Latest Posts:

Mostrando las entradas con la etiqueta universo. Mostrar todas las entradas
Mostrando las entradas con la etiqueta universo. Mostrar todas las entradas

10 de diciembre de 2019

NASA confirma presencia de agua en luna de Júpiter

Por primera vez, un equipo detectó directamente el vapor de agua lanzado al espacio por los géiseres de la luna Europa, uno de los satélites de Júpiter.

A la izquierda, una vista de Europa tomada desde 2,9 millones de kilómetros el 2 de marzo de 1979 por la nave espacial Voyager 1. A continuación se muestra una imagen en color de Europa tomada por la nave espacial Voyager 2 durante su encuentro cercano el 9 de julio de 1979. A la derecha hay una vista de Europa hecha a partir de imágenes tomadas por la nave espacial Galileo a fines de la década de 1990 (foto de la NASA)
Hace cuarenta años, una nave espacial Voyager tomó las primeras imágenes de primer plano de Europa, una de las 79 lunas de Júpiter. Estos revelaron grietas marrones que cortan la superficie helada de la luna, lo que le da a Europa el aspecto de un globo ocular venoso. Las misiones al sistema solar exterior en las décadas posteriores han acumulado suficiente información adicional sobre Europa para convertirlo en un objetivo prioritario de investigación en la búsqueda de vida de la NASA.

Lo que hace que esta luna sea tan atractiva es la posibilidad de que posea todos los ingredientes necesarios para la vida. Los científicos tienen evidencia de que uno de estos ingredientes, el agua líquida, está presente debajo de la superficie helada y que a veces puede irrumpir en el espacio en enormes géiseres. Pero nadie ha podido confirmar la presencia de agua en estos penachos midiendo directamente la propia molécula de agua. Ahora, un equipo de investigación internacional dirigido desde el Centro de Vuelo Espacial Goddard de la NASA en Greenbelt, Maryland, ha detectado el vapor de agua por primera vez sobre la superficie de Europa. El equipo midió el vapor mirando a Europa a través de uno de los telescopios más grandes del mundo en Hawai.

Confirmar que hay vapor de agua sobre Europa ayuda a los científicos a comprender mejor el funcionamiento interno de la luna. Por ejemplo, ayuda a apoyar una idea, de la cual los científicos confían, de que hay un océano de agua líquida, posiblemente el doble de grande que el de la Tierra, que se derrama debajo de la capa de hielo de esta luna de kilómetros de espesor. Algunos científicos sospechan que otra fuente de agua para los penachos podría ser depósitos poco profundos de hielo de agua derretida no muy por debajo de la superficie de Europa. También es posible que el fuerte campo de radiación de Júpiter esté quitando partículas de agua de la capa de hielo de Europa, aunque la investigación reciente argumentó en contra de este mecanismo como la fuente del agua observada.

Lea el artículo completo en: El Espectador 

7 de mayo de 2019

Universe: el corto que inspiró a Kubrick para su ‘2001: una odisea del espacio’


Voy a hablaros hoy de una joya cinematográfica que apenas dura media hora y que sin embargo nos hace viajar en el tiempo. Se titula “Universe” y es un documental que, tras exhibirse en muchísimas escuelas de Norteamérica, sin duda despertó el interés y la vocación por la astronomía de toda una generación de estudiantes. Realizado con técnicas de animación en 1960, por el National Film Board de Canadá, muestra el aspecto que tendría nuestro sistema solar, e incluso las galaxias, si alguien pudiera realizar un viaje espacial.

Realmente impresiona saber que muchas de las cosas que se relatan en el corto siguen sonando “actuales” a pesar de los casi 60 años transcurridos desde su estreno. Obviamente hay errores, como la insinuación de la presencia estacional de “vegetación” en Marte, o considerar a Plutón un planeta (algo que entonces era) pero ni siquiera estos pequeños detalles, o la cortapisa visual del blanco y negro en que está realizado, le restan un ápice de interés y belleza. Sin duda “Universe” es una obra maestra (casi arqueológica) de la divulgación científica, la cual fue por cierto nominada al Oscar en la categoría “mejor corto documental” al año siguiente.



Lea el artículo completo en: Mailkelnias Blog

11 de abril de 2019

¿Qué es un agujero negro?

Un agujero negro es una zona del Universo desde la que nada puede salir y todo lo que se le acerque es absorbido. El día 10 de marzo de 2019 se pudo fotografiar uno por primera vez.


Un agujero negro es uno de los objetos más extraños en el espacio. 

Es un área en el espacio donde la gravedad es tan fuerte que incluso la luz no puede escapar de él. 

La gravedad es la fueza que te atrae al suelo. Intenta saltar, ¿acaso te quedas flotando en el aire? No, vuelves a pisra el suelo, porque te atrae la fuerza de la gravedad.

Ahora imagina que todo el planeta es jalado hacia un aguejero, ¡ahora imagina que todo el Sistema Solar, con el Sol y todos los planetas es jalado hacia un agujero en el espacio! Pues eso es un agujero negro.

Como la luz no puede escapar de este agujero, éste aparece negro. 

La luz puede viajar más rápido que cualquier cosa que conozcamos, a una velocidad de 300,000 kilómetros por segundo.

En un episodio de Los Simpons, Liza intenta domesticar a un mini agujero negro, pero las consecuencias son devastadoras:



Nada, nada puede escapar

Si la luz no puede escapar de un agujero negro, nada más que conozcamos puede. 

Un agujero negro no es realmente un agujero y no está vacío. Está lleno con una gran cantidad de material comprimido en un espacio extremadamente pequeño. Esto es lo que le da a un hoyo negro su gravedad tan fuerte. 

El término "agujero negro" es usado porque estos objetos, dentor del agujero, se observan como un inmenso pozo negro en el espacio, ya que esros objetos no irradian luz. 

Todo depende de la masa

La fuerza de gravedad de un cuerpo depende de su masa. Si la masa de un cuerpo es demasiado grande, su gravedad será tan alta que el cuerpo comenzará a atraer su propia materia. Después de atraerse completamente a sí mismo, continuará succionando todo lo que se le acerque, incluso la luz. En la medida que caiga más materia dentro de un agujero negro, más aumentará su masa y su fuerza de gravedad.

Es un “agujero” porque las cosas pueden caer, pero no salir de él, y negro porque ni siquiera la luz puede escapar.

Y, ¿cómo se forma un agujero negro?

Cuando se extingue una estrella de gran masa puede dar origen a un agujero negro. Las elevadas temperaturas de una estrella activa, provocan su expansión, contrarrestando su intensa fuerza de gravedad. Sin embargo, al enfriarse, la estrella comienza a contraerse. Si tiene una masa pequeña, como nuestro Sol o un poco más grande, reducirá su tamaño hasta convertirse en un cuerpo muy pequeño y muy denso. Pero si posee mucha materia, la fuerza con que se atraerán sus partículas será tan intensa, que se convertirá en un agujero negro.

Esta simulación a computadora realizado por la NASA muestra el nacimiento de un agujero negro.

 

Esta película muestra la formación de un Agujero Negro a partir de una Supernova. Al interior de esta estrella elementos livianos como el hidrógeno y el helio se van uniendo para formar elementos más pesados que terminan en un núcleo de hierro. Debido al agotamiento del combustible de hidrógeno y helio la estrella termina por colapsar en una gigantesca explosión de Supernova, que en algunos casos y debido a la inmensa fuerza gravitatoria del núcleo, se transforma en un Agujero Negro. Estrellas de neutrones también dan origen a Agujeros Negros.

Fuentes:

Pregúntale a un astrónomo

Guiteca

La Prensa (Perú)

2 de abril de 2019

La NASA quiere llevar el primer humano a Marte en 2033

Una misión para Marte durará al menos dos años a causa de la distancia, ya que solamente el trayecto de ida dura seis meses, frente a los tres días que hacen falta para ir a la Luna.


El regreso de astronautas estadounidenses a la Luna, anunciado recientemente para 2024, estará destinado a preparar la llegada del primer humano a Marte en 2033, dijo este martes el administrador de la NASA, Jim Bridenstine.

"Queremos aterrizar en Marte en 2033", declaró el jefe de la NASA en una audiencia en el Congreso estadounidense.

"Podemos avanzar en el aterrizaje en Marte avanzando en el aterrizaje en la Luna. La Luna es el banco de pruebas", dijo el exparlamentario republicano nombrado por Donald Trump.
La NASA está con prisas desde que la semana pasada el presidente estadounidense, a través del vicepresidente, Mike Pence, adelantara cuatro años el calendario de regreso a la Luna, de 2028 a 2024, último año de un eventual segundo mandato de Trump.

Muchos expertos y legisladores del Congreso dudan de las capacidades de la NASA para cumplir esta nueva fecha límite por los retrasos en el desarrollo del cohete de las misiones lunares, el Space Launch System o "SLS", construido por Boeing.




Una misión para Marte durará al menos dos años a causa de la distancia, ya que solamente el trayecto de ida dura seis meses, frente a los tres días que hacen falta para ir a la Luna.

La ida y vuelta a Marte solo se puede hacer cuando el planeta rojo está situado en el mismo lado del Sol que la Tierra, aproximadamente cada 26 meses.

En 2017, una ley de financiación de la NASA dispuso el año 2033 como fecha de lanzamiento de la primera misión habitada a Marte, pero la agencia espacial norteamericana hablaba en general de "los años 2030" en sus comunicaciones de los últimos meses.

La agencia espacial quiere aprender a extraer y explotar las toneladas de hielo que existen en el polo sur de la Luna. "El hielo de agua representa aire para respirar, agua para beber, carburante", dijo Bridenstine.

"El objetivo no es solamente llevar humanos a la superficie lunar, sino probar que podemos vivir y trabajar en otro mundo", agregó.

"De acuerdo, ¿y cuánto dinero necesitaremos?", preguntó la presidenta de la comisión de Ciencias de la Cámara de Representantes, Eddie Bernice Johnson.

El jefe de la NASA ha prometido actualizar su solicitud presupuestaria antes del 15 de abril.

Fuente: RPP Noticias (Perú)

20 de enero de 2019

¿Quieres ver el eclipse total de Luna en vivo? Aquí tienes una guía

Este eclipse lunar podrá ser visible desde todos los países de América y gran parte de Europa, África y Asia. 


Este fin de semana, gran parte de la Tierra podrá observar el primer fenómeno atmosférico del 2019: la Superluna de Sangre, fenómeno que se produce durante un eclipse lunar total en el que se alinean la Luna y el Sol, de forma que la atmósfera de la Tierra filtrará la luz azul y verde de los rayos solares, pero dejará pasar la roja.

Durante este fenómeno la Luna se tiñe con el reflejo del brillo rojizo que le llegará procedente de la atmósfera y creará la llamada Superluna de sangre o Luna de sangre de lobo.

La Superluna de sangre será visible desde toda América, oeste de Europa y África, y estos son los horarios para ver el eclipse lunar total:
 
Ver Superluna de sangre en Perú a qué hora: de 10:33 pm (domingo) a 1:50 am (lunes)

¿Cómo ocurre?

Un eclipse lunar ocurre cuando el Sol, la Tierra y la Luna están alineados directamente. De esta manera, cuando la órbita de la Luna la lleva directamente detrás de la Tierra, se ve oculta por la sombra de nuestro planeta y se oscurece.
| Fuente: Esquema de cómo ocurren los eclipses lunares / NASA

¿Cómo verlo?

Este eclipse lunar podrá ser visible desde todos los países de América y gran parte de Europa, África y Asia. A pesar de que el eclipse podrá ser visto sin dificultad desde las ciudades, es importante mencionar que observarlo desde una zona rural puede agregar cierto valor a la experiencia. El único requisito es tener un cielo despejado.
  

Con información de:

 

14 de enero de 2019

2019, Año Mundial de la Tabla Periódica

La Facultad de Química de la Universidad de Murcia (España) ha construido en su fachada principal una Tabla Periódica gigante.

La tabla periódica es una herramienta única que permite a los científicos predecir la apariencia y las propiedades de la materia que compone el universo. Sin embargo, la función de cada uno de los elementos resulta una incógnita para la mayoría de la población.

En 2019 se conmemorará el 150º aniversario de la creación de esta famosa tabla por el químico ruso Dmitri Mendeleev, que en 1869 ordenó los elementos conocidos según las características de sus átomos.

Por todo ello, la Asamblea General de la Organización de las Naciones Unidas ha proclamado 2019 como el Año Internacional de la Tabla Periódica. El objetivo principal de esta iniciativa es reconocer la función crucial que desempeñan los elementos y las ciencias fundamentales, especialmente la química y la física, en el desarrollo sostenible.

La celebración también rendirá homenaje a los últimos cuatro elementos superpesados añadidos a la tabla periódica: nihonio (Nh), moscovio (Mc), téneso (Ts) y oganesón (Og). El descubrimiento y denominación de todos ellos fue el resultado de una estrecha colaboración científica internacional.

Fuente: Agencia SINC 


7 de enero de 2019

El gravitón, la presunta partícula que describiría todas las fuerzas de la naturaleza

Héctor Rago, astrofísico y profesor Universidad Industrial de Santander, explica cuál es la hipótesis que tiene la física teórica sobre esta presunta partícula. Una especie de "santo grial" que persiguen los investigadores.


La física contemporánea nos ha revelado la existencia del mundo subatómico, el reino de lo muy pequeño y nos ha revelado también las estrellas de neutrones y la expansión del universo, el reino de las grandes masas y enormes distancias. La tragedia de la física actual es que las descripciones que hacemos del mundo microscópico y del mundo astronómico son irreconciliables. (Lea también: ¿Viola la física el sentido común?)

Si consiguiéramos evidencias observacionales de una partícula hasta ahora hipotética, el gravitón, se allanaría el camino para conseguir una descripción unificada de todas las fuerzas de la naturaleza.

La materia a pequeña escala está gobernada por tres fuerzas fundamentales, la fuerza nuclear débil, la fuerza nuclear fuerte y el electromagnetismo. Ellas obedecen las leyes de la física cuántica que entre otras cosas establece que las fuerzas entre las partículas se deben a intercambio de otras partículas que actúan como mensajeras. Así, la fuerza nuclear es transmitida por partículas llamadas gluones. La fuerza débil es transmitida por los bosones Z y W. Finalmente las fuerzas eléctricas y magnéticas son mediadas por fotones, paquetes de energía electromagnética, los componentes de la luz. La teoría cuántica explica todas las propiedades del mundo subatómico y los resultados de las colisiones que se producen en los grandes aceleradores. Es una gran teoría.

La otra fuerza fundamental es la gravitación, que moldea el mundo físico desde los planetas hasta la expansión del universo. En contra de lo que muchos creen, la gravitación es abrumadoramente más débil que las otras tres fuerzas. Basta un pequeño imán para levantar un clavo y vencer la atracción de toda la Tierra. La gravitación es tan débil que no juega ningún papel a escala microscópica y hace falta una enorme acumulación de materia para que la gravedad se imponga.

Disponemos de una gran teoría de la gravitación, la relatividad general. De acuerdo con ella, lo que interpretamos como fuerza gravedad es la deformación del tiempo y el espacio. Las ecuaciones de la relatividad nos hablan de fenómenos gravitacionales con una precisión exquisita.

La pregunta crucial es si existen situaciones donde coincidan lo muy masivo con lo muy pequeño, y necesitemos por tanto una versión cuántica de la gravedad. La respuesta es que sí. Las singularidades en el interior de agujeros negros o el mismísimo Big Bang requieren de una teoría cuántica de la gravitación.

Pero teoría cuántica y la relatividad general no se la llevan bien. Los intentos de cuantizar la gravedad no han sido totalmente exitosos.

Las analogías sugieren que la gravitación, es decir, la propia geometría del espaciotiempo, debe ser mediada por una partícula. Esta presunta partícula es el gravitón.

Tú estás intercambiando gravitones con la Tierra, y gracias a ese intercambio, tú pesas.
Las detecciones de ondas gravitacionales muestran que ellas viajan a la velocidad de la luz, y por tanto la masa del gravitón tiene que ser cero; además no tiene carga eléctrica, y su spin, que es una propiedad intrínseca de las partículas elementales, debe ser igual a 2. (Lea acá: La última prueba del universo que Einstein imaginó)

Detectar el gravitón directamente es una tarea ardua precisamente porque la gravedad es descomunalmente débil, el gravitón interactúa muy poco con la materia. Nuestros ojos detectan fácilmente unos cuantos fotones, pero la más sofisticada tecnología apenas se mueven cuando pasan billones de gravitones de una onda gravitacional.

Actualmente varios experimentos tratan de obtener evidencias indirectas de la existencia del gravitón, mientras que diversas teorías como las controvertidas supercuerdas, dimensiones extras, teoría de lazos tratan de prever sus propiedades.

La detección experimental del gravitón reconciliaría a la gravedad con los preceptos cuánticos, y tal vez nos conduzca a una descripción unificada de todas las fuerzas de la naturaleza: el santo grial de la física teórica que nos ha sido tan elusivo. (Lea acá: La ilusión del tiempo en nuestra cabeza)

Tomado de: El Espectador

2 de enero de 2019

¿Qué fue del bosón de Higgs?

Seis años después de anunciar su descubrimiento, el CERN detecta el tipo de desintegración más común de la partícula envuelto en ruido de fondo.


Hace diez años, la construcción de una máquina descomunal para capturar una partícula diminuta atrapó la imaginación del mundo. Bajo el CERN, un gigantesco laboratorio de física a las afueras de Ginebra (Suiza), se había construido un acelerador de partículas de 27 kilómetros de circunferencia capaz de empujar protones hasta una velocidad cercana a la de la luz. Los físicos hacían chocar aquellos haces de partículas microscópicas para reconstruir las circunstancias energéticas de los primeros segundos de vida del universo y tratar de desvelar aspectos sobre la naturaleza de la materia invisibles en condiciones normales. En aquel tiempo se llegó a fantasear con la posibilidad de que la máquina crease un agujero negro que engullese el mundo, pero salvo algún inconveniente, todo salió más o menos según lo previsto.

En 2012, los responsables del CERN anunciaron el descubrimiento del bosón de Higgs, la partícula que daba masa a todas las demás, completaba el Modelo Estándar de Física de Partículas y justificaba en buena medida una inversión de más de 5.000 millones de euros. El éxito de la búsqueda del higgs se confirmó al año siguiente cuando Peter Higgs y François Englert recibieron el premio Nobel de Física de 2013 por haber predicho la existencia de la partícula medio siglo antes. Pero aunque el trabajo grueso parecía finalizado, la validez de unos modelos físicos o de otros, de qué es exactamente la materia oscura o de si la supersimetría, en la que no solo habría un bosón de Higgs, sino muchos, puede ser la teoría que nos lleve un paso más allá en la comprensión del universo, depende de detalles.

El artículo completo en: El País (España) 

2 de octubre de 2018

Afirman haber encontrado restos de un Universo anterior

El célebre físico Roger Penrose cree haber localizado remanentes de agujeros negros que datan de antes del Big Bang. Es nueva evidencia a favor de la teoría de que el Universo atraviesa por infinitos ciclos de Big Bangs.


Una serie de anomalías luminosas que aparecen en ciertas imágenes de los científicos podrían ser restos de un Universo anterior. O por lo menos eso es lo que piensa Roger Penrose, el célebre físico de la Universidad de Oxford que a mediados de los sesenta explicó, junto a Stephen Hawking, cómo se forma una singularidad. Para Penrose, en efecto, esas extrañas espirales de luz serían restos de agujeros negros que lograron sobrevivir a la destrucción de un Universo que existió antes del Big Bang. 

"Lo que afirmamos -explica Penrose- es que estamos viendo el remanente final de un agujero negro que se evaporó en el eón anterior". Junto a un grupo de colegas, el investigador británico acaba de publicar sus conclusiones en Arxiv.org. 

Penrose es uno de los padres de una teoría llamada "Cosmología Cíclica Conforme" (CCC), según la cual el Universo pasa por una serie infinita de ciclos (eones), durante los cuales primero se expande y después se comprime hasta convertirse de nuevo en un punto. Lo cual podría permitir que, bajo ciertas condiciones, la radiación electromagnética sobreviviera a la destrucción de un Universo para pasar a formar parte del siguiente.

Y esos restos "supervivientes" son precisamente los que Penrose y sus colegas creen haber identificado en el Fondo Cósmico de Microondas (CMB), la débil radiación residual del Big Bang que impregna por completo el Universo en que vivimos.

Lea el artículo completo en: ABC Ciencia 

24 de septiembre de 2018

¿Hay realmente más estrellas en el Universo que granos de arena en todas las playas del mundo como dijo Carl Sagan?

Es un problema matemático de proporciones cósmicas, que podría venirte a la mente cada vez que te encuentras en una playa o mirando el cielo de noche.

"El número total de estrellas en el universo es mayor que todos los granos de arena en todas las playas del planeta Tierra".

La afirmación proviene del astrónomo estadounidense y maestro del universo Carl Sagan, quien la formuló en su programa de televisión "Cosmos", un éxito masivo en los años ochenta.

¿Pero es verdad? y ¿Es siquiera posible calcularlo?

Bueno, aquí haremos el intento (¡aunque debes prepararte para leer algunas cifras muy grandes!).

Un número galáctico

El profesor Gerry Gilmore es un astrónomo de la Universidad de Cambridge que ha estado contando las estrellas en la galaxia en la que vivimos los terrícolas: nuestro hogar cósmico, la Vía Láctea.

Dirige un proyecto en el Reino Unido llamado Gaia que incluye una nave espacial europea, actualmente en órbita, que está mapeando el cielo.

Para calcular cuántas estrellas hay realmente en toda nuestra galaxia el equipo de Gaia utilizó sus datos para construir un gran modelo tridimensional de la Vía Láctea.

El artículo completo en: BBC Mundo

21 de agosto de 2018

No busquéis más, estamos solos en el Universo

Un equipo de científicos británicos llega a la conclusión de que somos la única civilización inteligente.

Anders Sandberg, Eric Drexler y Toby Ord, investigadores de la Universidad de Oxford, acaban de publicar en arxiv.org un demoledor artículo en el que reinterpretan con rigor matemático dos de los pilares de la astrobiología: la Paradoja de Fermi y la Ecuación de Drake. Y sus conclusiones son que, por mucho que las busquemos, jamás encontraremos otras civilizaciones inteligentes. ¿Por qué? Porque, sencillamente, no existen.

La mayor parte de los astrofísicos y cosmólogos de la actualidad están convencidos de que "ahí arriba", en alguna parte, deben existir formas de vida inteligente. Es la conclusión lógica de pensar en la enormidad del Universo: miles de millones de galaxias, con cientos de miles de millones de estrellas cada una y billones de planetas orbitando alrededor de esas estrellas.

Lo abultado de estas cifras, consideran esos científicos, convertiría en una auténtica "perversión estadística" la mera idea de que la inteligencia hubiera surgido solo una vez en un sistema de tales proporciones. ¿Pero qué pasaría si la posibilidad más inverosimil resultara ser la correcta y resultara que, a pesar de todo, estamos completamente solos?

Según los tres investigadores de Oxford, los cálculos hechos hasta ahora sobre la probabilidad de que exista vida inteligente fuera de la Tierra se basan en incertidumbres y suposiciones, lo que lleva a que sus resultados tengan márgenes de error de "múltiples órdenes de magnitud" y, por lo tanto, inaceptables.

Por eso, Sandberg, Drexer y Ord han tratado de reducir al máximo ese enorme grado de incertidumbre, ciñéndose a los mecanismos químicos y genéticos plausibles. Y el resultado, afirman, es que "hay una probabilidad sustancial de que estemos completamente solos".

Lea el artículo completo en:

ABC (España)

Inventan en Rusia un cañón láser para destruir basura espacial

Los científicos proponen desarrollarlo a partir de un telescopio instalado en tierra y no en una estación espacial.

Ingenieros de un consorcio instrumental que forma parte de la Agencia Espacial Rusa Roscosmos están desarrollando una tecnología para eliminar la basura espacial, abundante en la órbita, por medio de un láser. Un informe de la corporación al respecto ha llegado a la Academia de Ciencias de Rusia, informa RIA Novosti.

La idea inicial era instalar un láser para dispararlo contra dichos residuos desde la Estación Internacional Espacial, recuerda la fuente. Fue impulsado por científicos japoneses y sus colegas de Europa y Rusia también aportaron posteriormente a su desarrollo. Sin embargo, esta vez los científicos rusos optan por un sistema instalado en tierra.

El informe recomienda desarrollar un "sistema localizador óptico con uso de un láser de cuerpo firme y un módulo de transmisión-recepción óptico adaptivo". Se propone reconvertir en un "cañón láser" el telescopio óptico de 3 metros de diámetro que se está construyendo en el Centro Titov de Óptica Láser de Altái. La función de este telescopio hasta el momento ha sido monitorear los movimientos de los satélites y la basura espacial que les podría amenazar.

Para el suministro eléctrico del cañón se estiman dos modificaciones de osciladores de estado sólido diseñados por la Universidad de Tecnologías de Información, Mecánica y Óptica (ITMO, por sus siglas en ruso) de San Petersburgo.

Fuente:

RT en español

25 de junio de 2018

Cada segundo de este video equivale a 22 millones de años en la historia del universo


Esta es una de esas ocasiones donde merece la pena detenerse con lo que sea que estás haciendo, y te pongas cómodo (y unos cascos a poder ser) para disfrutar de los 10 minutos apabullantes que dura la siguiente pieza visual. Con ustedes el universo entero, o al menos eso que hemos llamado el Big Bang hasta nuestros días. Casi nada.

Dicen que en una escala de tiempo cósmica la historia humana es tan breve como un abrir y cerrar de ojos. Siendo así, al comprimir el vídeo 13.800 millones de años nos muestra lo jóvenes que somos en realidad y lo longevo que es el universo.

Comenzando con el Big Bang y culminando con la aparición del homo sapiens, la pieza sigue el desarrollo del tiempo a 22 millones de años por segundo, y lo hace siguiendo únicamente la estela de la comprensión científica actual. Un vídeo espectacular que además cuenta con la narración de Brian Cox, Carl Sagan y David Attenborough. Una auténtica gozada.



Tomado de:

Gizmodo

17 de marzo de 2018

Muere Stephen Hawking: 5 grandes aportes del prestigioso físico británico a la ciencia

1. Los agujeros negros

Hawking dedicó toda su vida a investigar las leyes que gobiernan el universo.

Muchos de sus trabajos giran en torno a los agujeros negros, por lo que no se extrañen al verlos aparecer también en los siguientes puntos.

Un agujero negro es una región del espacio con una cantidad de masa concentrada tan grande que no existe la posibilidad de que algún objeto cercano escape a su atracción gravitacional.

La idea de los agujeros negros es muy anterior a Hawking.
De hecho, las primeras nociones datan del siglo XVIII, pero fue la teoría de la relatividad general de Einstein, publicada en 1915, la que hizo que estas regiones espaciales empezaran a ser tomadas en serio.

En los años 70, Hawking tomó como base los estudios de Einstein para lograr una descripción de la evolución de los agujeros negros desde la física cuántica.
"Creo que mi mayor logro será que los agujeros negros no son completamente negros", dijo el físico el año pasado a la BBC.

"Efectos cuánticos —continuó— hacen que brillen como cuerpos calientes con una temperatura que es más baja cuanto más grande sea el agujero negro. Este resultado fue completamente inesperado y mostró que existe una profunda relación entre la gravedad y termodinámica".

Y agregó: "Creo que esto será clave para entender cómo las paradojas entre la mecánica cuántica y la relatividad general pueden resolverse".

2. La radiación de Hawking

Según Hawking, los efectos de las física cuántica hacen que los agujeros negros brillen como cuerpos calientes, de ahí que pierdan parte de su negritud.
En 1976, siguiendo los enunciados de la física cuántica, concluyó en su "teoría de la radiación" que los agujeros negros son capaces de emitir energía, perder materia e incluso desaparecer.

Roland Pease, periodista científico de la BBC, explica: "A un agujero negro le tomaría mucho tiempo evaporarse de esta manera, pero en sus últimos años, Hawking sostuvo que expiraría en un estallido de energía equivalente a un millón de megatones de bombas de hidrógeno".

Por eso, cuando en 2008 se inauguró el Gran Colisionador de Hadrones (LHC por su sigla en inglés) en las afueras de Ginebra, se generó una alta expectativa de que el acelerador de partículas pudiera crear agujeros negros microscópicos y así probar las ideas de Hawking.

De ser así, Pease afirma que el británico "con certeza" habría recibido el premio Nobel. Pero el LHC no ha conseguido dicha prueba.

3. Confirmación del Big Bang

El trabajo que hizo Hawking sobre los agujeros negros ayudó a probar la idea de que hubo una Gran Explosión o Big Bang al principio de todo.

Aunque había sido desarrollada en la década de los 40, la teoría del Big Bang aún no había sido aceptada por todos los cosmólogos.

Sin embargo, en colaboración con el matemático británico Roger Penrose, Hawking se dio cuenta de que los agujeros negros eran como el Big Bang al revés.

Lea el artículo completo en:

BBC Ciencia

11 de diciembre de 2016

Una nueva teoría sobre la gravedad podría explicar la materia oscura

La teoría fue bautizada como "de gravedad emergente" y puede aclarar esa materia oscura que tantos dolores de cabeza está dando a los científicos. Erik Verlinde lleva seis años observando el cielo para explicarse el movimiento y la velocidad exacta de las estrellas y ahora concluye que no necesita invocar ninguna misteriosa partícula de materia oscura para entender qué pasa en las galaxias. Las cosas no funcionan exactamente como predijo Einstein, aunque el padre de la gravedad sí estableció las bases.


Las estrellas se comportan como si estuviesen presionadas o aguantadas por algo más fuerte que ellas. La gran fuerza gravitacional requerida desconcierta a los telescopios que intentan detectarla. Hasta ahora, los físicos han optado por la existencia de una "materia oscura" para explicar ese "algo" que desconocen y que sería necesaria para explicar el comportamiento gravitacional que los astrónomos observan en el Universo. Esa energía oscura -dicen- existe en gran cantidad (supone el 25% del Cosmos), pero hasta ahora nadie ha sido capaz de observarla, a pesar de los muchos esfuerzos por detectar su existencia y explicar qué pasa en las galaxias.

Verlinde dice que el problema está en que se ha estado mirando donde no es. No hay tal materia oscura, las estrellas giran y se mueven dentro de las galaxias porque la gravedad emerge. "A grandes escalas, la gravedad no se comporta como predice la teoría de Einstein", ha sentenciado.

Uno de los puntos importantes de la teoría de las cuerdas es una adaptación del principio holográfico del profesor Gerard't Hoof (Utrecht), premio Nobel en 1999. Según este punto, la información contenida en una región del espacio se determinada por el superficie que la contiene, esto hace que toda la información presenten en todo el universo pueda describirse en una esfera imaginaria gigante alrededor del mismo. Para Verlinde, "parte de la información de nuestro universo está contenida en el espacio mismo".

El artículo completo en:

El Mundo

9 de mayo de 2016

El astronauta que creció 5 cm tras pasar un año en el espacio

El aumento en la estatura es una consecuencia de la ingravidez, ya que la columna vertebral se alargs.



El astronauta Scott Kelly de la NASA ha crecido 5 centímetros después de pasar un año flotando en la Estación Espacial Internacional (ISS), según informa la CNN, que cita fuentes de la agencia espacial estadounidense. El aumento en la estatura es una consecuencia de la ingravidez, ya que la columna vertebral se alarga. Ahora, Kelly será más alto que su hermano gemelo Marc, un astronauta retirado que se ha utilizado como control de los experimentos fisiológicos y psíquicos a los que Scott ha sido sometido. Eso sí, su ventaja no durará para siempre. Volverá a su altura normal tras un tiempo en la Tierra.

Scott Kelly regresó a la Tierra el pasado miércoles a bordo de una cápsula Soyuz tras pasar 340 días en la plataforma orbital. Aparentemente con buena salud y excelente ánimo, el astronauta será sometido ahora a una serie de pruebas médicas para conocer cómo responde el cuerpo humano a las condiciones prolongadas de microgravedad. El estudio resulta de fundamental importancia para un futuro viaje a Marte u otras ambiciosas misiones interplanetarias.

Los informes se fijarán en transformaciones genéticas, afección a la vista, efectos sobre el sistema cardiovascular, impacto en el tracto digestivo o cambios en el comportamiento, que se cotejarán con los de su hermano gemelo.

El estudio del ADN y el conjunto de biomoléculas en el cuerpo humano proporcionará a la NASA «una información única» acerca de la reacción de los astronatuas a factores de estrés como los asociados con los vuelos espaciales.

Corazón, músculos y cerebro

Las investigaciones fisiológicas analizarán cómo un entorno tan especial puede inducir cambios en diferentes órganos como el corazón, los músculos o el cerebro, mientras que los estudios sobre salud mental ayudarán a prevenir qué efectos puede tener vivir en el espacio sobre la percepción y el razonamiento, la toma de decisiones y el estado de alerta.

Las investigaciones de microbiología-microbioma explorarán los efectos de la dieta y el estrés, y los estudios moleculares observarán cómo las células se activan y desactivan por el vuelo espacial, y cómo afectan la radiación o los cambios rápidos de microgravedad en muestras biológicas como sangre, saliva, orina y heces.

En la NASA esperan que estas investigaciones ayuden a identificar, de una forma como antes no se había hecho, los peligros y las consecuencias para la salud de los vuelos espaciales prolongados, especialmente cuando Marte se propone como próximo destino para la humanidad.

Kelly ya ha regresado a Estados Unidos, su país natal, procedente de Kazajistán, donde aterrizó la nave Soyuz que le trajo de la ISS. Lo esperaban sus hijas, su pareja y su hermano gemelo, además del director de la NASA, Charles Bolden, entre otros. 

Tomado de:

El Mundo Ciencia

13 de marzo de 2016

Video: El Hubble capta la galaxia más lejana jamás detectada


Un equipo internacional de astrónomos ha logrado un nuevo hito al captar con el telescopio Hubble la galaxia más lejana jamás vista en el universo, informa la página oficial de la NASA.
Observamos una galaxia que existía cuando el universo solo tenía un 3% de su edad actual
"Hemos dado un paso enorme hacia atrás en el tiempo, mucho más allá de lo que creíamos que era posible con el Hubble. Observamos una galaxia que existía cuando el universo solo tenía un 3% de su edad actual", explica Pascal Oesch, de la Universidad de Yale, uno de los autores del hallazgo.

De acuerdo con los astrónomos, la galaxia, llamada GN-z11, brilla con una intensidad sorprendente teniendo en cuenta la distancia que la separa de nuestro planeta: 13.400 millones de años luz.


Los científicos estiman que la edad del universo es de 13.800 millones de años, y la fuente de luz más remota de todas las conocidas hasta el reciente hallazgo está situada a una distancia de 13.200 millones de años luz de la Tierra.

Tomado de:

Actualiad RT

9 de enero de 2016

Difunden imágenes de la "acuarela cósmica"


Difunden imágenes de la "acuarela cósmica"


Composición de la Acuarela Cósmica

Un fragmento de la "acuarela cósmica" que fue fotografiada con un telescopio de 2,2 metros.

Algunos artistas pasan meses e incluso años diseñando piezas con las que expresarse, pero hay otras obras, como la que este miércoles ha difundido el Observatorio La Silla, en Chile, que simplemente aparecen ante los ojos de los científicos, eso sí, a años luz de distancia.
En este caso, la "fuente de inspiración" fue la zona que rodea a la estrella "R. Coronae Australis" y dio lugar a una "acuarela cósmica" que parece una pintura impresionista.

La composición fue creada con imágenes tomadas por la Agencia Espacial Europea (AEE) y revela nuevos detalles de este área del cielo.

Según explicó la agencia europea en un comunicado, "la estrella R Coronae Australis se ubica en el corazón de una región cercana de formación estelar y está rodeada por una delicada nebulosa de reflexión azulada que se encuentra en una enorme nube de polvo".

El retrato fue tomado con el Wide Field Imager (WFI), un telescopio de 2,2 metros del Observatorio La Silla, en Chile, y es una combinación de doce imágenes tomadas a través de filtros rojo, verde y azul.

La imagen muestra un trozo del cielo que abarca aproximadamente el tamaño de la Luna llena, lo que equivale a unos cuatro años luz de extensión en el lugar donde se encuentra la nebulosa, ubicada a unos 420 años-luz de distancia, en la constelación de Corona Australis (la Corona Austral).

Acuarela cósmica
Vista de campo amplio de la zona de la estrella R. Coronae Australis 

El complejo fue nombrado así en honor a la estrella R Coronae Australis, que es una de las numerosas estrellas en esta zona que se clasifican como muy jóvenes y que varían en brillo, rodeadas aún por las nubes de gas y polvo de donde se formaron.
"La intensa radiación que se desprende de estas estrellas jóvenes y calientes interactúa con el gas que las rodea y es reflejada o reemitida en diferentes longitudes de onda", explicó la AEE quien atribuyó "los magníficos colores de la nebulosa" a estos procesos que se producen en ella.

Según el comunicado, la nubosidad celeste que se observa en la composición "se debe mayormente al reflejo de la luz de la estrella en pequeñas partículas de polvo (mientras que) las estrellas jóvenes (...) poseen masas similares al Sol y no emiten suficiente luz ultravioleta como para ionizar una parte importante del hidrógeno que las rodea".

La agencia espacial europea explicó que estos objetos sólo pueden ser observados en longitudes de onda más largas, usando una cámara capaz de detectar la radiación infrarroja.

La propia R Coronae Australis no es observable a simple vista, pero la diminuta constelación con forma de corona donde se encuentra es fácilmente detectable desde los sitios oscuros, debido a su proximidad en el cielo a la gran constelación de Sagitario y a las nubes ricas en estrellas hacia el centro de nuestra galaxia, la Vía Láctea.

Fuente:

BBC Ciencia

21 de diciembre de 2015

¿Qué había antes del Big Bang?

Distintas investigaciones proponen que hay una historia anterior a ese instante cero de nuestro universo.


Es una pregunta habitual cuando se habla del origen del universo. Y, aunque parezca mentira, no es nueva. Hace 1.600 años, la cuestión fue suscitada en el ámbito teológico: "¿Qué hacía Dios antes de crear los Cielos y la Tierra?". Sin duda una buena pregunta, a la que San Agustín respondió con humor que Dios “preparaba el infierno para los que hacen este tipo de preguntas”. Aparte de esta broma, San Agustín fue más lejos y afirmó, con sagacidad, que no tiene sentido preguntar en qué empleaba Dios su tiempo antes de crear el tiempo. De forma semejante, la pregunta "¿qué pasó antes del instante inicial?" no tiene mucho sentido. Pero, naturalmente, esto puede parecer un mero juego de palabras. Nuestra intuición nos dice que cada instante está precedido por otro, por lo que la idea de un "instante inicial", parece absurda. El problema es que nuestra intuición se basa en nuestra experiencia directa, y esa experiencia es muy limitada. En cuanto nos salimos de las escalas físicas humanas", nuestra intuición suele fallar clamorosamente.

Por ejemplo, a los pensadores de todas las civilizaciones antiguas (con la maravillosa excepción de la griega) les pareció evidente que la Tierra debía ser plana. Estaban extrapolando, erróneamente, la percepción que tenemos cuando nos desplazamos en distancias no mucho mayores que unas decenas de kilómetros. Por supuesto, ahora sabemos que, vista globalmente, la Tierra es redonda. Del mismo modo, el espacio y el tiempo, cuando se consideran globalmente, son muy diferentes de como los percibimos en nuestra experiencia ordinaria.

La teoría

La teoría del Big Bang se basa, a su vez, en la teoría general de la relatividad, formulada por Albert Einstein en 1915, y que representa una de las cumbres del pensamiento humano. Según la teoría de la relatividad, el espacio y el tiempo no son, como podría parecer, magnitudes inertes e inmutables. Por el contrario, el espacio-tiempo, como un todo, se puede estirar y encoger, curvar y retorcer. Su textura se parece más a la de la goma que a la del cristal. Y su geometría está determinada por la materia y energía que contiene. Todo esto son conceptos revolucionarios y fascinantes. El espacio y el tiempo no son el escenario impasible de un gran teatro, dentro del cual tiene lugar una representación. La teoría nos dice que la forma de ese teatro y su evolución temporal están determinados por los actores que pululan dentro de él, es decir, la materia y energía que pueblan el universo.

Es importante subrayar que la teoría de la relatividad no es una mera especulación. Sus predicciones se han comprobado en una enorme variedad de situaciones físicas, hasta el momento sin un solo fallo. Pensemos, por ejemplo, que, desde el punto de vista relativista, algo tan familiar como la fuerza de la gravedad es simplemente la consecuencia de la curvatura del espacio-tiempo, producida a su vez por la presencia de grandes masas, como planetas y estrellas. De hecho, la teoría de Einstein predice que las fuerzas gravitatorias han de ser tal como prescribe la venerable ley de la gravitación de Newton... con pequeñas correcciones (a veces no tan pequeñas). Y hasta ahora la naturaleza, "cuando ha tenido que elegir", siempre ha dado la razón a Einstein frente a Newton.

Pues bien, cuando se aplica la teoría de la relatividad al universo como un todo, se encuentra que, necesariamente, este ha de pasar por una fase de expansión; es decir, el espacio mismo (con todo su contenido) ha de expandirse, igual que se hincha un pastel en el horno. Vista con los ojos de la teoría de Einstein, la expansión del universo se produce porque el espacio entre las galaxias está dilatándose; o, en otras palabras, se está creando espacio entre ellas. No solo eso, sino que el universo entero que observamos hubo de surgir de un solo punto, en un instante inicial denominado Big Bang.

Por supuesto, los conceptos anteriores no son fáciles de visualizar. Podemos intentarlo utilizando un modelo de universo simplificado, de una sola dimensión espacial (en vez de las tres ordinarias) y una temporal (el tiempo ordinario). En esta imagen, el espacio-tiempo del universo tendría una forma parecida a un gigantesco dedal, como el de la figura. En ese dibujo el tiempo avanza hacia arriba. Cada sección circular del dedal (es decir cada anillo) representa el universo en un instante dado. A medida que avanza el tiempo (y por tanto subimos por la superficie del dedal), los anillos son cada vez más grandes, como consecuencia de la expansión del universo.

El vértice inferior del dedal corresponde al Big Bang: el instante cero, en el que todo el universo estaba comprimido en un punto. En esta imagen, viajar imaginariamente hacia atrás en el tiempo significa deslizarnos hacia abajo por la superficie del dedal. Pero, si una vez alcanzado el instante inicial (Big Bang) intentáramos proseguir en la misma dirección, encontraríamos que regresamos hacia adelante en el tiempo. Es como si paseando por la superficie terrestre nos dirigimos hacia el Sur. En nuestras pequeñas escalas podemos seguir caminando en esa dirección de forma indefinida, pero si llegáramos a alcanzar el polo Sur terrestre, comprobaríamos que no es posible ir más allá. Si insistimos en continuar nuestro viaje, nos encontraremos caminando en dirección Norte.

Notemos que en el dibujo, la superficie de dos dimensiones, que representa el espacio-tiempo, está inmersa en un espacio de tres dimensiones. Esto es consecuencia de una limitación de nuestro cerebro para imaginar superficies curvadas: tenemos que representarlas sumergidas en un espacio tridimensional. Pero matemáticamente no hay ninguna dificultad para formular una superficie o un espacio curvos, sin tener que recurrir a un mundo de dimensionalidad mayor. En nuestro ejemplo, la superficie en forma de dedal que representa el espacio-tiempo no tiene por qué estar sumergida en otro espacio de más dimensiones. Es un universo consistente en sí mismo.

Por tanto, la respuesta a la pregunta "¿qué había antes del Big Bang?" es que nunca hubo un "antes del Big Bang”. ¿Fin de la historia? Podría ser, pero no es seguro.



El artículo completo en:

El País

13 de diciembre de 2015

¿Cuál es la probabilidad de que exista vida en otros planetas?

Un nuevo estudio reveló que en el total del universo existe suficiente materia oscura como para crear 1,000,000,000,000,000,000,000 planetas parecidos al nuestro.


La ciencia ha estado intentando responder a todas estas cuestiones desde el primer momento, y en mayor o menor medida ya ha tenido un gran porcentaje de éxito.  Se han descubierto evidencias de la existencia de microorganismos, agua o planetas similares, casi semanalmente tenemos una nueva prueba. El problema es que las respuestas no han convencido demasiado al público; que en pocas palabras quiere saber, y a ser posible ver, a un grupo amistoso de seres verdes con antenas.

Pero, ¿y si es que la vida fuera de la Tierra aún no se ha producido y está por venir? Un reciente investigación del Space Telescope Science Institute en Baltimore sugiere que el ecosistema existente en nuestro planeta, incluida la vida, es el primero de de una explosión masiva de nuevos planetas potencialmente habitables que en un futuro formarán parte del universo.
Los datos de este estudio revelan que en el total del universo existe suficiente materia oscura como para crear 1,000,000,000,000,000,000,000 planetas parecidos al nuestro, y esto sin tener en cuenta a los que ya han quedado atrás en el tiempo. Eso se traduce en que tendremos diez veces los mil millones de mundos del tamaño de la Tierra que ya se piensan que existen, y más de diez veces las 100 galaxias que ya tenemos indexadas.

Dicho de otro modo, y para entender estas macrocifras. De ser esto así, la posibilidad de que no seamos la única raza inteligente es de casi un 92%; este porcentaje no responde a la pregunta de si conoceremos a otros seres , pero al menos lanza una certeza sobre si estamos solos. Además, con este nuevo cálculo se desmienten anteriores investigaciones en las que se estimaba que la formación de la Tierra se había producido después de que el 80% de planetas parecidos ya hubiesen visto la luz. Por lo que habríamos pasado de ser una de las últimas civilizaciones del universo, a ser una de las más antiguas. Al menos para todos los que vienen.

Para hacer estos cálculos, teóricos desde todo punto, el grupo de científicos se basó en el del universo observable ¿Y por qué no hacerlo con el “total” del universo? Muy sencillo, el resultado sería también infinito, incalculable, y por la simple cuestión de que no hay manera de saber qué ocurre en un sistema infinito. Además, las evidencias de la investigación concluyen que pese a estos cálculos aunque sí predicen la futura de formación de vida, no quiere decir que sea igual que la que conocemos o con los mismos procesos evolutivos.

Tomado de:

Tecno (América Economía)
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0