Latest Posts:

Mostrando las entradas con la etiqueta deep mind. Mostrar todas las entradas
Mostrando las entradas con la etiqueta deep mind. Mostrar todas las entradas

22 de enero de 2019

Una máquina se enseña a sí misma a ganar en todo

DeepMind desarrolla una inteligencia artificial invencible en los tres juegos de tablero más complejos gracias a un algoritmo que compite sin instrucciones.


El objetivo está lejos: conseguir una sola máquina capaz de enfrentarse a cualquier reto o tarea sin ayuda. Hasta ahora, los grandes logros de la inteligencia artificial se generan con máquinas dedicadas específicamente a una tarea, entrenadas para ello en una condiciones muy concretas, incapaces de adaptarse a un cambio sustancial. Pero los pasitos que se van dando hacia ese objetivo son firmes. El último progreso lo firma DeepMind, que ha conseguido que un mismo programa se convierta en invencible en ajedrez, shogi (una versión japonesa del juego) y go, los tres juegos de tablero más exigentes para el intelecto. Pero el mundo real es mucho más complejo e imprevisible.

El logro de DeepMind, la división de inteligencia artificial de Google, promete generar importantes avances. Este programa, llamado AlphaZero, ha aprendido solo a jugar sobre estos difíciles tableros, como explican sus desarrolladores en la revista Science. De cero (de ahí su nombre), sin ayuda ni ejemplos de jugadores reales. En otras ocasiones, el ordenador aprendía porque lo alimentaban con todo el conocimiento humano, millones de jugadas y ejemplos reales, y a partir de ahí el cerebro de silicio elegía las mejores estrategias. Deep Blue venció así a Kaspárov. Y AlphaGo venció así a Lee Sedol. Pero AlphaZero aprende de sí mismo y en apenas un puñado de horas; tan solo le explican las reglas del juego y a partir de ahí ha sido capaz de convertirse en el mejor jugador de todos los tiempos en estas tres disciplinas. Los programas que mejor juegan al ajedrez, al shogi y al go —sin rival entre los humanos y diseñados durante años específicamente para esta tarea— apenas son capaces de arañar una victoria entre miles de derrotas.

Es más, esta inteligencia artificial es capaz de vencer con una mano atada a la espalda. Al enfrentarse ordenadores contra ordenadores, se otorgaban unos tiempos a cada aparato para pensar su movimiento. La inteligencia de AlphaZero era tan superior que ganaba incluso cuando se le concedía tan solo una décima parte del tiempo que a sus rivales para procesar la información y mover. Y no es una cuestión de potencia computacional, es porque se le ha otorgado una forma de razonar más profunda y selectiva. En ajedrez, valora únicamente 60.000 posibilidades por segundo frente a los 60 millones de opciones que baraja su rival, Stockfish, el más potente jugador de ajedrez hasta ahora. El algoritmo busca solo entre los movimientos más prometedores.

Pero AlphaZero no solo vence, revoluciona el juego. Como la máquina aprende sola, sin modelos ni ejemplos, empieza con decisiones aleatorias y al cabo de un tiempo empieza a descubrir las jugadas y planteamientos que llevan usando siglos los humanos. Pero enseguida encuentra mejores enfoques, completamente nuevos, creando un estilo de juego propio y poco ortodoxo. "Está libre de las limitaciones del modo en que los humanos piensan sobre el juego", explica Demis Hassabis, jefe de DeepMind, por lo que ha incorporado al tablero estrategias desconocidas que ya están fascinando a los expertos. En ajedrez, se habla de cómo sus piezas se arremolinan en torno al rey del oponente con fuerza, dinamismo y determinación. Desprecia el valor material de las piezas y prefiere hacer sacrificios impensables desde el principio de la partida porque al final merecerá la pena. En el shogi, realiza movimientos que van en contra de todos los manuales, como mover al rey al centro del tablero, porque supone ponerlo en peligro, pero para AlphaZero se convierte en una forma de mantener el control del campo de batalla. Cuando se hizo lo mismo en el milenario go, la máquina llegó a la conclusión de que el conocimiento humano era un lastre.

Lea el artículo completo en: El País (España)


google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0