Latest Posts:

4 de octubre de 2012

¿Qué es lo contrario del cero absoluto?

Hacía mucho tiempo que no me dejaba caer por una de mis webs favoritas, The Straigh Dope, y echaba de menos a su sabiondo y cachondo (fingidamente borde) instigador, Cecil Adams, así que clic clic, allí me planté…

¡Qué curioso! Normalmente las dudas que le plantean sus lectores, en busca de alguien que combata la ignorancia (su leitmotiv desde hace décadas) son cuestiones que yo mismo me había hecho alguna vez. Sin embargo la de hoy me tomó por sorpresa.

¿Qué es lo contrario del cero absoluto? ¿Existe una temperatura máxima alcanzable? Pues va a ser que si. Habemus límite superior.

Si Adams no nos miente se trata de una temperatura inconcebiblemente alta llamada Temperatura de Planck, una de esas curiosidades científicas que no sirven realmente de mucho. El universo tenía esa temperatura durante el primer instante de Planck tras el Big Bang (10^-43 de segundo), y hablamos de 10^32 Kelvin.
Puede que esa cifra no te diga nada, pero si la comparas con la temperatura en centro de nuestro sol (10^6 Kelvin) pues te vas haciendo una idea.

Resulta más sencillo entender el cero absoluto que la temperatura de Planck. Percibimos el calor en función del movimiento, cuanto más frío es algo menos movimiento interno exhiben las moléculas que lo componen. Al llegar al cero absoluto (0 Kelvin) el movimiento molecular virtualmente se detiene.

Sin embargo, en el otro extremo, cuanto más rápidas se muevan las moléculas más caliente estará ese algo. A 10^10 Kelvin, los electrones se mueven a velocidades próximas a la de la luz, pero también se hacen más masivos, por lo que su temperatura puede seguir aumentando. A 10^32 Kelvin, la citada Temperatura de Planck, las gigantescas densidades obtenidas por esos electrones harían, en caso de que pudieran seguir calentándose, que se convirtieran en agujeros negros, y en ese punto lo que sabemos sobre el espacio y el tiempo se colapsa.

Así pues, la Temperatura de Planck es el límite calórico superior que se puede alcanzar. O al menos, como bien indica Adams, en ese punto alcanzamos la temperatura más alta concebible de acuerdo a las presentes teorías, lo cual no quita que una futura teoría cuántica de la gravedad nos permita imaginar temperaturas aún más altas.

Aunque a Adams, según concluye, tal posibilidad le deja frío.

Me enteré leyendo The straight dope.

Fuente:

google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0