Latest Posts:

4 de diciembre de 2019

Matemática: el misterioso número 6174

6174 parece un número cualquiera. Sin embargo, lleva intrigando a matemáticos y entusiastas de la teoría de los números desde 1949.

¿Por qué?


Pues mira esto tan curioso.

1. Elije cualquier número de cuatro dígitos que esté formado por al menos dos dígitos diferentes, incluido cero, por ejemplo 1234

2. Organiza los dígitos en orden descendente, lo que en nuestro ejemplo quedaría 4321

3. Ahora, organiza el número en orden ascendente: 1234

4. Resta el número más pequeño del número más grande: 4321 - 1234

5. Y ahora repite los tres últimos pasos 

Vamos a hacerlo:
  • 4321 - 1234 = 3087
entonces organizamos los dígitos de 3087 en orden descendente y queda 8730, y en orden ascendente, 0378, y restamos:
  • 8730 - 0378 = 8352
nuevamente, organizamos los dígitos del resultado 8352, y los restamos:
  • 8532 - 2358 = 6174
Una vez más, en orden descendente -7641- y ascendente -1467-, y restamos:
  • 7641 - 1467 = 6174
Como puedes notar, de aquí en adelante no vale la pena seguir, pues sólo repetiríamos la misma operación. 

Tratemos con otro número. ¿Qué tal 2005?:
  • 5200 - 0025 = 5175
  • 7551 - 1557 = 5994
  • 9954 - 4599 = 5355
  • 5553 - 3555 = 1998
  • 9981 - 1899 = 8082
  • 8820 - 0288 = 8532
  • 8532 - 2358 = 6174
  • 7641 - 1467 = 6174
Resulta que no importa con cuál número comiences, siempre llegas a 6174 y a partir de entonces, la operación se repite, con el mismo resultado una y otra vez: 6174.

Kaprekar, un adicto a los números

A esto se le conoce como la Constante de Kaprekar pues quien descubrió la misteriosa belleza de 6174 y la presentó en la Conferencia Matemática de Madrás en 1949 fue Dattatreya Ramchandra Kaprekar (1905-1986), un adicto confeso de la teoría de los números. 

"Un borracho quiere seguir bebiendo vino para permanecer en ese estado placentero. Lo mismo ocurre conmigo en lo que respecta a los números", solía decir.

El artículo completo en: BBC Mundo
 
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0