07 Jun 2023 undefined comments

El tamaño de las partículas es ínfimo y de plásticos muy comunes, como polietileno y acrílico. Se detectaron trazas de micropartículas de plástico en 6 de cada 10 muestras de semen de hombres sanos ...

Read More
02 Jun 2023 undefined comments comments

Un informe cuantifica los límites climáticos, naturales y de contaminantes que aseguran el mantenimiento seguro y justo de la civilización.Un amplio grupo de científicos identificó en 2009 nueve lí...

Read More
08 Mar 2023 undefined comments comments comments

Aquí van las razones geográficas y socioeconómicas por las que el río más largo y caudaloso del mundo nunca tendrá una estructura que sirva para cruzar de orilla a orilla.Cuando vemos en algún doc...

Read More
07 Mar 2023 undefined comments comments comments comments

El 43,7% de loretanos no tiene acceso al servicio de agua potable o tratada. Es el mayor déficit en todo el país, según el INEI, y afecta principalmente a la niñez de las zonas rurales de la región...

Read More
06 Mar 2023 undefined comments comments comments comments comments

Perú se ubica en la escala de desigualdad por encima de México. El informe señala que el 1% de la población más rica del mundo concentra entre el 25% y 30% de los ingresos totales de su país...

Read More
15 Oct 2022 undefined comments comments comments comments comments comments

Al principio de su historia, el planeta rojo habría sido probablemente habitable para los metanógenos, microbios que viven en hábitats extremos de la Tierra.El Marte noáquino habría sido un hábitat...

Read More
15 Oct 2022 undefined comments comments comments comments comments comments comments

La astrofísica del Centro de Astrofísica Harvard & Smithsonian en Cambridge, detalló que se trata de un fenómeno completamente nuevo ya que “estamos observando la evolución estelar en tiempo r...

Read More
13 Aug 2022 undefined comments comments comments comments comments comments comments comments

El dispositivo podría suministrar energía constante a una amplia variedad de aparatos electrónicos alimentándose de la transpiración humana.Investigadores de la Universidad de Massachusetts Amherst...

Read More

Latest Posts:

29 de octubre de 2012

¿Se puede construir una caja con todas sus caras distintas?

Vamos a realizar un pequeño “experimento”. Echa un vistazo por tu casa, ahora mismo si quieres, y busca una caja que tenga todas sus caras distintas. No, no te vale una caja de zapatos, ya que sus caras son (habitualmente) iguales por parejas. ¿Encuentras alguna?


Posiblemente no, ya que normalmente las cajas que tenemos a mano suelen tener todas forma de cuboide (la de zapatos). Aunque bueno, puede que alguno de vosotros tenga por ahí alguna con una forma extraña que nos pueda servir como ejemplo de caja con todas sus caras distintas, ya que en realidad sí pueden encontrarse cajas con esta característica. Por ejemplo, podemos tomar un cuboide y cortarle un trocito de la siguiente forma:


Evidentemente, cuando hablamos de “caja” en este contexto queremos decir poliedro (es decir, una figura geométrica en tres dimensiones cuyas caras son planas (polígonos) y el volumen interior es finito) convexo (es decir, que cumple que todo segmento que une dos puntos del poliedro está contenido en el interior del propio poliedro). Pero en lo relativo a que sus caras sean todas distintas vamos a afinar un poco más.

Hemos visto que hay poliedros que tienen todas sus caras distintas, pero ¿habrá poliedros cuyas caras sean todas polígonos con un número distinto de lados? Es decir, buscamos un poliedro donde no se repita ningún polígono en lo que a número de lados se refiere: que no haya dos o más triángulos, ni dos o más pentágonos, etc. ¿Podremos encontrar ahora algún poliedro con esta característica?

Antes de responder intentad que no os influya la idea de regularidad poliédrica que solemos tener en la cabeza (lo que comenté antes de que habitualmente las cajas que tenemos cerca son esencialmente iguales) y pensad en la tremenda variedad que podemos encontrar en el mundo de los poliedros, y también en la barbaridad de polígonos que pueden hacer de cara de un poliedro…

…¿lo habéis pensado ya? Bien, pues ahí va la respuesta: no se puede encontrar ningún poliedro cuyas caras sean todas polígonos con números distintos de lados. ¿Os lo creéis? ¿Así, sin más? ¿Tan fácil ha sido? Hombre, quizás sería necesaria una demostración, ¿verdad? Bien, pues vamos a ver una que aparece en el libro Mapas del metro y redes neuronales, de Claudi Alsina.

Supongamos que tenemos un poliedro convexo P que tiene un número de caras igual a C. Vamos a llamar R a la cantidad de números naturales i para los cuales el poliedro P tiene al menos una cara con i aristas. Por ejemplo, un cubo tiene R=1, ya que solamente hay un número natural para el cual el cubo tiene caras con esa cantidad de aristas: el 4. Y llamemos ahora K al número de aristas que tiene la cara de P con más aristas. En el cubo tendremos que K=4, ya que ésa es la mayor cantidad de aristas que tiene una cara de un cubo.
Veamos otro ejemplo para aclarar un poco más el asunto. Si P es el prisma de base hexagonal que podemos ver a la derecha, se tiene que R=2, ya que hay dos números naturales para los cuales este prisma tiene al menos una cara con esas cantidades de aristas: el 4 y el 6. Por otro lado, K=6 en este prisma, que es el mayor número de aristas que tiene una cara del mismo.

Bien, aclarado esto vamos a jugar un poco con estos números. Evidentemente P tiene al menos una cara con K aristas (ya que K era el número máximo de aristas que tenía una cara de P). Pero cada arista de dicha cara es también arista de otra cara de P, lo que nos da K caras más. Por tanto, el número de caras de P es, al menos, K+1 (la que tiene K aristas más las K caras correspondientes a dichas aristas). Con esto llegamos a la primera expresión interesante:

C \geq K+1

Lea el artículo completo en: 

google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0