Latest Posts:

Mostrando las entradas con la etiqueta foucault. Mostrar todas las entradas
Mostrando las entradas con la etiqueta foucault. Mostrar todas las entradas

4 de mayo de 2014

Conocer Ciencia: Experimentos con péndulos (II)

 Continuamos hablando sobre el péndulo. Puede ver la primera parte aquí.

1. El péndulo y el método científico (3 experimentos)

Para realizar nuestro experimento necesitamos un carrete de hilo y un par de tuercas de diferente tamaño.

Para construir un péndulo simple atamos un trozo de hilo a una de las tuercas y luego atamos el otro extremo del hilo a algún soporte que permita a la tuerca oscilar sin tocar el suelo.

Si apartamos la tuerca de la posición de equilibrio (la vertical) y la dejamos oscilar libremente tenemos un péndulo simple. Llamamos período del péndulo al tiempo que tarda la tuerca en realizar una oscilación completa.

¿De qué factores depende el período de oscilación del péndulo? ¿Dependerá de la amplitud de las oscilaciones, del tamaño de la tuerca o de la longitud del hilo? Para averiguarlo realizamos tres experimentos:


 

Experimento 1: construimos dos péndulos simples idénticos (misma longitud del hilo y tuercas iguales) y luego apartamos los péndulos de la posición de equilibrio de manera que uno de ellos tenga una amplitud de oscilación mayor. Podemos ver que las dos tuercas tardan el mismo tiempo en completar una oscilación

Conclusión 1: el período de oscilación del péndulo no depende de la amplitud de las oscilaciones.

Experimento 2: construimos dos péndulos de igual longitud pero con tuercas diferentes. Si apartamos los dos péndulos de la posición de equilibrio y los soltamos vemos que tardan el mismo tiempo en completar una oscilación.

Conclusión 2: el período de oscilación del péndulo es independiente del tamaño de la tuerca.

Experimento 3: construimos dos péndulos de diferente longitud con tuercas de igual tamaño. Si apartamos los dos péndulos de la posición de equilibrio y los soltamos vemos que el péndulo de menor longitud tarda menos tiempo en completar una oscilación.

Conclusión 3: el período de oscilación del péndulo depende de la longitud del hilo. Si la longitud del hilo es menor tarda menos tiempo en completar la oscilación y, por tanto, su período de oscilación es menor.


2. El péndulo de Foucault 


Foucault pendulum animated Rosa polar: una ecuación bella para un experimento bello.

El péndulo de Foucault es considerado uno de los experimentos más bellos. ¿Y qué es un experimento bello? Por bello se entiende, según la revista Physics World, aquel que para su demostración exigiera el menor número de elementos posibles y produjera a su vez resultados sorprendentes.


Estaremos de acuerdo que un péndulo es muy sencillo de fabricar: una cuerda y un peso. Lo único que hay que hacer a continuación es balancearlo.

En muchos parques de las ciencias habréis visto un péndulo de Foucault que va derribando poco a poco los montículos que hay colocados en forma de reloj. Nuestra percepción es que es el péndulo el que se mueve, pero realmente, como comprobó Foucault*, es la Tierra la que realmente gira mientras que el péndulo siempre se balancea hacia la misma dirección.

Tenemos así los dos factores para que un experimento sea bello: elementos sencillos (cuerda y peso) y resultados sorprendentes (demostrar que la Tierra gira sobre su eje).

Una animación del péndulo de Foucault:



Un péndulo de Foucault en acción, en el Museo de la Ciuad de las Ciencias y las Artes de Valencia (España). 


La gracia es que nadie mueve el pendulo. El pendulo es movido por la propia tierra al rotar, demuestra por tanto la rotación de la tierra ya que tal movimiento que para nosotros es imperceptible permite que elementos suspendidos como este se muevan.


 La guía didáctica para elaborar un péndulo de Foucault (para los más avezados en ciencias):




3. Cómo hacer un péndulo de pintura

Un péndulo puede realizar magníficos dibujos y diseños. Sólo tienes que ver el video y seguir las instrucciones. Es muy sencillo y divertido. Algunas obras de arte AQUÍ.




4. El péndulo y la energía

Y, con ustedes, una vez más, Walter Lewin (del MIT). En esta ocasión nos enseña sobre la energía potencial y la energía cinética de un péndulo. Y realiza un experimento donde pone en riesgo su propia video. Tienen que verlo:



Para conocer más sobre la energ+ia potencial y cinética de un péndulo ingresa aquí.

 5. Radiestesia (pseudociencia)

Existe una pseudociencia llamada radiestesia, se supone que el péndulo atesora un poder para sanar y curar, además de adivinar el futuro. Obviamente no hay causalidad entre las oscilaciones de un péndulo y el estado de salud de un ser humano, no obstante, nos comentan, que estas charlatanerías proliferan mucho en algunos lugares del globo, como España.

Si quieren desperdiciar 6:38 minutos de su vida vean el siguiente video:




6.Miscelánea

6.1. Un embudo-péndulo



Estos experimentos fascinarán a los niños, sobre todo a los más pequeños. Puede leer el artículo completo AQUÍ. Es una variación del péndulo artista, pero en vez de una botella de plástico se emplea un embudo (también de plástico).

6.2. Un caramelo-péndulo

En este video verás cómo con una paleta de caramelo se puede también hacer un péndulo. Es más puedes colocar cualquier objeto: tuercas, pelotas, botellas, embudos, emplea tu imaginación ¡y descubre!

6.3. El columpio


Mientras te columpias en un parque también puedes conocer y comprender las propiedades de un péndulo. Para ello solo necesitas un cronómetro y muchas ganas de divertirte. Todas las instrucciones las encuentas en la web BIg Bang.

6.4. El péndulo electrostático


En el experimento de hoy, crearemos nuestro propio péndulo electrostático, de manera sencilla y sin que nos lleve mucho tiempo. No supone ningún riesgo, por lo que cualquier niño podrá realizarlo en casa. Los materiales que utilizaremos son muy fáciles de encontrar. Este video lo dice todo:


 6.5. Péndulo de Foucault en miniatura

No se Dan mchos Datos en la web original, pero los creadores de este experimento afirman que viendo el siguiente video TODO se puede entender con gran claridad. A ver, juzguen ustedes:


 


¿No entendiste nada?.De todas maneras Pablo Covaleda, a través de YouTube, nos da una escueta explicación:

"Mafalda" está sobre la Tierra que gira naturalmente!, y el péndulo al oscilar apunta siempre a "Felipe" que no se mueve, por lo que a Mafalda le parece que el péndulo a girado...pero la que ha girado es la Tierra, espero que si alguna vez ve un péndulo de Foucault te des cuenta de que el que se ha movido es el observador que esta en la Tierra y no el péndulo.

6.6. Péndulo de electricidad electrostática de Franklin

Para esta ocasión  les traigo un experimento relativamente facil pero casero llamado campana o péndulo de Electricidad Estática, inventado por  Benjamin Flanklin para detectar posibles tormentas eléctricas. Pero que ademas puede tener otras aplicaciones mas caseras.



Bueno, eso es todo por hoy. Hasta pronto.

Leonardo Sánchez Coello
leonardo.sanchez.coello@gmail.com


16 de septiembre de 2013

¿El agua del lavabo en verdad gira en sentido opuesto en cada hemisferio?

El desagüe de un lavabo es, desde el punto de vista de la física, un proceso complejo.





Aunque esta idea parece bastante popular, el hemisferio en el que se encuentre el lavabo no determina unívocamente el sentido en el cual girará el agua al vaciarlo. Un mismo lavabo o lavabos diferentes en un mismo lugar pueden originar sentidos diferentes de rotación del agua.


A pesar de este decepcionante comienzo, la pregunta es interesante y pone de manifiesto que el desagüe de un lavabo es, desde el punto de vista de la física, complejo. Intervienen diferentes factores, y el balance entre ellos determina el resultado final. No resulta difícil imaginarse algunos: forma de la pila y rigurosidad de su superficie, presión del agua en el grifo y la situación de ésta, la forma del orificio de desagüe, el estado de reposo del agua antes de abrir el tapón…

Pero, ¿y el hemisferio terrestre? ¿tiene alguna influencia? A primera vista parece incluso sorprendente el planteárselo. Pero…

Hablar del sentido del giro del agua equivale en términos más científicos a preguntarse por su trayectoria. Es un problema de dinámica. Y ésta enseña que para describir un movimiento referido a un sistema en rotación hay que añadir la fuerza centrífuga y la llamada fuerza de Coriolis. Como la Tierra gira, esto se debe aplicar en principio al movimiento de cualquier objeto sobre ella.

Eso es inapelable. Otra cuestión es si la magnitud de esas fuerzas es suficiente para producir efectos observables. Limitándonos a la fuerza de Coriolis debemos mencionar dos peculiaridades: actúa en sentidos contrarios en ambos hemisferios, y su intensidad depende de la latitud siendo proporcional a la velocidad de rotación de la tierra sobre su eje y la velocidad del objeto que se mueve.

En el caso que nos ocupa, la Tierra gira muy lentamente (una vez cada 24 horas aproximadamente), y el resto de parámetros hacen que la fuerza de la Coriolis en lavabos convencionales sea absolutamente imperceptible frente a otros factores que intervienen. Esto justifica el comentario negativo inicial. No está de más, sin embargo, indicar que para fenómenos que se producen a mayor escala espacial y/o temporal la fuerza de Coriolis puede llegar a ser la dominante. Por ejemplo, en movimientos de grandes masas de aire o de agua. O cuando el efecto se acumula en el tiempo, como en el caso del péndulo de Foucault.
 
Si se acepta la broma, quizá una respuesta más condescendiente a la pregunta «¿gira el agua del lavabo en sentidos opuestos en el hemisferio norte y en el sur?» podría ser... «depende de las dimensiones del lavabo».

Fuente:

2 de marzo de 2010

Rosa Polar: Una ecuación bella para un experimento bello

Martes, 02 de marzo de 2010

Rosa Polar: Una ecuación bella para un experimento bello


Foucault pendulum animated Rosa polar: una ecuación bella para un experimento bello.

El péndulo de Foucault es considerado uno de los experimentos más bellos. ¿Y qué es un experimento bello? Por bello se entiende, según la revista Physics World, aquel que para su demostración exigiera el menor número de elementos posibles y produjera a su vez resultados sorprendentes.

Estaremos de acuerdo que un péndulo es muy sencillo de fabricar: una cuerda y un peso. Lo único que hay que hacer a continuación es balancearlo.

En muchos parques de las ciencias habréis visto un péndulo de Foucault que va derribando poco a poco los montículos que hay colocados en forma de reloj. Nuestra percepción es que es el péndulo el que se mueve, pero realmente, como comprobó Foucault*, es la Tierra la que realmente gira mientras que el péndulo siempre se balancea hacia la misma dirección.

Tenemos así los dos factores para que un experimento sea bello: elementos sencillos (cuerda y peso) y resultados sorprendentes (demostrar que la Tierra gira sobre su eje).

 Rosa polar: una ecuación bella para un experimento bello.

Pero hay más elementos bellos en este experimento...

Este experimento representa uno de los momentos en que la ciencia explota de gozo al comprobar experimentalmente lo que ya se conocía o se intuía teoricamente.

Cuando Foucault realizó el experimento ya se conocía la esfericidad de la Tierra (se explicaba por la sombra en la Luna durante un eclipse, o también por el hecho que al perderse en el horizonte un barco desaparecería en primer lugar el casco y por último los mástiles) y que la Tierra giraba alrededor del Sol (si era la Tierra la que giraba alrededor del Sol, ésta tendría que girar también sobre sí misma para poder pasar del día a la noche).

Pero, como sabéis, la experiencia es la madre de la ciencia, y fue Facoult el que realizó el expeirmento que lo demostró.

Pero centrémonos ahora en la figura que describe el péndulo de Foucault en el suelo:


180px Rose 2sin(4theta).svg Rosa polar: una ecuación bella para un experimento bello.


Esta figura se denomina Rosa Polar.

En matemáticas, rosa polar es el nombre que recibe cualquier miembro de una familia de curvas que se asemejan a una flor de pétalos.

Su expresión general en coordenadas polares es:

rosa polar Rosa polar: una ecuación bella para un experimento bello.

Donde a representa la longitud de los pétalos y fi sólo tiene un efecto de realizar una rotación global sobre la figura.

Una ecuación que representa los pétalos de una flor y que forma el bello experimento que demostró que la Tierra se mueve. ¿Se puede pedir más?

Algunos ejemplos son:

rosas polares 201x200 Rosa polar: una ecuación bella para un experimento bello.

* En 1851 Leon Foucault, físico francés nacido en París en 1819, realiza uno de los experimentos más espectaculares de la historia de la Ciencia. Como sabía que un péndulo tiene tendencia a mantener el plano de oscilación aunque su punto de unión girase, comprendió que si ponía un gran péndulo en movimiento éste mantendría su plano de oscilación mientras la Tierra giraba debajo de él. Fue el tercer experimento realizado en el Panteón de París y ante un gran público (entre el que se hallaba el emperador Napoleón III), el que le dio la fama a Foucault. Utilizó un hilo de acero de 67 metros de longitud y una esfera de plomo 28 kilogramos de masa para construir el péndulo y consiguió que estuviese oscilando varias horas, durante las cuales se apreciaba claramente el giro de la Tierra. Ésta fue la primera vez que se puso en evidencia de forma directa la rotación diaria de la Tierra, aunque ya se conociese de forma teórica.


Más información:

Guía didáctica sobre el péndulo de Facoult.

Los diez experiementos de ciencia más bonitos (astroseti).

El experimento más bello de todos los tiempo. (El Árbol de la Ciencia)


Fuente:


Ciencia On Line
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0