Latest Posts:

4 de octubre de 2016

2016: Nobel de Física para los descubridores de los secretos de la materia exótica

Las ondas gravitacionales se quedan para otro año. El comité de los Nobel ha querido reconocer a tres científicos británicos por revelar los secretos de la materia exótica.



Premio Nobel de Física ha recaído este año en David Thouless, Duncan Haldane y Michael Kosterlitz por el "estudio de transiciones de fase topológicas", según ha anunciado esta mañana la academia de ciencias sueca.

Los premiados de este año "abrieron la puerta a un mundo desconocido hasta entonces en el que la materia puede asumir estados extraños", explica el fallo del jurado, utilizando métodos de matemáticas avanzadas para analizar fases, o estados, inusuales de la materia, como los superconductores, los superfluidos o los films magnéticos.

Gracias a su trabajo pionero, físicos de todo el mundo trabajan ahora buscando nuevas y exóticas fases de la materia. Hay grandes esperanzas en sus usos futuros dentro de las ciencias de los materiales y la electrónica.

El uso de conceptos topológicos dentro de la física fue decisivo para sus descubrimientos. La topología es la rama de las matemáticas que describe las propiedades de la materia que solo cambia siguiendo un paso tras otro.





Esta rama de la matemática se interesa por las propiedades que cambian paso a paso, al igual que el número de agujeros en los objetos anteriores. La topología fue la clave de los descubrimientos de los Premios Nobel.


Utilizando la topología como herramienta, consiguieron superar a los expertos de la época. En la década de los 70, Michael Kosterlitz y David Thouless utilizaron esos conceptos matemáticos para estudiar los fenómenos que surgen en un mundo plano, en superficies tan finas que se pueden considerar bidimensionales. Con sus trabajos dieron la vuelta a las teorías del momento de que la superconductividad o la superfluidez no podían ocurrir en capas finas de materia, demostrando que la superconductividad puede ocurrir a bajas temperaturas y también explicando el mecanismo, llamado fase de transición, que hace que la superconductividad desaparezca a altas temperaturas.

Años después, en los 80, Thouless fue capaz de explicar un experimento previo, con capas conductoras de electricidad muy finas en las que la conductividad se podía medir de forma precisa en pasos completos. Demostró que esos pasos eran topológicos en su naturaleza. En torno al mismo tiempo, Duncan Haldane descubrió cómo se pueden utilizar conceptos topológicos para entender las propiedades de la cadenas de pequeños imanes encontrados en algunos materiales, tan finas que se podrían considerar unidimensionales.




Las fases más comunes son el gas, líquido y materia sólida. Sin embargo, en muy alta o baja
temperaturas cuestión asume otros estados, más exóticos. El artículo completo en:



El Confidencial