07 Jun 2023 undefined comments

El tamaño de las partículas es ínfimo y de plásticos muy comunes, como polietileno y acrílico. Se detectaron trazas de micropartículas de plástico en 6 de cada 10 muestras de semen de hombres sanos ...

Read More
02 Jun 2023 undefined comments comments

Un informe cuantifica los límites climáticos, naturales y de contaminantes que aseguran el mantenimiento seguro y justo de la civilización.Un amplio grupo de científicos identificó en 2009 nueve lí...

Read More
08 Mar 2023 undefined comments comments comments

Aquí van las razones geográficas y socioeconómicas por las que el río más largo y caudaloso del mundo nunca tendrá una estructura que sirva para cruzar de orilla a orilla.Cuando vemos en algún doc...

Read More
07 Mar 2023 undefined comments comments comments comments

El 43,7% de loretanos no tiene acceso al servicio de agua potable o tratada. Es el mayor déficit en todo el país, según el INEI, y afecta principalmente a la niñez de las zonas rurales de la región...

Read More
06 Mar 2023 undefined comments comments comments comments comments

Perú se ubica en la escala de desigualdad por encima de México. El informe señala que el 1% de la población más rica del mundo concentra entre el 25% y 30% de los ingresos totales de su país...

Read More
15 Oct 2022 undefined comments comments comments comments comments comments

Al principio de su historia, el planeta rojo habría sido probablemente habitable para los metanógenos, microbios que viven en hábitats extremos de la Tierra.El Marte noáquino habría sido un hábitat...

Read More
15 Oct 2022 undefined comments comments comments comments comments comments comments

La astrofísica del Centro de Astrofísica Harvard & Smithsonian en Cambridge, detalló que se trata de un fenómeno completamente nuevo ya que “estamos observando la evolución estelar en tiempo r...

Read More
13 Aug 2022 undefined comments comments comments comments comments comments comments comments

El dispositivo podría suministrar energía constante a una amplia variedad de aparatos electrónicos alimentándose de la transpiración humana.Investigadores de la Universidad de Massachusetts Amherst...

Read More

Latest Posts:

4 de agosto de 2014

Razonamiento diagramático en problemas de factorización

En este post voy a comentar sobre el método de reagrupamiento para factorizar una ecuación cuadrática y su correspondiente solución diagramática. Ilustro con un caso particular de toda

Una familia de problemas cuadráticos

En una ecuación cuadrática, si se puede factorizar entonces se puede representar como rectángulo --con uno de sus factores la base y el otro la altura.

Consideremos el problema de factorizar la ecuación cuadrática


ax2+(a+b)x+b=0

(donde a,b son enteros positivos).

Este problema es, en realidad, toda una familia de problemas, uno para cada par de números enteros positivos a,b. Por ejemplo, si a=2011,b=1, se tiene el problema 1A del concurso estatal OMM Tamaulipas 2012 

Por esa razón, puede ser de alguna utilidad como generador de problemas cuadráticos para los profesores de matemáticas de bachillerato. Discutamos ahora su

Solución

El método de reagrupamiento nos lleva a la siguiente ecuación equivalente:

ax2+ax+bx+b=0

Y se logra ver que es posible factorizar la ecuación como


ax(x+1)+b(x+1)=(ax+b)(x+1)=0

Y esa factorización se puede representar como un rectángulo de base x+b y altura x+1
(Nota: por el teorema del residuo, es también relativamente fácil darse cuenta que x=1 satisface la ecuación --y lo que sigue es dividir entre x+1 para obtener el otro factor.)

Discusión

La pregunta ahora es ¿es posible factorizar una cuadrática de manera diagramática? Y, bueno, uno podría decir: sí, si es de la forma antes mencionada.

Y ¿cómo se reconoce una ecuación de la forma antes mencionada? Bueno, debería ser claro que el truco es que todos sus coeficientes sean positivos y que la diferencia entre el coeficiente de la x y el de la x2 sea igual al término independiente.

Consideremos el caso de la ecuación 5x2+7x+2. Es claro que esta ecuación satisface los dos requisitos mencionados. Y, bueno, uno entonces podría explicar a sus estudiantes:
Vean que si tomamos este rectángulo de base 5x y altura x su área es 5x2. Pero como 7x=5x+2x entonces agregando este otro rectángulo de base 5x y altura 1, y este otro --a la derecha-- de base 2 y altura x, ya tenemos el segundo término representado en estos rectángulos. Y como este otro rectángulo de la esquina arriba a la derecha es de base 2 y altura 1, entonces ya tenemos el término independiente. ¿OK? Y ahora ¿cuáles son las dimensiones de este rectángulo que hemos formado con los términos de la ecuación cuadrática? Piénsenlo un rato y me lo dicen. Etcétera, etcétera.

Esta exposición didáctica de la factorización de este tipo de ecuaciones cuadráticas es efectista. De hecho no aporta nada que no esté ya en el método de reagrupamiento.

Pero tiene la ventaja --posiblemente-- de dejar al aprendiz intrigado, y posiblemente asombrado... (se preguntará acaso sobre la forma en que los términos se acomodaron tan perfectamente en un rectángulo). Y si llega a descubrir el truco entonces la exposición fue un éxito. (Claramente, para el indiferente cualquier tipo de exposición es igualmente aburrida...)

Los saluda
jmd


Tomado de:

Mate Tam
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0