hecho los cortes... pero no pasan por el centro, y claro, ahora hay trozos más grandes que otros. ¿Se podrá repartir la pizza de forma que cada uno de los 2 comensales coman exactamente la misma cantidad de pizza (sin volver a cortar, claro)?

Esta situación ya no es un problema gracias a los matemáticos Rick Mabry and Paul Deiermann, para quienes eso de calcular el área de cada trozo y sumar era demasiado aburrido y decidieron completar un problema tan común como este.

En primer lugar vamos a establecer las reglas del problema. Tenemos una pizza perfectamente circular a la que le hacemos cortes rectos que van de borde a borde de la pizza (cuerdas de la circunferencia), de forma que todos los cortes pasan por un punto (que vamos a suponer que no es el centro geométrico de la pizza), y, además, nos vamos a asegurar que los ángulos que forman los cortes son todos iguales.


Aunque todo esto pueda parecer una verdadera tomadura de pelo (matemáticamente hablando), la realidad es que el problema viene de antiguo, pues la primera vez que aparece es en 1967 cuando L. J. Upton (Mathematics Magazine 40 (5), p. 163) propone el problema para 4 cortes formando ángulos de 45º.

Pero vayamos a explorar un poco el problema. El caso más sencillo es cuando uno de los cortes pasa exactamente por el centro de la pizza, ya que así es muy fácil comprobar que en este caso, la pizza queda dividida de forma simétrica respecto de dicho corte, por lo que si comenzamos a comer cada uno de los 2 comensales de forma alternativa trozos adyacentes, al final cada uno tomará exactamente la mitad de la pizza, pues así si el primer comensal toma un trozo, el segundo comensal, comerá (en algún momento) el trozo simétrico.

Ahora bien, ¿qué ocurre si ningún corte pasa por el centro de la pizza? (sería el caso del dibujo anterior): esto empieza a ponerse algo serio.

El caso de 1 único corte es el más sencillo y no hace falta ni siquiera explicarlo. Para 2 cortes, podemos ver una demostración gráfica muy muy simple de que el que come el trozo que contenga el centro, comerá más:

En el dibujo se ve cómo los trozos con númetros iguales tienen la misma área, luego el que coma los trozos grises (el más grande de los cuales contiene el centro de la pizza), comerá más.

Para el caso de de 4 cortes, que fue el problema planteado por Upton en 1967, el desafío no duró demasiado, ya que en 1968 Michael Goldberg (y Robert Brennan y Hussein Demir, de forma independiente) lograron resolver el problema, e incluso generalizarlo para el caso en que haya un número par de cortes (cf. Mathematics Magazine 41 p.46).

El resultado de Goldberg nos dice que si se corta la pizza un número par de veces (mayor estricto que 2) de forma que todos los cortes pasen por un punto, que no sea el centro de la pizza y que, además, ningún corte pase por el centro, entonces si vamos tomando trozos adyacentes de forma alternativa, cda comensal comerá exactamente la mitad de la pizza.

Pero... ¿qué pasa si hacemos un número impar de cortes? ¿Ocurrirá lo mismo? En este caso las cosas se complican bastantes. El primer resultado al respecto data de 1994 cuando, de nuevo en Mathematics Magazine (vol 67, p.304), Larry Carter propone el problema para el caso de 3 cortes, indicando que la solución debe ser que el comensal que elija la parte con el centro comerá menos.

Tan complicado ha sido el problema, que no ha sido completamente resuelto hasta Mayo de 2009, cuando los matemáticos Mabry y Deiremann (citados al principio del artículo) publicaron el siguiente artículo: Of Cheese and Crust: A proof of the Pizza Conjecture and other tasty results, American Mathematical Monthly, 116 (5), pp.423-438 (esta revista no es cualquiera, en el área de matemáticas tiene un índice de impacto en 2008 de 0.361 y ocupa la posición 176 de entre las 215 revistas indexadas en el Journal of Citations Report).

En dicho artículo, utilizando grandes dotes de cálculo y técnicas de series algebraicas y funciones trigonométricas, logran completar el resultado. Así, consiguen demostrar que, en el caso de un número impar de cortes, ocurre lo siguiente:
  • Si se realizan 3, 7, 11, 15, ..., 4n-1, ... cortes, y repartimos sectores adyacentes de forma alternativa, el comensal que coma el trozo que contenga el centro, comerá más que el otro (esto también es válido si se realizan exactamente 1 ó 2 cortes).
  • Por el contrario, si se corta en 5, 9, 13, 17..., 4n+1, ... cortes, y hacemos el reparto habitual, entonces el comensal que tome la porción que contenga el centro comerá menos que el otro.

En resumen, que el dicho de El que parte y reparte, se lleva la mejor parte se pude hacer realid, siempre que sepas las matemáticas necesarias para comprender el Teorema del reparto equitativo de una pizza.

Sin embargo, éste no es el único problema que tratan Marbry y Deierman en su artículo, sino que estudian algunos porblemas relacionados como ¿Quién comerá más corteza? o ¿quien comerá más queso? o incluso qué ocurriría si en vez de una pizza tuviéramos un calzone.

Espero que, a partir de ahora, cuando vayáis a un italiano con vuestra pareja y pidáis una pizza, os acordéis que una vez, un bloguero matemático os contó el método para poder comer más que ella y parecer todo un caballero.


ACTUALIZACIÓN: Gracias a un comentario de emulenews en meneame.net, me he enterado que el artículo original de Mabry y Deiermann está disponible de forma gratuita The Pizza Conjecture y así os lo hago saber, por si queréis echarle un vistazo a los detalles técnicos (y no tan técnicos) que, en algún caso, puede resultar muy interesante para los no especialistas.

Fuente:

Tito Eliatron Dixit
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0