Latest Posts:

4 de marzo de 2020

La creatividad: el campo de batalla definitivo entre la inteligencia artificial y la humana


¿Cómo innova una máquina? 

Desde una perspectiva teórica, la creatividad y la innovación son procesos de búsqueda y combinación. Empezamos con un trozo de conocimiento y lo conectamos con otro trozo para crear algo nuevo y útil.

En principio, esto también es algo que puede ser hecho por máquinas. De hecho, son excelentes almacenando, procesando y haciendo conexiones entre datos.

Las maquinas producen innovaciones usando métodos generativos. Pero ¿cómo ocurre eso exactamente?

Hay diferentes estrategias, pero lo que es tecnología de punta se llama "red generativa antagónica"

Por ejemplo, piensa en una máquina que debe crear un retrato nuevo de una persona. Las redes generativas antagónicas abordan esa tarea creativa con la combinación de dos tareas secundarias.

La primera parte es el generador, que produce nuevas imágenes a partir de una distribución aleatoria de píxeles. La segunda parte es el discriminador, que le dice al generador qué tanto se aproximó a producir un retrato que parezca auténtico.

¿Cómo hace el discriminador para saber cómo se ven los humanos? Pues bien, se le alimenta con muchos ejemplos de retratos de personas reales antes de empezar la tarea.

En base a la información del discriminador, el generador mejora su algoritmo y sugiere un nuevo retrato.

Este proceso se repite una y otra vez hasta que el discriminador decide que el retrato se aproxima a los ejemplos que tiene en su memoria. Este proceso da como resultado un retrato que se parece muchísimo a un humano real.

La "chispa humana" 

Pero, aunque las máquinas puedan innovar en base adatos, eso no quiere decir que vayan a hacer sombra a la creatividad humana en breve.

La innovación es un proceso de resolución de problemas. Esto es, para que una innovación exista, hay que combinar los problemas con las soluciones.

Los humanos pueden ir en cualquiera de las direcciones: pueden empezar con un problema y resolverlo, o pueden partir de una solución y tratar de buscar nuevos problemas en torno a esta.

Un ejemplo de este último tipo de innovación es el Post-it (el papelito rectangular para escribir notas con adhesivo en una de las esquinas).

Un ingeniero desarrolló un pegamento que no era muy fuerte y lo dejó en su escritorio. Y un colega se dio cuenta de que esa era precisamente la solución que evitaría que se cayeran las notas que añadía a su partitura durante sus ensayos corales.

Al utilizar datos y código para formular problemas explícitos, la inteligencia artificial también puede ofrecer soluciones.

Sin embargo, identificar un problema es más difícil para las máquinas, ya que estos no suelen estar incluidos en los datos a partir de los cuales innovan las máquinas.

Es más, la innovación suele estar basada en las necesidades que ni siquiera sabíamos que teníamos.

Pensemos en el walkman. Aun cuando ningún consumidor manifestó el deseo de escuchar música mientras caminaba, esta innovación fue un gran éxito.

Así como es difícil formular ese tipo de necesidades latentes, también es improbable que entren a formar parte de los archivos de datos que las máquinas necesitan para inventar.

Los humanos y las máquinas se nutren de distintas materias primas para innovar.

Mientras las personas se basan en toda una vida de experiencias para generar ideas, las máquinas se limitan a hacerlo usando los datos con las que las alimentamos.

Estas últimas puede, pues, generar innumerables innovaciones, versiones nuevas en base a datos que van recibiendo.

Pero es poco probable que los inventos revolucionarios vengan de las máquinas, pues estos suelen crearse generalmente al relacionar campos distintos y desconectados. Un ejemplo de ello es el snowboard, que combina el mundo del surf con el esquí.

Lea el artículo completo en: BBC Mundo



google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0