Latest Posts:

31 de diciembre de 2015

Un planeta cuyo año dura menos de un día terrestre

¿Cuánto de corta puede ser la duración de un año en un planeta? Es decir, ¿cuál es el tiempo mínimo en el que un planeta puede girar alrededor de su estrella?

 

Esta pregunta se ha planteado tras descubrir que el planeta 55 Cancri e, localizado hace unos años, orbita a su estrella en menos de un día terrestre.

55 Cancri e es una súper-Tierra y orbita a una estrella similar al Sol. Rebeca Dawson y Fabrycky Daniel, del Centro Harvard-Smithsoniano para la Astrofísica en Cambridge, Massachusetts, comentan que algunas lagunas en el registro observacional hicieron pensar en un principio que este planeta tenía un periodo anual de tres días.

Los nuevos análisis revelan que la duración del año en 55 Cancri e es de 17 horas y 41 minutos. Y aunque parezca poco tiempo, en torno a la estrella SWEEPS-10 parece haber otro planeta con un periodo todavía menor, pero este hecho está aún sin confimar.

Si un planeta pudiera orbitar en torno al Sol una distancia equivalente a su radio sin quemarse, tardaría tres horas en completar una vuelta. Así que si un planeta orbita en torno, por ejemplo,de una enana blanca,como puede aproximarse más, podría hacerlo en menos tiempo.

Fuente:

Astro Física

30 de diciembre de 2015

Estas son las propiedades físicas de la materia




Propiedades físicas de la materia
La manera en que se comporta cualquier clase de materia, depende de la forma que se unen entre sí los átomos de esa materia. Cada propiedad de la materia está relacionada con los átomos. Algunos ejemplos:
Presión – Cuando hinchamos un globo, bombardeamos montones de moléculas de aire en su interior. Esas moléculas van de un lado para otro dentro del globo y, cuando golpean su pared, rebotan. Cada rebote ejerce una diminuta fuerza en el globo, y la presión que podemos leer en un indicador de presión es sólo la suma total de todas esas fuerzas.

propiedades-fisicas-materia-presion

Presión del aire y el agua – Tanto el aire como el agua están hechos de moléculas, y ambos son en consecuencia capaces de ejercer una presión. Las moléculas en un cubo de agua en medio del océano, por ejemplo, ejercerán una presión contra todos los lados del cubo: arriba, abajo y hacia los lados.

propiedades-fisicas-materia-presion-aire-agua

Si imaginamos una columna de agua que se extiende hacia abajo en el océano, la fuerza de la gravedad hacia abajo sobre esa columna tiene que ser equilibrada por la fuerza hacia arriba ejercida por el agua debajo de ella. Así, cuanto más bajemos en el océano (o en la atmósfera), mayor será la presión. Al nivel del mar, por ejemplo, el aire ejerce una presión de 1 kilo por cm2.

propiedades-fisicas-materia-presion-aire-agua-atmosfera

Flotabilidad – Si metemos algo en el agua, se ejercerá una presión sobre ello. El resultado de esta presión es una fuerza hacia arriba a la que llamamos flotabilidad. Esta fuerza es igual al peso del agua desplazada por el objeto, de modo que si el objeto es menos denso que el agua, flotará. De otro modo, se hundirá.
Podemos pensar por ejemplo, que cómo un transatlántico puede flotar si el hierro es más pesado que el agua. Pues debemos pensar que la cantidad de agua desplazada por el barco, es igual al volumen de hierro más el aire dentro del casco. Si el barco estuviera lleno de agua (o de hierro), se hundiría.

propiedades-fisicas-materia-flotabilidad

Adhesión y cohesión – Cuando las moléculas de algún material son atraídas a otras moléculas del mismo material, denominamos a esa fuerza cohesión. Es la fuerza que conserva las cosas de una pieza. Si las moléculas de diversas materias son atraídas unas a otras, la fuerza entonces se denomina cohesión. Dicha fuerza, permite que una cosa se pegue a otra. En los dos casos, sin embargo, la base para la fuerza es la atracción entre átomos.

propiedades-fisicas-materia-adhesion propiedades-fisicas-materia-cohesion
Adhesión y cohesión

Tensión superficial – Las fuerzas cohesivas dentro de un líquido tienden a hacer que el líquido adopte forma esférica. Cuando una gota de agua “forma una cuenta” sobre un impermeable, es la fuerza de cohesión la que la mantiene así. Los físicos piensan en los efectos de la cohesión como en una fuerza que mantiene la superficie unida, y llaman a esa fuerza tensión superficial.

propiedades-fisicas-materia-tension-superficial propiedades-fisicas-materia-tension-superficial-gota-agua

Elasticidad – Es la propiedad de los sólidos que les hace volver a su forma original cuando han sido deformados. Cuando doblamos una pieza de metal, sus átomos ejercen una fuerza que se opone al doblado. Tan pronto como la soltamos, las fuerzas interiores actúan y el metal vuelve a su posición original.

propiedades-fisicas-materia-elasticidad-acero-bender-doblador propiedades-fisicas-materia-elasticidad

Compresibilidad – Puesto que las fuerzas entre los átomos pueden volverse repulsivas si los átomos son apretados demasiado juntos, los materiales se resisten a las fuerzas exteriores que intentan comprimirlos. Algunos materiales, como el acero y el agua, se resisten muy fuertemente. Otros, como el aire, no.

propiedades-fisicas-materia-jeringa-compresibilidad-aire-gas propiedades-fisicas-materia-jeringa-liquido-agua

Fuerza tensora – Del mismo modo que los materiales se resisten a que sus átomos sean comprimidos juntos, se resisten también a que sean separados. La fuerza tensora mide la fuerza requerida para superar las fuerzas de atracción entre átomos y separarlos. El acero tiene también una alta fuerza tensora: resulta difícil separar sus átomos, aunque sea fácil romperlo.

propiedades-fisicas-materia-fuerza-tensora-acero

Ósmosis – Si dos soluciones son separadas por una membrana, el agua (pero no las moléculas en solución) puede moverse a través de la membrana, cambiando la concentración de la solución de ambos lados. Esto recibe el nombre de ósmosis. Cuando la piel presenta un aspecto arrugado después de estar en la bañera demasiado tiempo, es porque el agua ha fluido dentro de nuestras células por ósmosis.

propiedades-fisicas-materia-osmosis
propiedades-fisicas-materia-osmosis-agua

Difusión – Cuando las moléculas de dos fluidos distintos se unen al movimiento molecular normal, da como resultado que dos conjuntos de moléculas se entremezclen. Este proceso recibe el nombre de difusión. Si dejamos caer una gota de tinta en un vaso de agua, podemos seguir el rastro de la difusión a medida que la tinta se expande.

Puesto que la difusión depende sólo del movimiento de las moléculas, puede aparecer en lugares inesperados. Es bien sabido de los ingenieros, por ejemplo, que los gases pueden difundirse en (e incluso a través de) contenedores metálicos. Los científicos espaciales tienen que preocuparse por los gases que se difunden a través de las pareces de la nave espacial en las misiones largas.

propiedades-fisicas-materia-difusion

Capilaridad – Si metemos un tubo delgado hueco en un líquido, el líquido ascenderá dentro del tubo con respecto al nivel exterior. Este efecto recibe el nombre de capilaridad. Funciona de esta forma: el empuje hacia abajo de la gravedad sobre el líquido en el tubo es superado por la fuerza de adhesión entre el líquido y las pareces del tubo.

Es la capilaridad la que alza el agua en las plantas (otro mecanismo que hace que entre el agua por las raíces es la ósmosis, pero lo que verdaderamente hace que suba el agua hacia las copas de los arboles (hasta 20-30 metros de altura), es la pérdida constante de agua que estos sufren por las hojas debido a la transpiración, creándose una presión negativa que se compensa con la entrada de agua nueva por las raíces).

Para un tubo de un tamaño determinado, hay un límite a lo alto que puede ascender un líquido. El peso de la columna líquida no puede exceder a la fuerza de ascensión ejercida por la cohesión.

propiedades-fisicas-materia-capilaridad


Fuente:

Blogodisea

¡Hágalo usted mismo! Sofá

Para solucionar el tema del mueble más importante de la casa (el sofá) recurrimos al método “yo me lo guiso, yo me lo como” con 6 palets de imprenta y goma espuma.

Etapas de la fabricación de un sofá hecho con 6 palets y goma-espuma

Baratico, hecho a medida, un pelín trabajoso a la hora de coser las fundas y pintar los palets pero las siestas sobre este sofá son de 5 estrellas… Además, los palets permiten guardar los juegos de mesa y las revistas.

Vía: 4º D

¿Y los descendientes de los emperadores inca?

¿Y los descendientes de los emperadores inca? 

Eugenia Chukiwanka

Eugenia Chukiwanka es la única biznieta viva del último cacique de Azángaro.

Eugenia Chukiwanka, es una mujer de estatura pequeña, muy vital y de fácil conversación. A sus perfectos 90 años, también está llena de recuerdos.

“Mi padre luchaba por los derechos de los indios y hasta cambió la manera cómo se escribe nuestro apellido”, me dijo cuando conversamos durante una reciente visita a Puno, al borde del Lago Titicaca.
Doña Eugenia no sólo es la única hija viva del líder indigenista puneño Francisco Chukiwanka, sino una descendiente directa del emperador inca Huayna Cápac. Y es con ella que esta historia empezó a develarse.

En Perú debe de haber miles de personas que descienden de los antiguos emperadores incas pero nadie hasta ahora lo ha probado.

Los Choquehuanca, en cambio, (forma tradicional de escribir el apellido) son los únicos que conocen de manera incuestionable su linaje imperial. Un linaje que cubre los últimos 500 años.


¿Cómo serían las plantas en un planeta con dos soles (como Tatooine)?

Un grupo de investigadores de la universidad escocesa de St. Andrews especula sobre cómo sería la vegetación de un planeta similar al nuestro si, como en algunas películas de ciencia ficción, tuviera dos soles o su estrella fuera una enana roja.


En el famoso planeta Tatooine, de la saga de Star Wars, hay dos soles sobre el horizonte. Aunque se trata de ciencia ficción, nuestro universo está lleno de sistemas dobles, e incluso múltiples, con hasta cuatro o cinco estrellas. El ejemplo más próximo lo tenemos a un paso, en términos astronómicos, pues el sistema de Alfa Centauri es múltiple y es el más cercano a nuestro sol.

¿Podría desarrollarse vida en uno de estos sistemas? Si fuera así, y el planeta fuera similar a la Tierra, ¿qué aspecto tendrían sus plantas? El investigador Jack O'Malley-James, de la Universidad de St Andrews, en Escocia, ha estudiado cómo sería la vegetación en uno de estos sistemas dobles o en presencia de otro tipo de estrellas diferentes al sol, como una enana roja. Su conclusión es que las plantas tendrían un aspecto exótico, aprovecharían la luz de diferentes formas para realizar la fotosíntesis y en algunos casos serían negras o grises.

La base de buena parte de la vida en la Tierra es la fotosíntesis, las plantas aprovechan la energía del sol y a partir de ahí comienza una larga cadena que sostiene casi todas las formas de vida. Si existieran varias fuentes de luz solar, la vida se habría desarrollado adaptándose a esos recursos. Si los soles iluminaran distintas zonas del planeta, cada forma de vida buscaría una manera distinta de aprovecharlos. En la Tierra, la clorofila refleja la luz del sol en la parte verde del espectro electromagnético, y por eso vemos las plantas de color verde. Pero si las longitudes de onda variaran, los mecanismos para aprovechar esta energía podrían dar a las plantas otro aspecto muy diferente.
"Si encontráramos un planeta en un sistema con dos o más soles, habría potencialmente múltiples fuentes de energía disponibles para realizar la fotosíntesis", explica O'Malley-James en una nota de prensa. "La temperatura de una estrella determina su color y por lo tanto, el color de la luz que se utiliza en la fotosíntesis. Dependiendo del color de la luz de la estrella, las plantas evolucionarían de manera diferente.

En los sistemas dobles es posible encontrar un 25% de estrellas como el sol y cerca de un 50% son enanas rojas, muy antiguas y suficientemente estables como para haber permitido la aparición de vida. Los investigadores han hecho distintas simulaciones con escenarios de dos estrellas de cada tipo io varias, a veces muy juntas y otras más alejadas entre sí. 

"Nuestras simulaciones", aseguran, "sugieren que los planetas en sistemas múltiples podrían albergar formas exóticas de las plantas más familiares que vemos en la Tierra. Las plantas que crecieran junto a una enana roja, por ejemplo, podrían parecer negras a nuestros ojos, pues absorberían el espectro de luz completo con objeto de utilizar toda la luz disponible". También podrían usar radiación ultravioleta o infrarroja para realizar la fotosíntesis". "Para planetas que orbitaran dos estrellas como la nuestra", prosiguen, "la radiación dañina de las intensas erupciones solares podría llevar a las plantas a desarrollar su propia protección contra los rayos ultravioleta, u organismos fotosintéticos capaces de moverse en respuesta a una súbita erupción".

Fuente:

La Información

25 de diciembre de 2015

El sorprendente cuadrado mágico del maravilloso pintor Durero

Desde siempre, el mundo del arte ha sabido aprovechar y sacar partido a lo que las matemáticas le brindaban, repercutiendo por tanto en nuestro propio beneficio. El buen uso de la perspectiva y de las proporciones o la utilización de la razón áurea son algunos buenos ejemplos.

Pero también encontramos casos en los que lo reseñable no es la utilización de las matemáticas en el arte, sino que las matemáticas están plasmadas en el propio arte. Tenemos ejemplos de arte matemático “vanguardista”, como los que os mostraba ayer en esta entrada, y también hay casos que tienen más tiempo. Hoy os traigo uno donde el protagonista es un cuadrado mágico.

El cuadrado mágico de Durero

Alberto DureroAlberto Durero fue un pintor alemán (nacido en Nuremberg) de los siglox XV y XVI con una producción artística muy amplia y de gran calidad. Además de ejercer una gran influencia en sus contemporáneos, fue uno de esos artistas que consiguieron utilizar de forma magistral la geometría y las proporciones matemáticas en su arte. Además fabricó algunos dispositivos mecánicos para facilitar el dibujo en perspectiva, que representó en algunos de sus grabados, como El dibujante del laúd, La mujer desnuda o El dibujante en la jarra. También se preocupó bastante del trazado de las secciones cónicas, llegando a escribir tratados donde explicaba métodos para ello.

Entre sus obras se encuentran cuadros, varios de ellos autorretratos (como el que puede verse a la derecha, que está en el Museo del Prado de Madrid), dibujos y grabados. Vamos a detenernos en uno de ellos, Melancolía I:

Melancolía I

Este grabado compone las “Estampas Maestras” junto con otro dos grabados: “El caballero, la Muerte y el Diablo” y “San jerónimo en su gabinete”. Es, posiblemente, la obra más misteriosa de Durero.
¿Os habéis fijado en lo que hay en la parte superior derecha? Vaya, un cuadrado con números…No será…¡¡Sí, un cuadrado mágico!!:


Como podéis ver, en el grabado aparecen más detalles relacionados con las matemáticas, como una esfera o un poliedro truncado. Pero, como decía, detengámonos en el cuadrado. ¿Es un cuadrado mágico? Sí, es un cuadrado mágico de los más habituales, ya que la suma de los elementos de sus filas, de los de sus columnas y de los de sus diagonales es siempre la misma, 34, que es por tanto la “constante mágica” del cuadrado:


Pero este cuadrado mágico es mucho más especial de lo que parece. Sumemos los números de las esquinas:


¿Cuánto suman? Sí, 34.
Sumemos ahora los números centrales:


¿Y ahora cuánto suman? Otra vez 34.
Veamos ahora qué ocurre con los números centrales de las filas superior e inferior:


Exacto, 34.
¿Y con los centrales de la primera y la última columna?


También 34.
Si dividimos el cuadrado por la mitad tanto horizontal como verticalmente, nos quedan cuatro cuadrados más pequeños con cuatro números cada uno:


¿Qué ocurre si sumamos los números que hay en cada uno de esos cuadrado? Pues sí amigos, 34 en todos los casos.

¿Y si saltamos una posición tanto en filas como en columnas (primero y tercero de primera y tercera fila, segundo y cuarto de primera y tercera fila, etc)? ¿Y agrupando con salto de caballo los números exteriores? ¿Y si sumamos por parejas saltando una fila (primero y segundo de primera y tercera fila, tercero y cuarto de primera y segunda fila, etc)?


Todas 34
¿Y agrupando por parejas saltando una columna? ¿Y formando esas dos cruces? ¿Y éstas otras?


De nuevo, cómo no, 34.
Y todavía hay más:


Y seguro que hay más agrupaciones interesantes y curiosas de elementos de este cuadrado cuya suma vuelve a ser este misterioso y enigmático, a la par que cansino, número 34.

Además si elevamos al cuadrado y al cubo sus elementos, nos quedan cuadrado que aunque no son mágicos sí que tienen propiedades interesantes. Os invito a explorarlos y a que comentéis las regularidades que encontréis en ellos:

- El de los cuadrados:
\begin{array}{| c | c | c | c |} \hline 256 & 9 & 4 & 169 \\ \hline 25 & 100 & 121 & 64 \\ \hline 81 & 36 & 49 & 144 \\ \hline 16 & 225 & 196 & 1 \\ \hline \end{array}
- El de los cubos:
\begin{array}{| c | c | c | c |} \hline 4096 & 27 & 8 & 2197 \\ \hline 125 & 1000 & 1331 & 512 \\ \hline 729 & 216 & 343 & 1728 \\ \hline 64 & 3375 & 2744 & 1 \\ \hline \end{array}

Y para terminar, ¿sabéis de que año es Melancolía I? Sí, efectivamente, de 1514 (los números centrales de la última fila). Y, por rizar el rizo, los números de las esquinas de la última fila, el 4 y el 1, corresponden en nuestro alfabeto a las letras D y A, esto es:
Durero, Alberto

La foto de Durero la he tomado de aquí y la de Melancolía I de aquí.

Tomado de:

Gaussianos

El semen del chimpancé es más fuerte que el humano



El cromosoma Y en chimpancés ha evolucionado para priorizar la producción de esperma de calidad.

El primer análisis en detalle del cromosoma masculino Y de los chimpancés acaba de desvelar una evolución vertiginosa que diferencia al hombre de su pariente vivo más cercano, según desvela hoy un estudio en Nature. El trabajo echa por tierra las teorías que asumían que este paquete de ADN sufre una lenta pero constante pérdida de genes que hará que el sexo en humanos se determine de una forma distinta a la actual en unos 14 millones de años, un parpadeo en la evolución. 

"Creemos que esa teoría no se sostiene", explica a Público Jennifer Hughes, investigadora del Instituto Tecnológico de Massachusetts y coautora del estudio. Su equipo acaba de demostrar que el cromosoma Y humano no ha perdido ni un solo gen desde que la especie se separó de los chimpancés en el árbol de la evolución, hace unos seis millones de años. También demuestran que los chimpancés sí han perdido muchos de esos genes hasta quedarse con un cromosoma Y muy diferente al de los hombres. Esto implica un cambio evolutivo en tiempo récord, mucho más rápido que el del resto de los genomas de ambas especies, muy similares.

Cambios evolutivos

La mayor parte de los cambios evolutivos encontrados se encuentran en zonas cuya función es producir esperma. Aunque los autores aún ignoran porqué, aventuran que gran parte podría deberse a los diferentes usos de apareamiento de monos y humanos.

Los chimpancés tienen un sistema de apareamiento en el que muchos machos copulan con la misma hembra receptiva, explica Hughes. "Esto significa que la competición es intensa y sólo el macho que produce más y mejor esperma conseguirá fertilizar el óvulo y pasar su legado a la siguiente generación", detalla. A esto se suma que el cromosoma Y siempre tiene que bailar solo, pues es el único que no intercambia fragmentos de su ADN con otros cromosomas y sólo se renueva remezclando y duplicando fragmentos propios. El resultado, especulan los autores, es que, al priorizar la producción de esperma, los chimpancés han perdido genes que se han conservado en el hombre. A cambio, el cromosoma Y humano "tal vez esté más expuesto a cambios que borran genes de la fertilidad masculina", comenta Hughes. Su equipo analizará el cromosoma Y de otros primates como el macaco en busca de nuevas diferencias.

Un cromosoma que no es tan decadente

Algunos estudios señalan que el cromosoma Y humano sufre una lenta decadencia y pierde más de cuatro genes cada millón de años.

Esto supondría que los humanos desarrollarían un nuevo sistema para determinar su sexo en unos 14 millones de años.

El nuevo estudio lo niega, tras comparar en detalle a humanos y chimpancés.

La investigación demuestra que el hombre no ha perdido ni un solo gen desde hace seis millones de años.

El trabajo añade que el cromosoma Y ha evolucionado mucho más rápido que los demás hasta ser muy diferente en ambas especies

Fuente:

Publico

¿Crees que podrías ser donante de semen?

¿Crees que podrías ser donante de semen?





Si tu respuesta es que sí, quizá estés equivocado. Según un estudio llevado a cabo por la clínica de reproducción asistida Ginefiv, sólo el diez por ciento de los donantes de semen son aptos para serlo. Según explican, la calidad del semen ha decaído en los últimos años debido al estrés, el trabajo, la contaminación, los aditivos alimenticios, el tabaco e incluso la ropa interior ajustada. 


Para ser donante de semen el hombre debe reunir una serie de requisitos como tener una edad comprendida entre los 18 y 35 años, sin antecedentes personales o familiares de enfermedades hereditarias graves, que no sea portador de enfermedades de transmisión sexual y debe superar también un test psicológico. Además de estas condiciones, el donante debe tener una alta calidad espermática que se caracteriza por tener una concentración de espermatozoides por mililitro superior a 50 millones; con un avance, de al menos un 50% de los mismos, de forma recta y rápida; un volumen de eyaculado superior a 2 mililitros y una morfología del espermatozoide adecuada que, según los criterios de la Organización Mundial de la Salud (OMS), debe ser simétrico, liso, oval, con la cola recta, el núcleo fijo y de color transparente. Por eso, según la clínica de reproducción asistida Ginefiv, debido a los estrictos requisitos que deben reunir sólo el 10% de los aspirantes a donantes de semen son aptos.

Y es que la calidad del semen ha decaído en los últimos años debido, en gran medida, al ajetreado ritmo de vida. El estrés, los horarios prolongados de trabajo, la contaminación ambiental, la exposición al calor, los aditivos alimenticios, el alcohol, el tabaco e incluso el uso de ropa interior ajustada, son sólo algunos factores que debilitan la calidad espermática. De hecho, de las cerca de 800.000 parejas infértiles que existen en nuestro país un 40% de los casos son por causa masculina.


Lea el artículo completo en:

Muy Interesante

Los vencedores son más agresivos


Un estudio revela que los ganadores de una competición se comportan de forma más agresiva hacia los perdedores que a la inversa. El trabajo, que se publica en la revista Social Psychological Personality Science, es el primero que examina el comportamiento de los competidores hacia las personas con las que se enfrentan.

Los investigadores realizaron tres experimentos con estudiantes de Francia y Estados Unidos, que consistían en diferentes pruebas en las que tenían que competir con unos adversarios que en realidad no existían. Después de la primera prueba, a la mitad de los participantes se les decía que habían ganado y a la otra mitad que habían perdido. En un segundo ensayo los que perdían recibían un "castigo" como beber un refresco con picante o escuchar un sonido estridente. Los participantes podían decidir tanto la cantidad de picante como la intensidad y duración del sonido que recibirían sus adversarios. Los resultados mostraron que quienes supuestamente habían ganado en la prueba anterior añadían más picante a la bebida y sometían a sus contrincantes a sonidos más altos que los que habían perdido.

"Parece que las personas tienen una tendencia a pisotear a aquellos a los que han derrotado", explican los autores, de la Universidad de Ohio. "Los perdedores, sin embargo, no reaccionan con más agresividad de la habitual contra los que les han ganado". El siguiente paso, indican, será estudiar si los vencedores son agresivos solo con las personas a las que han derrotado, o si bien mantienen este comportamiento con todo el mundo.

Fuente:

Muy Interesante

¿Por qué el papel de aluminio tiene dos caras diferentes?



En efecto: una es brillante y la otra mate.

¿Y es mejor un lado que otro para envolver el bocadillo?
La mayoría de los sólidos se rompen al ser sometidos a presión, pero esto no ocurre con los metales. El aluminio, como el resto de los metales, es maleable. Así podremos aplastarlo al aplicarle la suficiente presión y extenderlo en láminas o en planchas. Y enrollarlo en láminas muy delgadas.

Pero ¿qué quiere decir maleable?

Los metales son maleables porque sus átomos se mantienen unidos mediante una serie movible de electrones compartidos, en lugar de estar unidos por fuerzar rígidas entre los electrones de un átomo y los del siguiente, como pasa en la mayoría de los sólidos.

Como un átomo en concreto no tiene una posición fija, puede cambiar de lugar manteniendo su enlace con uno u otro electrón, dependiendo de la presión a la que se vea sometido el metal.

En la fábrica de papel de aluminio se somete al aluminio a una gran presión hasta que se obtiene una lámina delgada, lo suficiente para devanarlo haciéndolo pasar entre pares de rodillos, para ir obteniendo progresivamente láminas más y más finas. Hasta conseguir alcanzar grosores de menos de dos centésimas de milimetro.

Para que la lámina no se rompa en el laminado en frío y para ahorrar espacio en el laminado final, se hacen pasar dos láminas a la vez entre los rodillos.

Así, las superficies que están en contacto con los rodillos de acero pulido, salen lisas y brillantes. Pero las superficies interiores, de aluminio contra aluminio, salen ligeramente rugosas y mates, ya que el aluminio es mucho más blando que el acero.

Aparte del aspecto, no hay ninguna diferencia entre una y otra cara, por lo que se puede usar cualquiera de ellas para envolver los alimentos.

Tomdo de Saber Curioso

22 de diciembre de 2015

¿Se puede traducir el deporte a números?


deporte-numeros

Stephen Curry, estrella de los vigentes campeones de la NBA, los Golden State Warriors, ha tenido en la pretemporada unas medias de 23,8 puntos, 4,3 rebotes y 7,7 asistencias. Hasta no hace mucho, ésta era la manera en la que un aficionado o un periodista deportivo describía numéricamente el rendimiento de un jugador en concreto.

Pero si vamos a la página de estadísticas que la NBA dedica a Curry, veremos que hay muchos más apartados utilizados para describir su importancia en la cancha. Por ejemplo, el PIE, o lo que es lo mismo, el impacto estimado de un jugador, y que sirve para medir la contribución estadística total de este. Aquí acabamos de entrar en el mundo de las estadísticas avanzadas, el intento más completo por intentar traducir el deporte números.

El auge del ‘Moneyball’

En 2011, el público masivo tuvo la oportunidad de descubrir algo que, para los obsesos de las estadísticas y las matemáticas, ya era algo bastante conocido: el moneyball. Gracias a la película sobre Billy Beane, general manager de los Oakland Athletics de béisbol desde 1998, se popularizó el trabajo de Bill James, un gurú de las estadísticas del deporte que, probablemente, está más obsesionado con ellas: el béisbol

El artículo completo en:

Blog Lenovo

Cómo leer más rápido entendiendo lo que lees

A veces nos gustaría ser como el robot de 'Cortocircuito' y leernos tres libros en cinco minutos, pero nuestro cerebro no funciona así. Aunque sí se le puede adiestrar para que lea más rápido y para que entienda lo que lee, que es el gran quid de la cuestión. Porque leer muy rápido y no enterarse de nada, al final, es como si no supiéramos leer.

Se considera que la velocidad de lectura media está entre unas 200 y 300 palabras por minuto, pero para cada persona puede ser diferente. No sólo dependerá de lo acostumbrados que estemos a leer, de si lo hacemos en nuestra lengua materna o en otra, de si el vocabulario utilizado nos es familiar o desconocido, de si a nuestro alrededor hay factores externos que nos distraigan... También dependerá de lo entrenados que estén nuestros ojos a leer.

El ojo es más lento que el cerebro

"Lo ideal sería poder leer tan deprisa como surge el pensamiento. Este es siempre mucho más veloz que el proceso de la percepción visual". Así lo apunta Juan Guerrero, responsable en España de Progrentis, un método para mejorar la comprensión lectura que incluye técnicas para que los estudiantes, sobre todo, aprendan a leer más rápido. Los ojos son mucho más lentos leyendo de lo que lo es el cerebro procesando esa información, por lo que acaba "distrayéndose".


Cuando leemos, nuestros ojos no siguen el texto de una manera continuada, sino que lo hacen a saltos (denominados "saltos de ojo") y haciendo pausas (llamadas "descansos de ojo"). También se detienen en puntos de fijación en los que leen bloques de significado, que pueden ser una palabra, un grupo de palabras o una frase entera. Cuantos más puntos de fijación se hagan, más lenta será la lectura, más interrupciones habrá en el flujo de información hacia el cerebro y la comprensión del texto será peor.

El "truco", por tanto, es entrenar a los ojos para que realicen movimientos más fluidos al leer, para que no se detengan tanto en los puntos de fijación. Guerrero explica sobre esa velocidad lenta de lectura que:

"Normalmente el lector lento, el que lee a razón de 150 a 200 palabras por minuto, aproximadamente, o bien lee de viva voz los vocablos, o bien lo va haciendo mentalmente durante el curso de su lectura, tiene un mal hábito de lectura que dificulta en extremo las cosas: por una parte, disminuye la velocidad lectora, con la consecuente pérdida de tiempo, y por otra, asegura una mala comprensión del pensamiento que se expresa en el texto, ya que la lectura lenta, "palabra por palabra", rompe el pensamiento en pequeños trozos, lo cual hace imposible, o en extremo difícil, captarlo globalmente en su fluido devenir".
Una mayor velocidad de lectura se asocia a una mejor comprensión lectora, y en la búsqueda de esa mayor rapidez leyendo, el objetivo es entender frases enteras, no quedarse atascado en palabras sueltas. Pero antes de ponernos a dar consejos sobre cómo podemos leer con más celeridad, tendremos que averiguar si somos lectores lentos o rápidos.

El artículo completo en:

Xakata Ciencia

21 de diciembre de 2015

La cámara de realidad virtual que puede captarlo todo

Este equipo consiste en una unidad esférica con centenares de cámaras diminutas que miden la luz proveniente de todas direcciones.



Un nuevo equipo de realidad virtual ya está en camino, ahora desde el área de las cámaras. Hablamos del nuevo dispositivo de la firma debutante Lytro, que permitirá a los usuarios realizar movimientos como inclinarse hacia la izquierda o la derecha para mirar alrededor de objetos reales y en vivo en el mundo virtual.

La unidad esférica está compuesta por cientos de cámaras diminutas que miden la luz proveniente de todas direcciones, una técnica conocida como fotografía plenóptica. En tanto, en cuanto a su resolución, la cámara es casi cuatro veces mejor que el estándar 4K conocido como Ultra HD y genera, además, imágenes en 3D.

Este dispositivo resuelve los problemas presentes para captar contenido en vivo de realidad virtual, un proceso sumamente complejo ya que las cámaras están fijas en una posición y el espectador no puede inclinar la cabeza para tener un ángulo diferente.

Por el momento el dispositivo de Lytro sólo estará disponible para arriendo, y tendrá un valor de miles de dólares diarios. Este pago incluirá no sólo este equipo, sino que además los servidores necesarios para retener varios terabytes de imágenes y que tendrán como capacidad -cada uno- para una hora de grabación.

Fuente:

Tecno (América Economía)

Eyman: El pueblo cuyo sacrificio logró parar la epidemia de peste negra

En ocho escasos días, en agosto de 1667, Elizabeth Hancock perdió a su marido y a sus seis hijos.
Cubriendo su boca con un pañuelo para disimular el hedor de la descomposición, arrastró sus cuerpos hasta un campo cercano y los enterró.



Los seres queridos de Hancock fueron víctimas de la peste negra, también conocida como peste bubónica o muerte negra, una plaga mortal que asoló Europa de forma intermitente entre el siglo XIII y el XVII, matando a 150 millones de personas.

La epidemia que tuvo lugar entre 1664 y 1666 fue particularmente notoria, el último gran brote de la enfermedad en Inglaterra.

Sólo en Londres fallecieron 100.000 personas, una cuarta parte de la población de la capital.
En medio de esa devastación, en el Distrito de los Picos de Eyam, donde vivían Hancock y su familia, tuvo lugar el más heroico de los sacrificios de la historia de Reino Unido.
Gracias a ese acto la peste negra dejó de propagarse.

Lee: La peste negra, la plaga que EE.UU. no ha logrado erradicar

Telas infestadas

Hoy todo parece estar bien en Eyam.

Los niños recolectan gruesas moras en las zarzas de las afueras del pueblo.
Los ciclistas aminoran la marcha en sus empinadas calles, haciendo a las hojas secas crujir bajo las ruedas.

Situada a 56 kilómetros al sureste de Manchester, es una tranquila ciudad dormitorio de 900 habitantes.

Y cuenta con todos los elementos presentes en cualquier localidad inglesa: pubs, acogedores lugares para tomar el té y una idílica iglesia.

Lea: ¿Por qué sigue muriendo la gente de peste bubónica?

Pero hace 450 años el panorama era muy distinto.

Las calles estaban vacías, las puertas de las casas habían sido pintadas con cruces blancas y sólo se escuchaban los lamentos de los moribundos, infectados por la peste bubónica.

La el artículo completo en:

BBC mundo

¿Qué había antes del Big Bang?

Distintas investigaciones proponen que hay una historia anterior a ese instante cero de nuestro universo.


Es una pregunta habitual cuando se habla del origen del universo. Y, aunque parezca mentira, no es nueva. Hace 1.600 años, la cuestión fue suscitada en el ámbito teológico: "¿Qué hacía Dios antes de crear los Cielos y la Tierra?". Sin duda una buena pregunta, a la que San Agustín respondió con humor que Dios “preparaba el infierno para los que hacen este tipo de preguntas”. Aparte de esta broma, San Agustín fue más lejos y afirmó, con sagacidad, que no tiene sentido preguntar en qué empleaba Dios su tiempo antes de crear el tiempo. De forma semejante, la pregunta "¿qué pasó antes del instante inicial?" no tiene mucho sentido. Pero, naturalmente, esto puede parecer un mero juego de palabras. Nuestra intuición nos dice que cada instante está precedido por otro, por lo que la idea de un "instante inicial", parece absurda. El problema es que nuestra intuición se basa en nuestra experiencia directa, y esa experiencia es muy limitada. En cuanto nos salimos de las escalas físicas humanas", nuestra intuición suele fallar clamorosamente.

Por ejemplo, a los pensadores de todas las civilizaciones antiguas (con la maravillosa excepción de la griega) les pareció evidente que la Tierra debía ser plana. Estaban extrapolando, erróneamente, la percepción que tenemos cuando nos desplazamos en distancias no mucho mayores que unas decenas de kilómetros. Por supuesto, ahora sabemos que, vista globalmente, la Tierra es redonda. Del mismo modo, el espacio y el tiempo, cuando se consideran globalmente, son muy diferentes de como los percibimos en nuestra experiencia ordinaria.

La teoría

La teoría del Big Bang se basa, a su vez, en la teoría general de la relatividad, formulada por Albert Einstein en 1915, y que representa una de las cumbres del pensamiento humano. Según la teoría de la relatividad, el espacio y el tiempo no son, como podría parecer, magnitudes inertes e inmutables. Por el contrario, el espacio-tiempo, como un todo, se puede estirar y encoger, curvar y retorcer. Su textura se parece más a la de la goma que a la del cristal. Y su geometría está determinada por la materia y energía que contiene. Todo esto son conceptos revolucionarios y fascinantes. El espacio y el tiempo no son el escenario impasible de un gran teatro, dentro del cual tiene lugar una representación. La teoría nos dice que la forma de ese teatro y su evolución temporal están determinados por los actores que pululan dentro de él, es decir, la materia y energía que pueblan el universo.

Es importante subrayar que la teoría de la relatividad no es una mera especulación. Sus predicciones se han comprobado en una enorme variedad de situaciones físicas, hasta el momento sin un solo fallo. Pensemos, por ejemplo, que, desde el punto de vista relativista, algo tan familiar como la fuerza de la gravedad es simplemente la consecuencia de la curvatura del espacio-tiempo, producida a su vez por la presencia de grandes masas, como planetas y estrellas. De hecho, la teoría de Einstein predice que las fuerzas gravitatorias han de ser tal como prescribe la venerable ley de la gravitación de Newton... con pequeñas correcciones (a veces no tan pequeñas). Y hasta ahora la naturaleza, "cuando ha tenido que elegir", siempre ha dado la razón a Einstein frente a Newton.

Pues bien, cuando se aplica la teoría de la relatividad al universo como un todo, se encuentra que, necesariamente, este ha de pasar por una fase de expansión; es decir, el espacio mismo (con todo su contenido) ha de expandirse, igual que se hincha un pastel en el horno. Vista con los ojos de la teoría de Einstein, la expansión del universo se produce porque el espacio entre las galaxias está dilatándose; o, en otras palabras, se está creando espacio entre ellas. No solo eso, sino que el universo entero que observamos hubo de surgir de un solo punto, en un instante inicial denominado Big Bang.

Por supuesto, los conceptos anteriores no son fáciles de visualizar. Podemos intentarlo utilizando un modelo de universo simplificado, de una sola dimensión espacial (en vez de las tres ordinarias) y una temporal (el tiempo ordinario). En esta imagen, el espacio-tiempo del universo tendría una forma parecida a un gigantesco dedal, como el de la figura. En ese dibujo el tiempo avanza hacia arriba. Cada sección circular del dedal (es decir cada anillo) representa el universo en un instante dado. A medida que avanza el tiempo (y por tanto subimos por la superficie del dedal), los anillos son cada vez más grandes, como consecuencia de la expansión del universo.

El vértice inferior del dedal corresponde al Big Bang: el instante cero, en el que todo el universo estaba comprimido en un punto. En esta imagen, viajar imaginariamente hacia atrás en el tiempo significa deslizarnos hacia abajo por la superficie del dedal. Pero, si una vez alcanzado el instante inicial (Big Bang) intentáramos proseguir en la misma dirección, encontraríamos que regresamos hacia adelante en el tiempo. Es como si paseando por la superficie terrestre nos dirigimos hacia el Sur. En nuestras pequeñas escalas podemos seguir caminando en esa dirección de forma indefinida, pero si llegáramos a alcanzar el polo Sur terrestre, comprobaríamos que no es posible ir más allá. Si insistimos en continuar nuestro viaje, nos encontraremos caminando en dirección Norte.

Notemos que en el dibujo, la superficie de dos dimensiones, que representa el espacio-tiempo, está inmersa en un espacio de tres dimensiones. Esto es consecuencia de una limitación de nuestro cerebro para imaginar superficies curvadas: tenemos que representarlas sumergidas en un espacio tridimensional. Pero matemáticamente no hay ninguna dificultad para formular una superficie o un espacio curvos, sin tener que recurrir a un mundo de dimensionalidad mayor. En nuestro ejemplo, la superficie en forma de dedal que representa el espacio-tiempo no tiene por qué estar sumergida en otro espacio de más dimensiones. Es un universo consistente en sí mismo.

Por tanto, la respuesta a la pregunta "¿qué había antes del Big Bang?" es que nunca hubo un "antes del Big Bang”. ¿Fin de la historia? Podría ser, pero no es seguro.



El artículo completo en:

El País
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0