Latest Posts:

Mostrando las entradas con la etiqueta ADN. Mostrar todas las entradas
Mostrando las entradas con la etiqueta ADN. Mostrar todas las entradas

11 de junio de 2015

Ya se puede almacenar datos en cadenas de ADN artificiales

Nuestros sistemas de almacenamiento son cada vez más pequeños, pero el récord en ese sentido lo sigue teniendo el ADN. Sus cadenas de polímeros contienen toda la información necesaria para la vida repartida en un espacio mínimo. Un equipo de investigadores acaba de dar un paso importante para desarrollar un sistema de almacenamiento similar, pero basado en ADN artificial.

No es la primera vez que logran crear ADN sintético. Lo que ha conseguido un equipo de científicos del Instituto Charles Sadron de Estrasburgo y de la Universidad de Marsella es codificar información digital en una cadena sintética de moléculas conocidas como monómeros. Utilizando tres tipos de estas piezas básicas, los investigadores han logrado codificar un mensaje en código binario.
El mensaje se ha codificado a mano, pero no sería complicado crear un dispositivo capaz de grabar la información de manera automática. Las moléculas utilizadas son lo bastante estables como para contener el mensaje durante años.
Para leer la información grabada en este ADN artificial solo hace falta secuenciarlo mediante, por ejemplo, un espectrómetro de masas. Los creadores de la técnica esperan poder almacenar kilobytes o incluso Megabytes de datos en unos pocos años. Todavía es pronto para hablar de algo como un disco duro de ADN, pero la técnica tiene algunas aplicaciones interesantes. Una de ellas es crear un sistema de autenticación similar a los códigos de barras pero imposible de falsificar sin un laboratorio avanzado de bioquímica. [Nature Communications vía Science Daily]
Tomado de:

Compararán ADN de empresarios de Europa, EEUU e Israel: ¿Buscando los "genes del éxito"?

Un grupo de empresarios, liderados por el Consejo Internacional de Empresarios y Emprendedores ("Entreps"), ha presentado hoy una iniciativa que aspira a descodificar los elementos de éxito y fracaso de los emprendedores europeos y compararlos con los del mismo colectivo en Estados Unidos e Israel. ¿Buscando los genes del "éxito"? Primero se debería definir que entiende este "proyecto" por ÉXITO, ya que es una categoría ampliamente subjetiva, pero en estos tiempos de Pax Económica se define a un hombre de éxito a aquel empresario que amasa grandes fortunas y para ello, como es bien sabido, casi siempre se debe sobornar políticos, contaminar el medio ambiente, pagar salarios de misería, evadir impuestos, etc.

El presidente de "Entreps", Joaquín Boston, ha explicado a Efe en un acto celebrado en Bruselas que el proyecto "permitirá empezar a analizar con una herramienta que hemos validado, el ADN empresarial de los europeos, país por país".
La herramienta ha sido diseñada gracias a la ayuda de distintas compañías, explicó Boston, que añadió que con ella se quiere estudiar el "código genético" de 10.000 emprendedores de los 28 países de la Unión Europea (UE).
Entre otras cosas, se analizarán factores como "el comportamiento, la experiencia, la capacidad alfanumérica o de comunicación", explicó.
Cuando se disponga de esa información, se establecerá una comparación primero entre los empresarios europeos, y después con el de los de EEUU e Israel, que son especialmente innovadores, añadió.
El evento en Bruselas pretende servir para "construir el equipo de empresas e instituciones y gobiernos que vayan a colaborar con nosotros para analizar este ADN empresarial, explicó el presidente de "Entreps".
También aspira a recabar apoyos a nivel comunitario, para financiar la iniciativa.
"Tenemos apoyo de la UE, que está dando visibilidad. De momento no hemos pedido fondos, será lo siguiente que hagamos", dijo.
"Entendemos que de aquí a seis meses deberemos estar empezando lo que es el análisis y después, con dos años de por medio, poder ejecutarlo. Pero dependerá de la ayuda que tengamos de la UE. Esto siempre irá mucho más rápido si la Unión apuesta por ello", indicó.
Por su parte, el secretario general de la Asociación Europea de Cámaras de Comercio e Industria (Eurochambres), Arnaldo Abruzzini, dijo a Efe que se trata de "un proyecto interesante porque es uno de los elementos que giran alrededor de la idea de impulsar el espíritu empresarial en Europa".
"Mientas podamos producir nuevos empresarios en Europa crearemos un entorno de negocios que será productivo para una economía rica y saludable. El problema es que muchas de las iniciativas impulsadas ahora a nivel político van en la otra dirección, contra el impulso del espíritu empresarial", criticó.
Abruzzini se mostró convencido de que la iniciativa presentada hoy tiene posibilidades de lograr apoyo económico por parte de la CE.
Antonio García del Riego, director de Asuntos Europeos del Banco de Santander, recordó durante su intervención en el debate celebrado hoy los esfuerzos de esta entidad para ayudar a impulsar las iniciativas empresariales innovadoras y apoyó el proyecto para descodificar el ADN empresarial de los europeos.
En el acto participaron, asimismo, representantes de empresas europeas y de terceros países, de la Comisión Europea y del Comité Económico y Social de la UE, y asociaciones de jóvenes emprendedores.
Fuente:

El ADN borra su "disco duro" en cada generación

Los genes están regulados por la epigenética, que indica cómo deben leerse. Ahora han descubierto cómo se borran algunas de estas instrucciones para originar nuevas células en el embrión.


No hay dos personas que saquen las mismas conclusiones al leer un mismo libro. Aunque las palabras sean objetivamente las mismas, cada una interpreta esas frases de acuerdo con sus recuerdos y su forma de pensar. Pues con los genes pasa algo parecido. Y es que, aunque casi todas las células de una persona compartan las mismas instrucciones genéticas, hay una enorme variedad de tipos celulares (desde las células musculares a las células del hígado) que se diferencian precisamente en el modo de leer las secuencias de los genes.
En realidad, en vez de recuerdos y opiniones, las células leen una cosa u otra en función de la epigenética, un conjunto de etiquetas del ADN y de mecanismos de regulación que encienden y apagan genes. Así por ejemplo, las células del riñón no leen la información necesaria para las células de los huesos. Esto es especialmente importante y complejo durante el desarrollo embrionario, un proceso en el que se pasa de una célula (el zigoto), que está «poco regulada», a un organismo compuesto por muchos tipos celulares y por ello mucho más jerarquizado y regulado. Este martes, un grupo de investigadores de laUniversidad de Cambridge ha dado un paso más en la comprensión de este proceso, al haber descrito con exactitud cómo en un momento dado algunas células del embrión se resetean y pierden sus marcas epigenéticas. El estudio, publicado en la revista «Cell», describe cómo se reprograman las células germinales primordiales del embrión, que son aquellas que en adulto permitirán generar espermatozoides y óvulos, y además sugiere que algunas zonas del ADN no se resetean para evitar que algunas secuencias dañen al organismo y produzcan enfermedades.
«La información epigenética es importante para regular los genes, pero cualquier metilación incorrecta (este es uno de los mecanismos de control) puede ser perjudicial si pasa a la descendencia. Por eso, la información debe ser reseteada en cada generación antes de que se desarrolle el zigoto. Es como borrar el disco duro antes de añadir nuevos datos», ha explicado Azim Surani, uno de los participantes en el estudio.
En este sentido, los investigadores creen que las células germinales primordiales (las que luego originan los gametos en los adultos) son reprogramadas entre las semanas dos y nueve del desarrollo embrionario. Según han descrito, durante ese proceso una red de genes actúa para resetear los patrones de metilación del ADN. Esto es importante, porque permite entender cómo funciona un proceso crucial en la regulación de los genes y por lo tanto en el funcionamiento de las células.

El ADN olvida

Esto se sabía desde hace tiempo, pero ahora se ha propuesto un mecanismo que podría permitir entender el panorama global. Así,cuando se produce la fecundación, la célula resulsante sufre unreseteo de su epigenoma y adquiere la capacidad de convertirse en cualquier otra célula. A medida que se desarrolla, «el desarrollo es por definición epigenética», tal como se afirma en este artículo de revisiónsobre el tema, las células van diferenciándose y adquiriendo su propio código epigenético. Pero a partir de un momento dado, algunas de ellas se vuelven a resetear para en el futuro permitir que el nuevo individuo produzca espermatozoides y óvulos. Y todo ello tratando de silenciar algunos genes que podrían ser perjudiciales.

Esposas para evitar peligros

Pero ahora, los investigadores han encontrado que el cinco por ciento del ADN de las células primordiales no se reseteaba y que permanecían con sus esposas epigenéticas, como si fuera importante que pasaran de una generación a otra sin sufrir cambios: «Nuestro estudio nos ha dado una fuente de regiones candidatas donde la información epigenética no solo se pasa a la siguiente generación, sino también a las siguientes», ha explicado Walfred Tang, el director de la investigación. Curiosamente, al analizarlas, encontraron que estas secuencias de ADN estaban asociadas a importantes genes neuronales y a fenómenos como la esquizofrenia, los desórdenes metabólicos y la obesidad.
Los investigadores sospechan que si una pequeña parte de los genes de las células germinales primordiales no sufren su reseteo epigenético es por algún motivo. Opinan que quizás ocurra porque estén silenciando a secuencias de ADN que al liberarse de sus esposas podrían tener efectos negativos sobre el organismo.

ADN basura

De hecho, después de secuenciar el genoma y analizar sus metilaciones en embriones humanos, los investigadores encontraron que una buena parte de estas regiones que no se resetean se corresponden con el ADN más misterioso: se le suele llamar ADN basura o estructural, y proviene del ataque de virus que en el pasado infectaron al ser humano y que consiguieron introducir sus genes en nuestro genoma.
Este mal llamado ADN basura comprende la mitad de todo el genoma humano y tiene un importante papel en la epigenética y en el patrón de regulación de los genes. Puede actuar como un motor de la evolución y tener efectos beneficiosos (algunos de los genes que activan el desarrollo de la placenta provienen de invasores microbianos), pero también negativos, ya que este ADN basura puede interferir en el funcionamiento de los genes. Por ello mismo, resulta crucial seguir investigándolo.
Fuente:

10 de junio de 2015

El ADN transmite la memoria de una generación a otra


Una nueva investigación de la Escuela de Medicina de la Universidad Emory, en Atlanta, ha demostrado que es posible que alguna información pueda ser heredada biológicamente a través de cambios químicos que ocurren en el ADN. Durante las pruebas se descubrió que que los ratones pueden transmitir información aprendida acerca de experiencias traumáticas o estresantes -en este caso, miedo al olor de la flor de cerezo- a las generaciones siguientes.
Según The Telegraph, el Dr. Brian Dias, del departamento de psiquiatría de la Universidad de Emory, dijo:
Desde una perspectiva traslacional, nuestros resultados nos permiten apreciar cómo las experiencias de uno de los padres, antes de siquiera concebir descendencia, influyen notablemente tanto en la estructura como en la función del sistema nervioso de las generaciones posteriores.
Un fenómeno de este tipo puede contribuir a la etiología y al potencial de la transmisión intergeneracional del riesgo de trastornos neuropsiquiátricos, como las fobias, la ansiedad y el trastorno de estrés post-traumático.
Esto sugiere que las experiencias se transmiten de alguna manera desde el cerebro hacia del genoma, lo que les permite ser transmitidas a las generaciones posteriores. Los investigadores esperan ahora llevar a cabo más trabajo para comprender cómo llega la información a ser almacenada en el ADN en el primer lugar.
Los investigadores también quieren explorar si efectos similares se pueden ver en los genes de los seres humanos.
El profesor Marcus Pembrey, genetista pediátrico en el University College de Londres, dijo que el trabajo proporciona “evidencias convincentes” de la transmisión biológica de la memoria. Y agregó: “Se ocupa del temor constitucional que es muy relevante para las fobias, la ansiedad y la trastornos de estrés post-traumático, además de la controvertida cuestión de la transmisión de la “memoria” de la experiencia ancestral de generación en generación.”
Ya es hora de que investigadores de salud pública se tomaran en serio las respuestas transgeneracionales en humanos.
Sospecho que no vamos a entender el aumento en los trastornos neuropsiquiátricos o la obesidad, la diabetes y los trastornos metabólicos en general sin tener un enfoque multigeneracional
dice el profesor Wolf Reik, jefe de epigenética en el Instituto Babraham en Cambridge, Sin embargo, advirtió Reik, es necesario seguir trabajando antes de que estos resultados puedan aplicarse a los seres humanos.
“Este tipo de resultados son alentadores ya que sugieren que existe la herencia transgeneracional y está mediada por la epigenética, pero se necesitan estudios mecanicistas más cuidadosos de los modelos animales antes de extrapolar estos hallazgos a los seres humanos. “
Fuentes:

27 de marzo de 2015

El ADN del trigo revela que hace 8 000 años Gran Bretaña no era una isla


Unas pruebas de ADN realizadas hace no demasiado tiempo revelan unas importantes conexiones culturales entre Gran Bretaña y la Europa continental hace aproximadamente unos 8.000 años. Los investigadores encontraron evidencias en una variedad de trigo en un yacimiento arqueológico sumergido frente a las costas de Inglaterra, 2.000 años antes de que se introdujese la agricultura en lo que hoy es el Reino Unido.
El equipo de investigación afirma que la introducción de la agricultura puede ser considerada como uno de los acontecimientos históricos más importantes para cualquiera de las comunidades humanas, lo que ha llevado al desarrollo de las sociedades en las que se sustenta el mundo moderno que conocemos hoy en día.
Esta investigación ha sido publicada en la revista Science y los investigadores sugieren que la explicación más plausible para que el trigo pudiese llegar a esta latitud es que los pueblos mesolíticos británicosllegaron a mantener diferentes redes tanto comerciales como sociales que podían llegar más allá del Canal de la Mancha.
Esta serie de contactos podría haber sido asistido por puentes de tierra que llegaban a unir la costa del sudeste de lo que hoy es Gran Bretaña con la Europa continental, lo que facilitaría la posibilidad de realizar intercambios entre los cazadores de Gran Bretaña y los agricultores del sur de Europa.
El artículo completo en:

19 de marzo de 2015

La joven con ADN de tres personas

El Parlamento de Reino Unido aprobó este martes la legalización de una controvertida técnica científica que permite la creación de bebés utilizando el ADN de tres personas.

Los expertos dicen que este tratamiento de fertilización in vitro podría eliminar enfermedades de la mitocondria que son debilitantes y potencialmente fatales.
Les recordamos la historia de Alana, que cautivó a nuestros lectores en septiembre.
--------------------------------------------------------------------------------
A Alana Saarinen le gusta jugar al golf y tocar el piano, escuchar música y salir con sus amigos. En eso, ella es igual a muchos adolescentes de todo el mundo. Pero no lo es, porque cada célula de su cuerpo es diferente a las mías o las tuyas: Alana es una de las pocas personas en el mundo que tiene ADN de tres personas.
"Mucha gente dice que tengo los rasgos de mi madre, mis ojos se parecen a los de mi papá… Tengo algunas características de ellos y mi personalidad es la misma también", dice Alana.
"También tengo ADN de una tercera mujer. Pero no la consideraría un tercer padre, sólo tengo algo de su mitocondria".
A las mitocondrias a menudo se las llama las fábricas de las células. Son las partes que crean la energía que todas nuestras células necesitan para funcionar y mantener el cuerpo vivo. Pero también contienen un poco de ADN.
Alana Saarinen es una de las entre 30 y 50 personas en todo el mundo que tienen mitocondrias –y por lo tanto ADN– de una tercera persona.


Célula

Ella fue concebida mediante un tratamiento de fertilidad pionero en Estados Unidos que luego fue prohibido.
Pero pronto podría haber más personas como Alana, con tres padres genéticos, porque Reino Unido está pensando en legalizar una nueva técnica similar que usaría mitocondrias de una donante para eliminar enfermedades genéticas.
Se denomina reemplazo mitocondrial, y si el parlamento británico vota a favor, Reino Unido se convertirá en el único país del mundo que permite el nacimiento de bebés con ADN de tres personas.
Su madre, Sharon Saarinen, había estado intentado tener un bebé durante diez años a través de varios procedimientos de fertilización asistida.
"Me sentía inútil. Me sentía culpable porque no podía darle un hijo a mi marido. Cuando quieres un hijo biológico pero no puedes tenerlo, estás desconsolada. No puedes dormir, está constantemente en tu mente", cuenta.

Una técnica pionera

El investigador clínico experto en embriología Jacques Cohen y su equipo del Instituto Saint Barnabus de Nueva Jersey, EE.UU., fueron pioneros en la transferencia citoplasmática a finales de los años 90.
El artículo completo en:

22 de agosto de 2014

Los genes que despiertan la pubertad

  • Científicos revelan las claves que determinan la edad de la maduración sexual en mujeres

  • Desde 1860, la edad media de inicio de la pubertad se ha adelantado seis años

'La edad dorada', óleo pintado por Balthaus (Balthsar Klossowski)...
'La edad dorada', óleo pintado por Balthaus (Balthsar Klossowski) entre 1944-46. EL MUNDO

¿Es usted de los que cree que la edad del pavo comienza cada vez antes? Numerosos estudios coinciden en señalar un adelanto en la edad de inicio de las señales de maduración sexual, tales como la aparición de vello púbico y axilar o el desarrollo mamario. Entre las posibles causas, los expertos hablan de factores ambientales, estilo de vida, alimentación... Y ahora, una nueva investigación dirige su atención a los genes heredados.

Un trabajo publicado en 1999 en la revista Pediatrics, y liderado por Marcia Herman-Giddens, ilustraba un contexto histórico y amplio de los cambios en el inicio de la adolescencia. Según relataba, en 1860, la edad media de inicio de la pubertad en las niñas era de 16,6 años; en 1920, fue de 14,6; en 1950, de 13,1; en 1980, 12,5 y en 2010 se había reducido a 10,5. La evolución en los niños parecía similar aunque el número de estudios en este sentido es más limitado.

Concretamente en Europa, otro estudio difundido también en Pediatrics en 2009 apuntaba que la edad de inicio de la pubertad en las niñas danesas se había adelantado doce meses en 15 años. Se pasó de los 10,88 años en 1991 a 9,86 en 2006. Una tendencia que también se observa en España, aunque sin datos oficiales disponibles.

Como explica el ginecólogo Jackie Calleja, del Hospital Universitario Quirón de Madrid, se barajan varias causas. Por las investigaciones realizadas hasta la fecha, "sobre todo se debe a factores ambientales exógenos y al contenido de estrógenos de algunos alimentos (como los productos cárnicos)". Los expertos internacionales señalan como uno de los responsables más destacados a los disruptores endocrinos -contaminantes que actúan como hormonas en el cuerpo humano-, presentes en un sinfín de productos de consumo y uso diario: pesticidas, electrónica, cosméticos, aditivos de los alimentos... El estrés, el clima y la exposición a sustancias químicas. Todo puede influir.

No obstante, aunque la edad se ha adelantado, el momento del inicio de la adolescencia sigue estando en los rangos considerados normales. Cuando los signos de maduración sexual se presentan "antes de los ocho años en niñas, y de los nueve en niños, estamos hablando de pubertad precoz". No se trata de una enfermedad, aclara el galeno. La incidencia se calcula en una de cada 5.000-10.000 personas, "especialmente en mujeres, en una proporción de 20 a uno". Este hecho precoz, agrega, a menudo se traduce en dificultades psicosociales y de talla. "Las epífisis de los huesos se cierran y la velocidad de crecimiento se estanca".

Dicen los expertos que la pubertad precoz está inducida por "factores ambientales y alimentos con alto contenido de estrógenos", pero también por "factores endógenos, como la hipersensibilidad a los estrógenos de origen ovárico", así como "otras causas orgánicas (presencia de tumores que generan secreción anormal de hormonas o tumores de origen ovárico, suprarrenales o testiculares)".

Ahora, una nueva investigación que se acaba de hacer eco en la revista científica Nature ahonda en otra razón que ya indicaban trabajos previos: los genes heredados. Según concluye un grupo de científicos de 166 instituciones de todo el mundo, existen mutaciones en determinados genes que condicionan la pubertad precoz. Lo han visto tras el análisis de ADN de un total de 182.416 mujeres de ascendencia europea. "Identificamos 123 variaciones genéticas que se asociaban con la fecha de la primera

menstruación", apunta el autor principal, John Perry, del Consejo de Investigación Médica de la Universidad de Cambridge (Reino Unido).

"Es la primera vez que se ha demostrado que los genes heredados pueden controlar el desarrollo de los caracteres secundarios sexuales", remarca Perry.

Como explica otro de los autores del trabajo, Keng Ong, "queríamos estudiar estos factores genéticos para comprender mejor la asociación que existe entre la pubertad precoz en las niñas y el mayor riesgo a desarrollar diabetes, obesidad, enfermedades cardiovasculares y cáncer de mama en la edad adulta". Consecuencias, subraya, que «aún están poco investigadas».

Fuente:

El Mundo Ciencia

23 de mayo de 2014

Crean un nuevo tipo de ADN sin base en la naturaleza

Un equipo de investigadores del Instituto de Investigación Scripps de California (EEUU) ha logrado incorporar nuevas letras al alfabeto genético tras desarrollar una bacteria cuyo ADN incluye dos bases artificiales que no existen de forma natural, creando así el primer organismo vivo semisintético.

El estudio, publicado en la revista Nature, explica que han conseguido que el organismo utilizado para las pruebas, la bacteria “Escherichia coli” replicara sus células con relativa normalidad tras la modificación genética. Para conseguir la replicación de ADN, los investigadores tuvieron que proporcionar el par de bases (d5SICS y dNaM) a la bacteria, de forma artificial, así como las moléculas que las transportan. Afortunadamente, el material genético de las células del nuevo organismo semisintético replicaba las células con cierta velocidad y precisión, sin dificultar su crecimiento ni mostrar signos de perder sus pares de bases no naturales.

Los científicos esperan seguir creando moléculas artificiales que permitan el desarrollo de aminoácidos (componentes de las proteínas) no naturales que permitan la creación proteínas para funciones terapéuticas o de diagnóstico.

La idea de mejorar la estructura de doble hélice del ADN no es nueva; no en vano, el equipo de investigación del Instituto Scripps lleva trabajando en ello desde los años 90, logrando al fin, este hito en biología sintética con la creación del primer organismo semisintético capaz de albergar en su ADN un par de bases artificiales.

Fuente:

Muy Interesante

10 de mayo de 2014

Los macacos pueden aprender a sumar

Un experimento realizado durante tres años revela que estos primates son capaces de aprender a sumar, demostrando que no es una habilidad exclusiva de los seres humanos.

Los monos macacos comparten con los seres humanos el 97,5% de sus genes, un porcentaje que baja al 93% si se comparan las secuencias de ADN en común. Un parecido genético bastante similar al que guardan humanos y chimpancés, que hace unos seis millones de años se separaron evolutivamente de nuestros ancestros, frente a los 25 millones de años transcurridos desde que los macacos siguieron una evolución distinta.

La secuenciación de sus genomas ha mostrado científicamente un parecido que etólogos y neurobiólogos comprueban día tras día en sus laboratorios con los variados y cada vez más complejos experimentos de comportamiento a los que someten a estos animales. Cuanto más se observan, más sorprendentes son los resultados, como los obtenidos por un nuevo estudio que muestra habilidades aritméticas de los macacos hasta ahora desconocidas.

Anteriores investigaciones habían sugerido que las operaciones matemáticas no son exclusivas del hombre, sino resultado de los procesos evolutivos. Se comprobó, por ejemplo, que los macacos pueden aprender a contar, descartando así que la comprensión de conceptos numéricos dependa de la adquisición del lenguaje humano.

La nueva investigación, publicada esta semana en la revista Proceedings of the National Academy of Sciences (PNAS), demostró que cuando son entrenados a largo plazo, estos monos son capaces de sumar cifras y realizar cálculos sencillos para estimar qué cantidades son mayores, pues elegir la cifra mayor suponía que su recompensa también lo era.

«Diseñamos este experimento para explorar el papel del aprendizaje en la organización del cerebro. Ellos desarrollan regiones especializadas como hacemos nosotros en el lóbulo temporal», explica a EL MUNDO a través de un correo electrónico Margaret Livingstone, profesora de Neurobiología en la Facultad de Medicina de Harvard (EEUU).

El estudio se realizó con tres ejemplares adultos jóvenes de macacos Rhesus (Macaca mulatta). Estos animales han protagonizado todo tipo de estudios de comportamiento animal, como un experimento que reveló que eran capaces de reconocer su imagen en un espejo, y hasta han participado en misiones espaciales de la NASA y la agencia rusa en los años 50 y 60.


Un mono señala en la pantalla táctil la suma de dos cifras en lugar de un número.

El artículo completo en:

3 de mayo de 2014

OpenWorm o la emulación digital de un organismo vivo

La aplicación de este software podría ayudar a mejorar la creación de vacunas, medicinas y combustibles alternativos, además de limpiar desechos químicos. 


openworm

La inteligencia artificial tiene sus límites: la de las máquinas mismas y las de nuestras limitaciones para adecuar software a los complicados procesos de toma de decisión en ambientes de cambio constante. Pero “crear” inteligencia artificial es comparativamente sencillo si se piensa en la extrema complejidad de construir un animal.

El doctor Stephen Larson es el cofundador y coordinador del proyecto OpenWorm, donde un ambicioso equipo tratará de crear una versión digital de un gusano nematodo, uno de los organismos más básicos que existen, y según Larson (neurólogo de profesión), también uno de los que la biología sabe más: su nombre científico es C. elegans, y cuenta con alrededor de mil células, las cuales han sido mapeadas, “incluyendo un pequeño cerebro de 302 neuronas y su red compuesta de más o menos 5,500 conexiones.”


Algunos patógenos y ADN virtuales con capacidad para reproducirse han sido emulados con éxito en entornos electrónicos, pero el reto de Larson y su equipo será el de conformar un organismo digital que se comporte como uno físico. A decir de Larson, “al final del día la biología debe obedecer las leyes de la física. Nuestro proyecto es simular en lo posible la física −o la biofísica− del C. elegans y compararlo con medidas de gusanos reales.”

La aplicación de este software podría ayudar a mejorar la creación de vacunas, medicinas y combustibles alternativos, además de limpiar desechos químicos, así como para crear entornos de realidad virtual mucho más comprensivos. 

Una campaña de Kickstarter comenzará el 19 de abril para reunir fondos. Lo interesante es que OpenWorm estará disponible siempre como plataforma de acceso abierto para estimular la investigación y la curiosidad del modelo nematodo una vez concluido, lo que naturalmente nos pone un paso más cerca de la proverbial creación de organismos digitales de mayor complejidad.
Después de todo, un esclavo no desea la libertad, sino tener un esclavo propio.
Tomado de:

23 de abril de 2014

Las señales químicas que nos hacen humanos (el epigenoma de un neandertal)


Las nuevas técnicas de secuenciación de ADN antiguo están aportando algunos datos clave para comenzar a entender cómo evolucionaron las especies humanas hasta llegar a dar forma a la única especie viva en la actualidad: el ser humano moderno, 'Homo sapiens'. En los últimos años hallazgos como el genoma completo y con gran detalle del neandertal o la secuencia de otra de las especies hermanas, el denisovano, han dado luz a una época crucial para la evolución humana.

Pero los genes, el ADN, no lo es todo. La información contenida en nuestras células, en las de cualquier especie, requiere de una compleja maquinaria química que controla el funcionamiento de los genes y asd qué gen funciona y cuál no en cada momento. Es lo que se conoce como epigenética. De alguna forma se podría hacer la analogía con una obra literaria: las letras serían el código genético y los signos de puntuación serían la epligenética que permite que el texto sea legible y tenga sentido. Entre las señales que permiten a la epigenética desempeñar esta función se encuentran algunas modificaciones químicas, como la metilación del ADN, que controla cuándo y cómo son activados y desactivados los genes que controlan el desarrollo de nuestro organismo. Y esas son precisamente las alteraciones que han estudiado en el trabajo.

Un algoritmo matemático

Los investigadores llevan tiempo preguntándose si ahora que tenemos la genética, ¿podemos tener también la epigenética? "La respuesta hasta ahora era no", responde Mario Fernández Fraga, director del Laboratorio de Epigenética del Cáncer de la Universidad de Oviedo e investigador del CSIC. Pero eso ha cambiado. Una investigación liderada por investigadores de la Universidad Hebrea de Jerusalem y del Instituto Max Planck y en la que ha participado el equipo de Fernández Fraga acaba de reconstruir el epigenoma tanto del neandertal como del denisovano. 

Los autores del trabajo, recién publicado en la revista 'Science', han diseñado un algoritmo matemático que permite reconstruir cómo se ha deteriorado el epigenoma de ambas especies con el tiempo, lo que ha permitido a los científicos 'dar marcha atrás' con las muestras de las que disponen en la actualidad hasta saber cómo sería ese epigenoma hace 70.000 años.

"La mejor prueba de que el nuevo método funciona es que las conclusiones son muy coherentes con lo que vemos cuando comparamos las especies antiguas con los humanos modernos", explica Fernández Fraga. "A pesar de que hay parte que es muy similar, es cierto que hay diferencias y están en los genes que regulan la formació de los huesos", asegura.

Según la discusión del trabajo científico, esto es consistente con una evolución diferenciada de las estructuras óseas de especies como el neadertal y el humano moderno. Otras afectan a genes relacionados con el sistema cardiovascular o el sistema nervioso, los cuales se han asociado con enfermedades como el Alzheimer o la esquizofrenia. Aunque se desconocen los factores que han dado lugar a esas diferencias, dado que los patrones epigenéticos están influidos tanto por las propias características genéticas como por las condiciones ambientales. "Pero no podemos saber si se deben a una condición inherente del ser humano moderno o se han desencadenado debido al modo de vida que llevamos", asegura Fernández Fraga. "Además, hay que tener en cuenta que ellos vivían muchos menos años que nosotros".
Fuente:

14 de enero de 2014

Los humanos provenimos de cuatro especies que se aparearon entre sí

Los estudios del genoma neandertal revelan que el dibujo clásico que muestra la evolución de distintos homínidos en fila india, dista bastante de cómo devino la especia humana.



A partir de una falange de neandertal hallada en 2010 y que corresponde al cuarto o quinto dedo del pie de una mujer adulta que vivió hace al menos 50.000 años, se hicieron grandes descubrimientos acerca de dónde venimos.

En un evento celebrado el pasado 18 de noviembre en la Real Sociedad de  Londres, se presentó un estudio de la secuencia de los genomas de los antiguos humanos que reveló que el homo sapiens no sólo tuvo encuentros sexuales con los neandertales y con un linaje poco conocido llamado denisovanos, sino también con un grupo desconocido que habitó Asia hace más de 30 000 años.

En palabras de Mark Thomas, genetista evolucionario del Colegio Universitario de Londres (que no participó en el estudio pero que sí  asistió al evento), “nos hace suponer un mundo similar al que se describe en el “Señor de los Anillos”, en donde cohabitaban varias poblaciones de homínidos”.

En el Pleistoceno tardío, Eurasia estaba habitada por al menos cuatro especies humanas diferentes: sapiens, neandertales, un grupo poco conocido llamado denisovanos y una cuarta población aún por determinar.

El nuevo estudio se ha elaborado a partir de una falange de neandertal hallada en 2010 y que corresponde al cuarto o quinto dedo del pie de una mujer adulta que vivió hace al menos 50.000 años en la cueva de Denisova, situada en las montañas de Altai al sur de Siberia (Rusia).

Según los paleoantropólogos, los restos descubiertos allí indican que fue una vivienda muy popular, habitada en diferentes momentos por sapiens, neandertales y un tercer grupo hallado por primera vez en 2008 y que recibió su nombre de la cueva. El pasado año, científicos del Instituto Max Planck de Antropología Evolutiva en Leipzig (Alemania), con su director Svante Pääbo a la cabeza, secuenciaron el genoma de los denisovanos a partir del hueso de un dedo de una mujer joven que vivió en la cueva hace unos 40.000 años.

Pääbo, que en 2010 dirigió también el proyecto del primer genoma neandertal, ha liderado ahora un equipo internacional de científicos en el análisis del ADN del nuevo hueso para obtener una secuencia en alta resolución de los genes de esta especie. Los resultados revelan que la propietaria de aquel dedo del pie era fruto de una unión consanguínea. “Hicimos simulaciones de varios escenarios de endogamia y descubrimos que los padres de este individuo neandertal eran medio hermanos de una misma madre, o dobles primos carnales, o tío y sobrina, tía y sobrino, abuelo y nieta, o abuela y nieto”, detalla el coautor del estudio Montgomery Slatkin, de la Universidad de California en Berkeley (EE. UU.). Según los investigadores, esta endogamia parece haber sido algo frecuente en los neandertales y denisovanos, tal vez debido al pequeño tamaño de sus poblaciones.

Los científicos han comparado la secuencia con la de los denisovanos, con otro ADN neandertal procedente de la región del Cáucaso y con los genomas de 25 humanos modernos, descubriendo una serie de huellas genéticas que revelan un cierto entrecruzamiento de estas especies a lo largo del tiempo. La secuencia demuestra que los neandertales estaban estrechamente emparentados con los denisovanos, con quienes compartieron un ancestro común hace unos 450.000 años. Este, a su vez, se separó del linaje de los humanos modernos entre 550.000 y 765.000 años atrás.

A diferencia de lo que nos enseñaron en el colegio, todos los humanos modernos le debemos cerca de un 2% de nuestro genoma a los neandertales.  Algunas poblaciones de Oceanía como Papúa Nueva Guinea y los aborígenes australianos, comparten cerca del 4% de su ADN con los denisovanos. Y por razones que aún desconocemos sólo ha sobrevivido los homo sapiens.

Los autores subrayan que aún no se conoce durante cuánto tiempo estas cuatro especies humanas llegaron a coexistir, ya que la posible franja temporal de entrecruzamientos abarca desde hace 12.000 años hasta hace 126.000.

Los genetistas Ewan Birney y Jonathan Pritchard, sugieren que "en el Pleistoceno tardío, Eurasia era un lugar interesante para ser un hominino, con individuos de al menos cuatro grupos separados viviendo, conociéndose y ocasionalmente manteniendo relaciones sexuales”.

Fuente:

Diario Registrado

6 de enero de 2014

Encuentran un segundo código genético en el ADN

adn

Los científicos han descubierto que en nuestro ADN se oculta otro código. Este segundo código contiene información que cambia la manera en que los científicos leen las instrucciones contenidas en el ADN.

Desde que el código genético fue descifrado en la década de 1960, los científicos han asumido que se utiliza exclusivamente para escribir información sobre las proteínas. Por eso los científicos de la Universidad de Washington se sorprendieron al descubrir que los genomas utilizan el código genético para escribir en dos idiomas separados. Uno describe cómo se hacen las proteínas, mientras que el otro indica a la célula cómo se controlan los genes. Un código se escribe encima del otro, por eso el segundo se mantuvo oculto durante tanto tiempo.

“Durante más de 40 años hemos asumido que los cambios en el ADN que afectan el código genético únicamente afectaban la manera cómo se hacen las proteínas. Ahora sabemos que por culpa de esta suposición tan básica acerca de la lectura del genoma humano no veíamos la mitad de la información. Estos nuevos resultados destacan que el ADN es un dispositivo de almacenamiento de información increíblemente potente que la naturaleza ha explotado plenamente de formas inesperadas”, dice el autor del estudio, John Stamatoyannopoulos.

El código genético utiliza un alfabeto de 64 letras que se llaman ‘codones’. El equipo de la Universidad de Washington descubrió que algunos codones, conocidos como ‘duones’, pueden tener dos significados, uno relacionado con la secuencia de la proteína y el otro relacionado con el control de los genes. Estos dos significados parecen haber evolucionado en concordancia entre sí. Se supone que las instrucciones de control de genes ayudan a estabilizar ciertas características beneficiosas de las proteínas y normalizan su proceso de creación.

El descubrimiento de duones tiene importantes implicaciones sobre cómo interpretan los científicos y los médicos el genoma de un paciente y abrirá nuevas puertas para el diagnóstico y tratamiento de diferentes enfermedades.

El estudio está publicado en la revista ‘Science‘. 

Fuente:

1 de enero de 2014

2013: IBM lanza 5 cinco predicciones para 5 años

Las aulas conocerán el nivel de cada alumno; los médicos consultarán rutinariamente el ADN del paciente.


IBM ha lanzado su ya tradicional Five to Five, las cinco predicciones que ocurrirán en nuestro entorno en los próximos cinco años, es decir, hasta 2018. Si el pasado año pronosticaba ordenadores capaces de oír y oler y papilas gustativas digitales, para los cinco años pronostica que no serán los estudiantes lo que aprendan en las aulas sino las aulas las que aprenderán de los estudiantes para aplicar la enseñanza a medida en cada momento. Es la octava edición de esta clásica publicación del gigante azul que ha sabido, en general, acertar con sus visiones.

Aulas contra la cara de palo. Se acabó engañar al profesor diciendo que lo has entendido o poniendo esa cara de palo polivalente. El pupitre, las paredes, la pizarra captarán que estabas en babia o que no has entendido nada del teorema de Pitágoras. Y que el de al lado, sí que lo ha cogido.Se acaba la misma clase para todos. Será individualizada. "La rápida digitalización de las instituciones educativas permitirá la instrumentación sin precedentes del proceso de aprendizaje. La computación cognitiva ayudará a calcular cómo cada alumno aprende para crear un sistema flexible que se adapte continuamente al alumno y así ajustar las clases a ese estudiante y comprobar su respuesta".

Adiós al "diga 33". Los doctores no llevarán en el bolsillo el estetoscopio, sino el ADN del paciente. No es ficción, de hecho ya por 99 dólares y una semana de tiempo se puede realizar, como ha demostrado la empresa 23andMe, entre otras. Luego los doctores deberán interpretar los eslabones débiles de la cadena del paciente. "Hoy en día, las pruebas de ADN para ayudar a tomar decisiones de tratamiento son todavía escasas", dice IBM. "Pero la tecnología hará de esta prueba la corriente principal de tratamiento. Se hará más rápido, más barato y con mucha más frecuencia. Además de las pruebas de ADN para algunos tipos de cáncer, habrá opciones de tratamiento personalizado para la apoplejía o enfermedades cardíacas".

Poli de mensajería. Se acaberá el hackeo de cuentas personales, y la pérdida y olvido de contraseñas y claves dejarán de ser un tormento. Habrá un policía personal online que detectará cualquier actuación extraña. Ya hay algo de esto. Algunos usuarios de Google quizás ya han advertido que, cuando viajan a un pais no habitual, reciben un mensaje sobre la entrada en su Gmail personal desde un sitio al que no está acostumbrado. Y deben, entonces, confirmar contraseñas. Es un primer paso de la buena aplicación del conocimiento (y datos sobre privacidad) que tienen estos grandes sobre los actos de sus clientes. "Este tutor", dice IBM, "velará, aprenderá y responderá en función de su contexto y del comportamiento del usuario en sus diferentes dispositivos. Tendrá la capacidad de asimilar grandes cantidades de datos y sacará deducciones de lo que es la actividad normal o razonable y lo que no lo es. Luego intervendrá en nombre del usuario -con su permiso- para impedir el uso fraudulento". Recientemente, el que suscribe recibió una comunicación de Google de si era cierto que quería abrir mi cuenta desde Bulgaria. Al contestar que no, Google lo bloqueó.
Hoy en día, las pruebas de ADN para ayudar a tomar decisiones de tratamiento son todavía escasas,  pero la tecnología hará de esta prueba la corriente principal de tratamiento. Se hará más rápido, más barato y con mucha más frecuencia
La ciudad a mi gusto. El tema de la ciudad inteligente es recurrente, pero lo cierto es que se avanza. Ya hay farolas que se encienden cuando se acerca un transeúnte o papeleras con sensores que avisan cuando están llenas. El smartphone será el instrumento básico para moverse por la ciudad. "Las personas pueden tener con él información sobre todo lo que está pasando", dice IBM. "Debido a que el sistema cognoscitivo ha interactuado con los ciudadanos de forma continua, sabe lo que les gusta y puede presentar opciones más adecuadas". Lo que les gusta y sus costumbres; por ejemplo, prevé los atascos en función del día, la lluvia, la hora y los hábitos de las personas. El smartphone avisará de que se salga de casa diez minutos antes en función de esos parámetros.

Vuelve la tienda de barrio. Nada desaparece, pero todo cambia, la tienda de la esquina, también. Volveremos a ella, pero conectada a internet y a nuestro móvil. Así conoceremos las ofertas del día y la tienda, nuestros gustos. "En el futuro, los minoristas aumentarán los niveles de participación y personalización en la compra. Será la fusión de lo mejor de la tienda física: el tocar y llevarse el producto, con la riqueza de información (ofertas instantáneas, gustos del comprador) de las compras por internet.

En 2006, primera edición lanzada por IBM, predijo que en cinco años, es decir, en 2011, el desarrollo de la telemedicina, la geolocalización en los móviles, la traducción simultánea por reconocimiento de voz, el empuje de la nanotecnología y la implantación de tecnologías 3D. Todo ello, en mayor o menor grado, es una realidad, aunque sobresale la implantación de tecnologías ligadas a los smartphones, como geolocalización y traductores por voz.
Tomado de:

25 de septiembre de 2013

El mapa de la actividad del genoma

Arte con el ADN del comprador | Diego Sinova

Arte con el ADN del comprador | Diego Sinova

  • Un equipo internacional secuencia el ARN de 462 individuos
  • El hallazgo abre la puerta a monitorizar diagnósticos y tratamientos
En muchos sentidos, el organismo humano se parece a un ordenador. Toda la información básica para su desarrollo y su funcionamiento se almacena en un disco duro muy especial, el ADN, que para convertir en útiles todos los datos que contiene, necesita la ayuda de un sistema que los traduzca, transfiera y ejecute: el ARN.

Hace años, el papel del ARN fue eclipsado por las esperanzas puestas en el ADN, considerado el auténtico 'mapa de la vida'. Sin embargo, cada día está más claro que comprender su labor es fundamental si se quieren desenmarañar todos los misterios que esconde el genoma.

Por ejemplo, el ARN es clave para comprender por qué nuestros genes se 'apagan' o 'encienden' a lo largo de la vida y, en última instancia, para saber por qué nuestro genoma nos hace más o menos susceptibles de sufrir una enfermedad.

Aunque es mucho todavía lo que se desconoce sobre este ácido ribonucleico, un equipo internacional con participación española ha ayudado a sacarlo un poco más a la luz. Según publican las revistas 'Nature' y 'Nature Biotechnology', estos científicos de nueve centros europeos han descrito el repertorio más completo hasta la fecha de los perfiles de expresión génica; es decir, han podido enlazar la información del ADN con la actividad funcional de estos genes, creando el primer mapa que señala las causas de las diferencias entre la actividad de los genes entre individuos.
"Esto nos permite comenzar a entender realmente este campo de la biología", explica a ELMUNDO.es Xavier Estivill, jefe de grupo del Centro de Regulación Genómica (CRG) de Barcelona y uno de los firmantes españoles del trabajo.

El trabajo, continúa, "ha demostrado la gran variación genética que influye en la regulación de nuestros genes", aunque permitirá construir unas 'leyes generales' sobre el funcionamiento del genoma humano.

Conocer este amplísimo catálogo puede ser muy importante para comprender los mecanismos que causan las enfermedades o para desarrollar tratamientos en el futuro, señala Estivill, quien reconoce que "se trata de una tarea muy compleja que exige un gran esfuerzo colectivo".

Para llegar a las conclusiones que publica esta semana 'Nature', el consorcio internacional con el que también han colaborado el Centro Nacional de Análisis Genómico de Barcelona y la Universidad de Santiago de Compostela, secuenció el ARN de células de 462 individuos que habían participado en el marco del proyecto '1.000 genomas'. Esto ha permitido añadir al mayor catálogo de genomas humanos con el que cuenta la ciencia una interpretación funcional de sus datos.

"Hasta ahora no había podido hacerse algo de estas dimensiones porque, mientras que el ADN es más estable, el ARN varía muchísimo entre células", explica Estivill, cuyo equipo ha utilizado técnicas de secuenciación de última generación.

El siguiente paso en la investigación, comenta el especialista del CRG, es realizar una disección completa de todos los tipos celulares y en distintas condiciones fisiológicas y patológicas para afrontar "el desafío de ligar esa información con perfiles metabólicos o proteicos".

"Por ejemplo, en una enfermedad que tiene un curso clínico que puede ser variable, como pueden ser los trastornos psiquiátricos, saber cómo son los perfiles de expresión y ver cómo cambian a lo largo del curso de la enfermedad puede ser muy importante para indicar o no un determinado tratamiento farmacológico", señala Estivill.

"Hasta ahora, sólo podíamos obtener una radiografía de la vida molecular de los individuos. Pero, ahora, se abre la puerta a que podamos empezar a verla como una película", ejemplifica.

Aunque no habla de plazos, para el especialista catalán este hallazgo puede suponer "un cambio sustancial" en el abordaje de la Medicina. "Hemos de ser capaces de tener respuestas para los cambios funcionales que suceden en nuestro organismo".

Y, aunque el camino es largo, el avance científico ya "nos aporta las técnicas que nos permiten ver esos perfiles y, a partir de ahí, tomar decisiones terapéuticas", concluye.

Todos los datos obtenidos en este proyecto, denominado GEUVADIS, están disponibles de forma gratuita para toda la comunidad científica. El acceso abierto a los datos pretende que otros investigadores vuelvan a explorar y analizar los datos desde distintas perspectivas.

Fuente:

El Mundo Ciencia
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0