Ya sea que usted quiera volar alrededor del mundo, manejar el automóvil para ir de compras o simplemente calentarse en la casa, previamente tiene que iniciar un fuego. Sin embargo, lograr la mejor combustión no es fácil ¿cómo mantener la máxima energía de un combustible que quemamos? Y, ¿cómo eliminar la contaminación que el combustible produce?
Pero las necesidades de satisfacer las demandas masivas de energía entran en conflicto con nuestra preocupación del medio ambiente. Es así como quemando combustible fósil se producen grandes cantidades de dióxido de carbono, el que incrementa el efecto global de calentamiento de la Tierra. También se liberan contaminantes peligrosos, como óxido de nitrógeno y hollín. Los científicos, para poner límite a estas emisiones, están tratando de comprender la complejidad de la combustión, para llegar a desarrollar nuevas tecnologías que aseguren un uso del combustible más limpio y más eficiente.
La "combustión" es un proceso químico que, para que ocurra, requiere de dos ingredientes básicos: un "combustible", como el gas, el petróleo o el carbón, y un "oxidador", generalmente oxígeno del aire. A ellos se agrega una pequeña cantidad de energía (como por ejemplo una llama o una chispa) y usted puede gatillar una "reacción exotérmica" (que libera calor), con lo que rápidamente se libera la energía atrapada en las uniones químicas del combustible.
Pero la combustión no es un proceso químico ordinario. Una vez que se inicia, "se mantiene a sí misma". Esto la distingue de la mayor parte de las reacciones químicas, y se debe principalmente al hecho de que parte de la energía liberada por la combustión, calienta el combustible a su alrededor. Este proceso de "feedback" incrementa el ritmo de la reacción y mantiene la combustión en marcha.
También, a diferencia de otras reacciones químicas, la reacción de combustión es visible, gracias al humo y las llamas. Las llamas se producen cuando una gran cantidad de energía liberada genera luz. El ejemplo más familiar de una llama, es probablemente la que se produce en una vela encendida (ver figura 1). Esta clase de llama en forma de lágrima, se denomina "llama de difusión" porque el oxígeno del aire se debe difundir a través de la región de combustión, mientras el vapor del hidrocarburo tiene que difundir hacia fuera de la mecha.
A principio del siglo XIX, el científico inglés Michael Faraday, hizo uno de los primeros estudios detallados de la llama de la vela. Observó que el calor irradiado de la llama, fundía la cera, permitiendo que ésta, como un líquido empapara la mecha. Una vez dentro de la mecha, el calor vaporizaba la cera líquida. Aquí la temperatura de alrededor de 1000ºC rápidamente descomponía la cera en fragmentos más pequeños y más reactivos.
Estos fragmentos comienzan a reaccionar con oxígeno, descomponiéndose cada vez a cadenas más y más pequeñas, generando gases, vapor de agua y pequeñas partículas sólidas, constituidas por carbón no quemado u hollín, al que llamamos "humo". En esta llama, el mayor ritmo de reacción, como también la zona de mayor calor y emisión de luz, ocurre cerca de la superficie externa de ella, ya que es allí donde el combustible hidrocarbonado se encuentra con el oxígeno.
Parte de la luz, principalmente la naranja y la amarilla, se produce por partículas de hollín incandescente que se generan durante la combustión. El área más roja, cerca del centro de la llama, alcanza una temperatura de 800ºC. La región naranja y la amarilla, son más calientes que eso, alcanzando una temperatura sobre 1400ºC.
Además, algunas de las moléculas creadas por combustión, cuando se forman, ganan considerable energía. Esta energía es absorbida por sus electrones, que luego la remiten como fotones. El resultado es el color azul visto en la base de la llama de la vela, revelando que en esta región, el oxígeno se está mezclando con el combustible para causar una elevada reacción exotérmica.
Lea el artículo completo en:
CRECES