Latest Posts:

Mostrando las entradas con la etiqueta quarks. Mostrar todas las entradas
Mostrando las entradas con la etiqueta quarks. Mostrar todas las entradas

4 de diciembre de 2019

Física: ¿Hay partículas indivisibles?

En física de partículas no solemos hablar directamente de indivisibilidad sino que hablamos de partículas fundamentales o elementales.

Registro del CMS que pudiera ser la firma de la partícula de Higgs. afp
La respuesta en realidad es muy simple porque nosotros a día de hoy sí que conocemos partículas indivisibles. Pero si filosofamos un poco habría que definir qué significa indivisible. ¿Significa que no se pueden romper o que carecen de estructura interna? En física de partículas no solemos hablar directamente de indivisibilidad sino que hablamos de partículas fundamentales o elementales. Para nosotros son partículas fundamentales aquellas en las que a día de hoy, es decir, con el rango de energías que tenemos en este momento, no se ha observado ninguna estructura interna, o lo que es lo mismo, no están compuestas por otras partículas más pequeñas. Eso son partículas fundamentales y serían, por ejemplo, el electrón y otros leptones o los quarks.
Esto que te explico es lo que hemos podido observar hasta el momento con el rango de energías de las que disponemos. Por ejemplo, en aceleradores de partículas como el LHC (Large Hadron Collider) donde yo trabajo, usamos órdenes de energía de teraelectronvoltios, es decir un billón de electronvoltios. Un electronvoltio (eV) es una unidad que correspondería a la energía necesaria para mover un electrón dentro de una diferencia de potencial de un voltio. Estaríamos hablando de cantidades de energía que traducido a longitudes de onda son del orden de 10-18 metros. Es decir podemos detectar algo tan pequeño como eso, 10-18 metros, que realmente es tan pequeño que está dentro de la escala subatómica.

Con estas energías tan altas lo que hacemos en el acelerador de partículas es colisionar haces de protones, estos haces de protones son partículas que no son fundamentales porque están constituidas por otras partículas, los quarks que son los que al final colisionan entre sí. Podríamos decir que con nuestro “microscopio electrónico de protones” en el LHC y los rangos de longitud de onda de los que podemos disponer en este momento no nos permiten observar una estructura interna de lo que para nosotros son las partículas elementales o indivisibles. Eso es lo que estudiamos, a lo que llamamos el modelo estándar de física de partículas que explica las partículas fundamentales y sus interacciones.

Hasta el momento sí hay una serie de partículas indivisibles que son estos electrones y quarks que están divididos en tres familias y que curiosamente no tenemos ni idea de por qué son tres. Además hay mucha variedad de masas pero solo la primera familia de estas partículas, los electrones, los quarks up y los quarks down son los que forman la materia ordinaria, es decir la materia de la que está hecho todo lo que conocemos. El resto de partículas indivisibles que hemos detectado, como los muones y otro tipo de quarks, tienen que ser creados en el laboratorio o a raíz de rayos cósmicos que atraviesan la atmósfera y dejan este tipo de muones o de partículas que nos llegan a nosotros.

Esto es lo que conocemos a día de hoy. Pero las personas que investigamos en física de partículas tenemos la puerta abierta a que cuando aumentemos el rango de energías que utilizamos pueda descubrirse que estas que ahora consideramos indivisibles o fundamentales no lo son en realidad sino que estén compuestas por otras que todavía no podemos observar porque no contamos con la energía suficiente. No lo sabemos. Pero igual que en el siglo XIX se pensaba que el átomo era indivisible, nosotros ahora pensamos que el electrón y los quarks lo son también, aunque no podemos estar completamente seguros.

Bárbara Álvarez González es doctora en Física Experimental de Partículas e investigadora en la Universidad de Oviedo e ICTEA (Instituto de Ciencias y Tecnologías Espaciales de Asturias).

10 de agosto de 2013

¿Qué pasa al entrar en un agujero negro?

El principio de equivalencia de la teoría general de la relatividad de Einstein implica que no pasa nada al cruzar el horizonte de sucesos de un agujero negro, un observador no debe notar nada especial; de hecho, en un agujero negro supermasivo, la curvatura del espaciotiempo en el horizonte de sucesos es muchos órdenes de magnitud más pequeña que en la superficie de la Tierra.

Pero este resultado es clásico y la aplicación de la física cuántica a los agujeros negros indica que su horizonte de sucesos debe emitir radiación de Hawking. ¿Notaría de alguna forma el observador que cae la existencia de esta radiación si tuviera un instrumento adecuado? La pregunta puede parecer una tontería, pero su respuesta es más complicada de lo que parece a primera vista, pues en rigor requiere una teoría cuántica de la gravedad y todavía no tenemos ninguna. Por supuesto, podemos aplicar las reglas de la mecánica cuántica a la teoría de la gravedad de Einstein y obtener resultados correctos en el límite de campos débiles, es decir, de agujeros negros con gran masa (como ya hizo Hawking); en dicho caso, el observador no notaría nada (la radiación de Hawking no puede ser detectada en agujeros negros de masa estelar y menos aún en agujeros negros supermasivos).

Sin embargo, el problema sigue estando ahí en el caso de campos fuertes (agujeros negros de masa muy pequeña, llamados microagujeros negros); en dicho caso tenemos que usar una teoría cuántica de la gravedad y la respuesta nos lleva a la frontera entre lo que sabemos y lo que nos gustaría saber. Nos lo contó en Madrid Kyriakos Papadodimas (University of Groningen), “Falling into a Black Hole and the Information Paradox in AdS/CFT,” IFT Xmas Workshop 2012, December 20 [slides]; la charla está basada en su artículo Kyriakos Papadodimas, Suvrat Raju, “An Infalling Observer in AdS/CFT,” arXiv:1211.6767, 28 Nov 2012.


Dibujo20130730 hawking radiation - pure state becomes thermal radiation

Papadodimas estudia el problema de la observación de la radiación de Hawking en un agujero negro en un espaciotimpo AdS (anti-de Sitter), que en relatividad general corresponde a una solución de vacío de las ecuaciones de Einstein con una constante cosmológica negativa (atractiva). Gracias a la correspondencia AdS/CFT, este agujero negro equivale a un plasma de quarks y gluones en una teoría gauge conforme (CFT) similar a la cromodinámica cuántica con un número infinito de cargas de color. Gracias a esta analogía, tras un buen número de cálculos, Papadodimas concluye que en un agujero negro macroscópico un observador semiclásico que penetra en el horizonte de sucesos no nota nada especial.

Lea el artículo completo en:

Francis Science News

14 de abril de 2013

Electricidad I - Carga eléctrica



Como anunciamos hace unos días, hoy empezamos una mini-serie sobre electricidad, en la que trataremos de establecer unos conceptos básicos que nos permitan construir cosas más complejas en un segundo bloque, y que nos sirvan de referencia en otros artículos en general. A lo largo de esta primera aproximación a la electricidad, mi objetivo es doble; por un lado, responder conceptualmente a las preguntas más fundamentales acerca de los fenómenos eléctricos y, por otro, desterrar algunas de las nociones erróneas sobre electricidad que muchas veces tenemos en la cabeza. En este primer bloque, por lo tanto, nos interesan más los conceptos que las fórmulas, y habrá sólo las imprescindibles.

Aunque en este caso no sea tan útil como, supongo, lo será en otros, ésta es la “ficha” del bloque, para que sepas a qué atenerte cuando lo leas (esto parece la descripción de un paquete de software en Linux, pero bueno):

  • Nivel: Básico
  • Bloques en los que se basa: Ninguno
  • Bloques que se basan en él: Ninguno
(Cuando haya bloques que se basen en éste iremos actualizando las categorías).

A lo largo del bloque, de vez en cuando te encontrarás con texto dentro de cuadros de tres colores: azul, amarillo y verde. El texto de cualquier cuadro es un “extra”, que no es necesario leer para seguir el curso del bloque. Los cuadros azules son experimentos, en los que te sugerimos pequeñas experiencias acerca de lo que estás leyendo. Los cuadros amarillos son ampliaciones, en las que encontrarás enlaces a otros artículos o textos externos en los que leer más cosas acerca de algún aspecto concreto. Los cuadros verdes son desafíos que se responden más adelante en el bloque. Puede tratarse de preguntas para que razones, problemas numéricos, demostraciones o cualquier otro tipo de cosa que requiera que des una respuesta, para que compruebes lo mucho (o poco) que has aprendido hasta ese momento.

Ya sé que, a algunos, mucho de lo que diga os resultará conocido a lo largo del bloque en general, y especialmente en este artículo. Si es así, puede que siga siéndote útil, no tanto para entender, sino para explicar la electricidad. Mucho me temo que, a menudo, quienes la explicamos utilizamos ejemplos que confunden más que aclarar las cosas, y no hacemos el suficiente énfasis en aspectos importantes. Pero, si esto te resulta demasiado básico, siempre puedes esperar al siguiente bloque. Eso sí, si consigues terminar el bloque sin aprender absolutamente nada nuevo, me como el sombrero.

Si, por el contrario, o nunca has aprendido electricidad o nunca la entendiste cuando te la explicaron, tengo que pedirte algo diferente. En primer lugar, aunque no partamos de la base de que sepas cosas, es necesaria una buena dosis de concentración y de esfuerzo para razonar según lees y comprender los conceptos que se explican, de modo que no esperes leerte esto de un tirón y ser un experto en nada. No se adquiere conocimiento sin esfuerzo. Mi recomendación es que te leas el artículo tranquilamente, dejando los cuadros amarillos para una segunda lectura… y, cuando termines, que te lo leas de nuevo, incluidos los cuadros amarillos (aunque no tienes por qué leer los enlaces que allí se mencionan). Y, desde luego, que no tengas el menor rubor en preguntar las dudas que aún te queden.

Dicho esto, empecemos a establecer nuestros cimientos.



Electricidad

¿Qué es la electricidad? La respuesta a esa pregunta es más difícil de lo que pudiera parecer en principio. En Física, desde luego, no existe ninguna magnitud con ese nombre, y no emplearemos esta palabra en el bloque para referirnos a nada concreto. En general, podríamos decir que la electricidad es un conjunto de fenómenos físicos en los que desempeña un papel fundamental la carga eléctrica pero eso probablemente haga que cualquier lector sagaz arquee la ceja, porque no está realmente definiendo nada. 

Tenemos que ir más allá, y hablar de qué es la carga eléctrica… y para eso tampoco hay una respuesta concreta y sencilla, aunque todos sepamos en uno y otro caso a qué nos estamos refiriendo.


Naturaleza de la carga eléctrica

En Física, el término carga se emplea para denotar varias cosas diferentes, pero casi todas ellas tienen varias cosas en común al nivel más fundamental: suele tratarse de una propiedad de las partículas, cumple ciertas leyes de conservación y existe algún tipo de simetría, y está siempre asociada a una fuerza fundamental de la Naturaleza. Sé que todo esto intimida, y por eso he dicho que no es una pregunta fácil de responder. Si estás empezando con esto y quieres una respuesta fácil, sáltate el cuadro amarillo y ya volverás a él más adelante pues, como he dicho antes, no es necesario en absoluto para entender este artículo.


La carga de color y la carga eléctrica
Una carga diferente de la eléctrica, y de la que hemos hablado antes en El Tamiz, es la carga de color o simplemente color, asociada a la interacción nuclear fuerte. Como cualquier fuerza fundamental de la Naturaleza, la interacción fuerte está mediada por un bosón, en este caso al gluón. Como recordarás si leíste aquellos artículos, existen varios colores diferentes; las partículas subatómicas pueden tener unos colores u otros, y existe un bosón (el gluón, en este caso) que transmite una fuerza que ejercen, y notan, las partículas con carga de color. Las partículas sin color (como el electrón, por ejemplo) no notan esta fuerza.

La carga eléctrica, a veces simplemente llamada carga porque es la que más notamos y la que más aparece en la vida cotidiana, cumple las mismas condiciones: se trata de una propiedad de las partículas subatómicas, existen distintos tipos (en este caso dos, de los que hablaremos en un momento), y está asociada a un bosón, el fotón, que media una fuerza, la fuerza electromagnética, que notan aquellas partículas que tienen carga eléctrica.

El problema es que, para cualquier carga en Física, la definición es algo así como una pescadilla que se muerde la cola: es una propiedad de las cosas que puede tenerse de varios tipos o no tenerse, y las partículas que la tienen interaccionan unas con otras mediante una fuerza determinada. De modo que, al final, lo que de verdad determina cualquiera de estas cargas, incluida la eléctrica, es la fuerza a la que están asociadas. Podríamos definir la carga eléctrica como algo así:

La carga eléctrica es la propiedad de las partículas que ejercen y sufren la interacción electromagnética.
Hay dos tipos de cargas eléctricas diferentes. Dicho en términos de la fuerza electromagnética, existen dos fuentes diferentes, y dos reacciones distintas, ante esa fuerza. Tradicionalmente, se ha llamado a estos dos “sabores” de la carga eléctrica carga positiva y carga negativa… y esto, como tantas otras cosas relacionadas con ella, ha llevado a mucha confusión (en parte, porque el concepto de carga eléctrica apareció en Física bastante antes de que conociéramos la mecánica cuántica).

Pero no hay nada positivo en la “carga positiva”, y nada negativo en la “carga negativa”. Todo está en nuestra cabeza. Se trata de una manera de mirar la carga que es muy útil matemáticamente, y hace de nuestras fórmulas algo más simple de lo que serían si empleásemos otros convenios diferentes, pero eso es todo. Siempre que trates de aferrarte a conceptos como éstos, recuerda: las fórmulas están en tu cabeza, y son la forma que tenemos de tratar de predecir el comportamiento de las cosas. Las fórmulas no están en las cosas, son una construcción de nuestro intelecto.

Es decir, que existen dos tipos de cargas que cumplen ciertas simetrías, y punto. Podríamos, por ejemplo, llamar a la carga del electrón “carga positiva” y a la del protón “carga negativa”, cambiar el signo en varias de nuestras fórmulas, y no cambiaría absolutamente nada (excepto que, si no nos ponemos todos de acuerdo, sería difícil comprendernos unos a otros al hablar de la carga eléctrica). Pero la carga de color debería ser un signo de que podemos ir aún más allá.

Podríamos llamar a uno de los dos tipos de carga “carga verde” y a la otra “carga roja”, y aprender electricidad utilizando esos conceptos. Al utilizar fórmulas, la cosa se complicaría bastante, pero conceptualmente no habría problema alguno. De hecho, es una ventaja en cierto sentido, porque elimina algunos de nuestras ideas preconcebidas sobre la electricidad, y tal vez te abra la mente a ideas, o maneras de ver las cosas, nuevas. La idea de hacer esto no es mía ni mucho menos; la primera vez que leí sobre ello fue en la excelente página de William J. Beaty, Red and Green “Electricity”.

De modo que, aunque estoy seguro de que “sabes” que el electrón “tiene carga negativa” y el protón “positiva”, permite que, por ahora, utilicemos este convenio de colores para desterrar ideas preconcebidas, y que te diga lo siguiente: la carga eléctrica es la propiedad de las cosas que notan, y ejercen, la fuerza electromagnética, y existen dos tipos de carga eléctrica, la roja y la verde. Los electrones, por ejemplo, tienen carga roja, y los protones tienen carga verde (los equivalentes de la carga negativa y positiva tradicionales respectivamente, claro).

Los dos tipos de carga cumplen una cierta simetría, son como las dos caras de una misma moneda: se comportan de modos opuestos ante la interacción electromagnética. Por ejemplo, si un cuerpo tiene la misma cantidad de carga roja que verde, no nota la fuerza electromagnética “en total”. No es que no la note en absoluto: su carga roja sufrirá una fuerza determinada, y su carga verde otra igual pero opuesta, ya que son simétricas, y en total –salvo que pasen cosas extrañas, de las que hablaremos luego– el cuerpo no parece ser afectado por la fuerza cuando lo miramos “desde fuera”.

Lo mismo sucede al ejercer esa fuerza electromagnética sobre otras cosas: el cuerpo que tiene igual cantidad de ambas cargas sí ejerce fuerzas electromagnéticas sobre cualquier cosa con carga. Pero, una vez más, si su carga roja “empuja”, su carga verde “tira”, con lo que la carga que sufra esas fuerzas en general no parecerá sentir nada, ya que ambas se compensarán. Por eso, cuando decimos que algo no tiene carga eléctrica, lo que realmente queremos decir es que tiene la misma cantidad de carga roja que de carga verde. Es decir, ambos tipos de carga están en equilibrio.

Un ejemplo relativamente sencillo: el neutrón. Suele enseñarse en el colegio que el neutrón “no tiene carga” y punto. Y, efectivamente, un neutrón que entra en un campo magnético o en un campo eléctrico parece no sentir absolutamente ninguna fuerza, ¡pero sí la siente, sólo que varias veces! La cuestión es que, aunque no suela mencionarse en la escuela, un neutrón no es una especie de canica subatómica sin carga: está compuesto de partículas más simples. Aunque para este artículo no son importantes sus nombres ni la mayor parte de sus propiedades, esas partículas que forman el neutrón (de una manera similar a como los protones, electrones y neutrones forman el átomo) se llaman quarks, de los que hay varios tipos diferentes.
El neutrón está formado por tres de estos quarks: dos de ellos son del tipo down (esto no es importante) y tienen carga roja (esto sí lo es). El tercero es del tipo up, y tiene carga verde que vale el doble de la de los otros dos rojos. En total, existe un equilibrio en el neutrón entre la carga roja y la verde y, como resultado, decimos que el neutrón “no tiene carga”, y todos nos entendemos, pero no olvides lo que eso significa de verdad: que ambas cargas están en equilibrio entre sí, porque hay la misma cantidad de roja que de verde.


Neutrones, protones y quarks
El Tamiz tiene una serie, Esas maravillosas partículas, en la que recorremos muchas de las partículas fundamentales conocidas. Entre ellas hablamos precisamente del neutrón, el electrón, el protón y los quarks, sus tipos y propiedades, de modo que puedes leerla para saber más sobre ellos, aunque no sea necesario para entender esta entrada.


Desde luego, aquí puedes ver ya por qué utilizamos los nombres “positiva” y “negativa” para ambos tipos de carga: así podemos trabajar matemáticamente con ambos tipos “opuestos” de modo que la carga del neutrón sea -1 (de un quark rojo) -1 (del otro) +2 (del verde con el doble de carga) = 0. Pero la razón de que no hayamos empezado así es que, al ver ese “0″, parece que no hay nada en el neutrón, cuando eso es una mentira tremenda, ¡claro que hay cargas! Eso sí, ¿cómo pensar en el equivalente de ese “0″, de esa cancelación de ambos tipos de cargas opuestas, en nuestro sistema de colores?

Empecemos a dibujar cargas rojas y verdes, pero con una peculiaridad: cuando tengamos cargas de ambos colores superpuestas, lo haremos de color negro. Ese color negro, por tanto, será el equivalente gráfico del “0″ de ahí arriba. Una partícula negra, por tanto, será una partícula con la misma cantidad de carga roja que verde, y no notará aparentemente ninguna fuerza electromagnética, es decir, “no tendrá carga” en el lenguaje habitual. Imagina que los quarks que forman el neutrón (dos down rojos con la mitad de carga que otro up verde) son éstos, dibujados de un tamaño proporcional a su carga:




Si juntamos los dos quarks rojos con el verde…




Formamos, por fin, el neutrón:




Que es, evidentemente, negro, porque rojo y verde, al superponerse en nuestro sistema de colores, forman el negro… pero no es neutro porque no tenga cargas. Algo diferente sucede, por ejemplo, con el fotón, que no tiene carga, pero no porque esté compuesto de cosas más simples con cargas de distintos colores, sino simplemente porque no la tiene. Y soy consciente de que, visto “desde lejos”, no se nota la diferencia. Pero esto es importante para entender a qué nos referimos cuando decimos que un objeto macroscópico “tiene carga eléctrica”.

Aunque vayamos lentos, permite que “construya” un protón de manera similar. El protón está formado por dos quarks up y uno down, es decir, en nuestro código de colores, dos verdes grandes como el de ahí arriba y uno rojo pequeño:




Al unir los tres…





Obtenemos un protón que, al contrario que el neutrón, no es completamente negro ni mucho menos:




El electrón, por su parte, es (hasta donde sabemos) una partícula fundamental, no formada por otras más simples, y su carga es, en nuestros términos, roja, y tiene un valor tres veces mayor que la de un quark down rojo del neutrón, es decir, en nuestros dibujos, un tamaño de tres cuadrados:




Cuando se unen un protón y un electrón para formar un átomo, éste es el resultado:




Y lo que se tiene entonces es un átomo de hidrógeno (el elemento de un protón en el núcleo), que es neutro:




Esta manera de ver el átomo “negro” es bastante útil cuando se lo mira desde lejos, porque ambas cargas están en equilibrio, pero en la realidad existen los dos tipos de carga en él (la positiva (verde) en el núcleo y la negativa (roja) alrededor de él). Si miras el átomo de cerca puedes ver, eléctricamente hablando, algo así (no está a escala ni mucho menos):




Pero, dado que la materia que nos rodea está compuesta de átomos, al mirarla desde lejos también suele ser “negra” como la hemos dibujado antes, es decir, un solapamiento casi total de cargas rojas y verdes. Es decir, nos parece que no notamos la carga de los objetos. Fíjate en que no digo “no notamos la carga”, porque ¡desde luego que la notamos!, pero no la reconocemos como lo que es. De eso hablaremos en un momento, cuando discutamos sobre la Ley de Coulomb.

En el resto del bloque alternaremos la nomenclatura tradicional (positiva/negativa) con la que hemos empleado en este epígrafe (verde/roja); utilizaremos la segunda, sobre todo, cuando nos sirva para desterrar alguna idea preconcebida causada por la nomenclatura normal. Mi recomendación: en uno u otro caso, intenta traducir en tu cabeza a la nomenclatura contraria, por si una de las dos te ayuda a comprender mejor una cuestión.

Lea el artículo completo en:

El Tamiz

19 de septiembre de 2012

Casi tan caliente como el Big Bang

El LHC utiliza plomo acelerado para estudiar el estado primordial de la materia

El experimento Alice explora el plasma a 100.000 veces la temperatura del Sol

 

Simulación de una colisión de núcleos de plomo en el detector Alice del acelerador LHC. / CERN / ALICE

Cuando la materia se calienta hasta temperatura extrema, tan extrema como 100.000 veces la del centro del Sol, suceden cosas raras. Los átomos dejan de ser átomos e incluso los núcleos atómicos se disgregan en sus componentes fundamentales para formar un nuevo estado de la materia, una sopa de partículas con propiedades exóticas. Así debió de ser el universo al principio, en los primeros instantes después del Big Bang, mucho antes de que al expandirse y enfriarse aquel cosmos primitivo pudieran formarse los átomos y luego las estrellas, las galaxias, los planetas...

¿Cómo reproducir en el laboratorio esas condiciones de altísima temperatura? El gran acelerador de partículas LHC, en el Laboratorio Europeo de Física de Partículas (CERN, junto a Ginebra), además de servir para cazar el famoso bosón de Higgs, sirve para generar minúsculas gotas de esa sopa supercaliente de partículas elementales (quarks y gluones). Pero, para ello, en lugar de acelerar y colisionar protones, hay que acelerar y hacer chocar plomo, o más bien, núcleos de plomo. Uno de los grandes experimentos del LHC, el Alice, está especializado precisamente en la exploración de ese microcosmos ardiente y cuenta con un mes al año de colisiones de plomo acelerado en el LHC o, como se ha ensayado hace unos pocos días, de plomo contra protones.

“El plasma de quarks y gluones debió de ser el estado de la materia más abundante, si no el único, durante las primeras milmillonésimas de segundo tras el Big Bang, pues la temperatura que reinaba por aquel entonces era de un billón de grados centígrados, lo que equivale a un 1 seguido de 12 ceros, es decir, un millón de veces la temperatura del interior del Sol, que no de la superficie, que está en unos 6.000 grados”, comenta Ginés Martínez, director de investigación del CNRS francés, que lidera el equipo de Alice de su laboratorio en Nantes. “En el LHC nos acercamos pues a esas temperaturas del principio del universo al crear microgotas de ese plasma de quarks y gluones que duran una billonésima de billonésima de segundo”, continúa.

En las colisiones del acelerador LHC se han alcanzado 5,5 billones de grados

“Con Alice tenemos la oportunidad de observar y estudiar las propiedades de ese estado primordial de la materia”, explica Despina Hatzifotiadou, física del experimento. De momento, continúa, en las semanas de colisiones plomo/plomo que ya se han hecho en el LHC, en 2010 y 2011, se ha observado cómo esta sopa de quarks y gluones se comporta como un líquido perfecto, prácticamente sin fricción, y opaco. “Además, hemos batido un récord al crear la mayor temperatura en el universo: unos 5,5 billones de grados kelvin”, añade. Es la temperatura que tendría el universo 10 milmillonésimas de segundo después de la gran explosión inicial, dice Carlos Pajares, que lidera el grupo español de la Universidad de Santiago que participa en Alice. “Se trata de estudiar precisamente la transición de fase entre el estado de las partículas elementales tal y como están en los componentes del núcleo atómico a esa sopa de quarks y gluones”, añade este físico teórico.

En el LHC estaba previsto que tras la fase actual de colisión de protones (hasta final de año) hubiera un mes de colisiones de plomo/plomo en enero. Pero han cambiado ligeramente los planes, explica Hatzifotiadou, y serán choques de haces de plomo contra haces de protones, lo que permitirá a los físicos hacer comparaciones de las propiedades del plasma con diferentes tipos de colisión.

Un millar de físicos e ingenieros de 31 países trabajan en Alice, uno de los cuatro gigantescos detectores de partículas del LHC (otros dos, el Atlas y el CMS, también aportan información en esta vertiente de la investigación de la sopa de quarks y gluones). No hay que olvidar que aunque Alice se sitúe en los récords de energía y temperatura, la instalación estadounidense RHIC avanzó mucho en este camino del nuevo estado de la materia en la última década, recuerdan los expertos. Allí se crearon, hace 10 años, las primeras gotas de la sopa de quarks y gluones, apunta Martínez.

Los quarks parecen prisioneros eternos confinados dentro de los protones

Es todavía un misterio sin resolver por qué los protones y los neutrones de los núcleos de los átomos tienen una masa cien veces superior a la de los quarks que los forman y por qué sus quarks parecen ser sus prisioneros eternos.

Para entender estos dos problemas hay que repasar un poco la composición del átomo, que está formado por un núcleo y electrones; el núcleo, a su vez, está formado por protones y neutrones y cada uno de estos, por tres quarks, unidos por la denominada fuerza fuerte, de la que se ocupan los gluones. Pues bien, los quarks no se pueden separar unos de otros, están confinados dentro del protón o del neutrón, y cuanto más fuerte intenta uno separarlos, más fuertemente se unen. Es como si estuvieran sujetos con una goma (los gluones), que resulta más y más difícil estirar cuanto más tensa está. Pero a partir de un momento, a muy alta temperatura, la goma se rompe y esas partículas elementas, en libertad, forman la famosa sopa, explica Pajares. ¿Cómo? ¿Por qué? ¿Qué reglas rigen esa transición y sus propiedades? Este es el terreno de los físicos de Alice.

Otro misterio pendiente es el de la masa del protón. Resulta que los tres quarks que lo forman “representan solo el 1% de su masa, esa cuyo origen se explica con el mecanismo del bosón de Higgs”, argumenta Martínez. ¿Y el resto? “El 99% restante de la masa se crea por el proceso de confinamiento de quarks”, añade.

Fuente:

El País Ciencia

5 de julio de 2012

Lo que necesitas para entender el bosón de Higgs en cinco preguntas

1. ¿Por qué es tan importante encontrar el bosón de Higgs?
 
Porque podría contener la respuesta a la siguiente cuestión: ¿cómo decide la naturaleza a qué partículas les asigna masa y a cuáles no? Todas las partículas elementales que forman la materia (seis leptones y seis quarks) tienen masa. Sin embargo otras como el protón, responsable de la fuerza electromagnética, no tienen masa. La presencia o ausencia de masa podría venir dada por el bosón de Higgs, cuya existencia se propuso en los años sesenta. 

“Confirmar la existencia del bosón de Higgs en el modelo estándar supondría haber comprendido el mecanismo por el cual las partículas adquieren masa, un mecanismo que en su versión más simple predice la existencia de –al menos– un bosón que cuando interacciona con las otras partículas (quarks, leptones y otros bosones), hace que estas adquieran masa”, explica Teresa Rodrigo, investigadora del Instituto de Física de Cantabria que participa en los experimentos del CERN.

2. ¿Qué es el campo de Higgs?
 
Para explicar por qué unas partículas tienen masa y otras no, el físico británico Peter Higgs (y simultánea pero independientemente, también Francois Englert, Robert Brout, Gerald Guralnik, Dick Hagen y Tom Kibble) postuló en los años 60 del siglo XX un mecanismo que se conoce como el “campo de Higgs”. Al igual que el fotón es el componente fundamental de la luz, el campo de Higgs requiere la existencia de una partícula que lo componga, que los físicos llaman “bosón de Higgs”. El campo de Higgs sería una especie de continuo que se extiende por todo el espacio, formado por un incontable número de bosones de Higgs. La masa de las partículas estaría causada por una especie de “fricción” con el campo de Higgs, por lo que las partículas más ligeras se moverían por este campo fácilmente mientras que las más pesadas lo harán con mayor dificultad.

3. ¿Quién acuñó el nombre de “partícula de Dios”?
 
Fue el Premio Nobel de Fïsica Leon Lederman, en el libro “Si el universo es la respuesta, ¿cuál es la pregunta?”. Sin embargo muchos investigadores prefieren el apodo de "la partícula de la botella de champagne", haciendo alusión a la anécdota según la cual el físico David J. Miller ganó en 1993 una botella de champagne ofrecida por el ministro de ciencia británicoWilliam Waldegrave, que la ofreció como “premio” a quien fuese capaz de explicarle que era el bosón de Higgs.

4. ¿Por qué se usa el LHC para buscar el bosón de Higgs?
 
La confirmación o refutación de la existencia del bosón de Higgs es uno de los objetivos del Gran Colisionador de Hadrones (LHC, por sus siglas en inglés), el mayor y más potente acelerador de partículas del mundo que opera la Organización Europea para la Investigación Nuclear (CERN) en la frontera franco‐suiza, cerca de Ginebra (Suiza). En el interior del anillo del acelerador del CERN colisionan protones entre sí a una velocidad cercana a la de la luz. Según los cálculos los bosones de Higgs deberían producirse en choques frontales entre protones de energías del orden de 20 TeV. Al fin y al cabo, cuanto mayor sea la energía de las partículas que chocan más masa tendrán las resultantes, según la famosa ecuación de Einstein E=mc2. No obstante, el bosón de Higgs no se puede detectar directamente, ya que una vez que se produce se desintegra casi instantáneamente dando lugar a otras partículas elementales más habituales (fotones, muones, electrones…) que sí son detectadas en el LHC.

5. ¿Por qué se habla de probabilidades en lugar de hablar de descubrimiento del bosón de Higgs? ¿Qué significan los “sigmas” de los que hablan los físicos?
 
El bosón de Higgs no puede observarse directamente porque si tiempo de vida es demasiado corto. Al final de su vida, decae y se transforma en otras partículas que son las que los detectores observan. Por ejemplo, en dos fotones. Pero otros muchos procesos también generan dos fotones, de modo que los científicos tienen que comparar el número de “eventos de dos-fotones” y compararlo con lo que se espera para una determinada partícula.
 
Para reclamar la paternidad de un descubrimiento, los físicos necesitan tener un exceso de colisiones significativas, lo que precisa de otra magnitud: la desviación estándar o el “número de sigmas”, que establece la significancia estadística de ese descubrimiento. Al hacer el anuncio sobre el bosón de Higgs, Fabiola Gianotti ha dicho: "Hemos observado señales claras de una nueva partícula en el nivel de cinco sigma en la región de la masa alrededor de 126 gigaelectronvoltios (GeV)”. El valor cinco sigma es el nivel mínimo aceptado por la comunidad científica para confirmar el descubrimiento de una partícula, e indica que la probabilidad de que lo que estemos viendo sea fruto del azar es más pequeña que unas pocas partes en diez millones (o que la confianza es del 99,99994%).

Fuente:

29 de junio de 2012

Una materia 250.000 veces más caliente que el Sol

Científicos estadounidenses han logado una hazaña digna del récord Guinness. Creen que es lo que existió justo antes de Big Bang y la creación del Universo


Según puede leerse en la agencia RT, "esa materia alcanza los cuatro billones de grados centígrados. Con este propósito, los investigadores del Laboratorio Nacional de Brookhaven (Nueva York) querían conseguir esta materia formada de un plasma de quarks y gluones, que se cree existió por unas pocas millonésimas de segundo después del Big Bang y la creación del Universo.

"Cuando el Universo todavía era pequeño y caliente, este material probablemente existió e influyó en su desarrollo", explicó el doctor en ciencias físico-matemáticas, profesor Mikhaíl Polikarpov L. "Todo lo que encontramos ahora y podemos observar, se deriva de esta sustancia, compuesta de quarks y gluones. Aunque se llama plasma, en lo que se refiere a sus propiedades es muy diferente del plasma normal", contó.

Los científicos opinan que la creación de esta 'sopa supercaliente' podría darles nuevos conocimientos sobre las propiedades del Universo primitivo. Los representantes del Libro Guinness de los Récords reconocieron oficialmente el logro, atribuyéndole la categoría de "la temperatura más alta obtenida artificialmente".  

Fuente:

21 de julio de 2011

La evidencia experimental de la existencia de los gluones

Brian Dorney, “In a World Without Color, Why do I believe in Gluons?,” Quantum Diaries, July 9th, 2011, nos recuerda la evidencia experimental que hay sobre la existencia de los gluones, las partículas elementales responsables de la interacción fuerte entre quarks. Los leptones (electrones y neutrinos) no tienen carga de color y no interaccionan fuertemente. Una ley de la Naturaleza prohíbe que las partículas con carga de color sean observadas de forma directa. Por ello, tanto los gluones como los quarks, las únicas partículas elementales con carga de color, se “hadronizan” formando chorros de partículas sin color (mesones y bariones que son partículas compuestas de quarks y gluones). Estos chorros permiten una observación indirecta de las partículas “coloreadas” y gracias a ellos los físicos experimentales dicen que observan quarks y gluones por doquier en los grandes aceleradores de partículas (como el LHC en el CERN y del Tevatrón en el Fermilab).

Esta tabla presenta todas las partículas elementales descubiertas hasta el momento (faltan las antipartículas de quarks y leptones). Los seis quarks están coloreados (la carga de color es algo parecido a la carga eléctrica pero tiene tres valores posibles en lugar de dos); como hay tres cargas de color posibles, hay en realidad 18 quarks diferentes. Igual que la carga eléctrica puede ser positiva o negativa, hay dos tipos de cargas de color llamadas color (rojo, verde, y azul) y anticolor (antirrojo, antiverde, y antiazul). Los gluones (“g” en la tabla) tienen un color y un anticolor de forma simultánea. Los quarks cambian de color cuando absorben y emiten gluones. La regla a recordar es fácil, el color se conserva; por ejemplo, un quark verde absorbe un gluón rojo-antiverde y se transforma en un quark rojo.

En la naturaleza, de forma libre, solo existen partículas neutras respecto a la carga de color (se dice que los quarks y gluones están confinados); estas partículas neutras se llaman hadrones. Hay dos tipos de hadrones, los mesones, partículas formadas por un quark y un aniquark (el quark tiene un color y el antiquark el anticolor correspondiente) y los bariones, partículas formadas por tres quarks cada uno con un color diferente (los tres colores se suman y dan como resultado un valor neutro de la carga de color). Cuando en el LHC del CERN una colisión protón-protón produce un par de quarks top de alta energía que se emiten en direcciones opuestas, estos se desintegran de forma casi instantánea en cascada de partículas de menor energía que se van desintegrando de forma sucesiva formando un chorro de partículas que se mueven en la dirección de movimiento del quark original; estas partículas son hadrones (mesones y bariones) y por eso se dice que el quark se ha “hadronizado.” La suma total de la energía y momento de estos chorros permite determinar la energía y momento del quark original que los produjo. Para un físico ver un chorro de partículas es casi lo mismo que ver un quark ya que sus propiedades se deducen de las del chorro.

El gluón, igual que el fotón, es un bosón vectorial, es decir, una partícula con espín 1; los quarks y los leptones son fermiones y tienen un espín semientero 1/2. Como hay tres valores para la carga de color, hay ocho gluones diferentes. ¿Por qué ocho y no nueve? Se podría pensar que los gluones deberían ser nueve: rojo-antiverde, rojo-antiazul, verde-antirrojo, verde-antiazul, azul-antirrojo, azul-antiverde, rojo-antirrojo, verde-antiverde y azul-antiazul. Sin embargo, hemos dicho que los gluones están cargados y las combinaciones tipo color-anticolor del mismo color (en cursiva) no están permitidas, pues darían un gluón neutro. Estas tres combinaciones en cursiva solo se pueden dar en combinaciones lineales a pares (superposiciones cuánticas); de las tres posibles combinaciones lineales solo se pueden dar dos de ellas, por que la tercera es combinación lineal de las otras dos. Por ejemplo, solo se pueden dar las combinaciones (rojo-antirrojo) - (verde-antiverde) y (rojo-antirrojo) - (azul-antiazul). Por cierto, vale cualquier combinación lineal posible y la habitual en la mayoría de los libros es (rojo-antirrojo) - (verde-antiverde) y (rojo-antirrojo) + ((verde-antiverde) - 2 (azul-antiazul), pero la razón es un mero convenio (que corresponde a usar las así llamadas matrices de Gell-Mann).

La evidencia experimental de los gluones es anterior al LHC del CERN y se obtuvo en el LEP (Large Electron-Positron Collider) del CERN. En este acelerador colisionaban electrones y sus antipartículas los positrones, que no tienen carga de color. La aniquilación de un par electrón-positrón produce un fotón que a su vez puede desintegrarse en un par quark-antiquark, como muestra el diagrama de Feynman de arriba, izquierda. Estos dos quarks libres se observan como chorros tras su hadronización (desintegración en partículas compuestas de menor energía que son neutras para la carga de color). La ley de conservación del momento angular dice que si los dos leptones colisionan de frente, con un ángulo de 180 grados, los dos quarks también deben dirigirse en direcciones opuestas y los dos chorros que resultan también tienen un ángulo de 180 grados; esta señal es muy fácil de detectar. Así se hizo en LEP y si así se hace ahora en los dos grandes experimentos del LHC, tanto CMS como ATLAS; abajo tenéis un evento con dos chorros en direcciones opuestas observado en el experimento CMS.

La explicación de esta figura es sencilla. Las dos líneas negras son la estimación de las direcciones originales de los quarks que produjeron los dos chorros y están separadas un ángulo de 180 grados. En el centro de la figura se encuentra el punto de colisión, donde colisionaron un protón contra otro protón en direcciones opuestas. El círculo interior (líneas en azul y punteadas) corresponde a los detectores de silicio que trazan pixel a pixel las trayectorias tridimensionales de las partículas cargadas que forman cada chorro; la línea punteada es una estimación del ángulo (en realidad en 3D es un cono) de cada chorro. La trayectoria de estas partículas cargadas está curvada por los campos magnéticos en los que se encuentran los detectores; la curvatura permite determinar el momento (energía) de la partícula, así como el signo de su carga (en la figura las partículas con carga positiva se curva en la dirección del reloj y las que tienen carga negativa en dirección antihoraria). Fuera del círculo central aparecen histogramas en rojo y en azul que corresponden, respectivamente, a los calorímetros electromagnéticos (ECal), que detectan electrones y positrones, y a los calorímetros hadrónicos (HCal), que detectan hadrones (mesones y bariones). Cada histograma representa la cantidad de energía depositada en los calorímetros y permiten reconstruir con precisión la energía de las partículas del chorro. Los rectángulos rosados distribuidos de forma circular en el exterior son los calorímetros que detectan muones (ya que estas partículas a alta energía recorren grandes distancias debido a la dilatación del tiempo de la teoría de la relatividad que incrementa su vida media). Esta figura muestra un evento en el que no se han producido muones.

Retornando a los diagramas de Feynman de más arriba (el de la derecha presenta el proceso e+e- → qqg). Puede ocurrir que uno de los dos quarks en los que se desintegra el fotón emita un gluón. Como esta partícula también está coloreada, se producirá un chorro hadrónico y el evento en lugar de tener dos chorros, presentará tres chorros, pero no cualesquiera. La ley de conservación del momento obliga a que estos tres chorros se encuentren en el mismo plano, lo que hace que estos eventos presenten una señal muy distintiva. Si el gluón tiene suficiente energía, los tres chorros estarán bien separados y permitirán estudiar las propiedades del gluón con precisión. Gracias a este tipo de eventos se confirmó de forma definitiva la existencia del gluón a finales de los 1970 y principios de los 1980 en el experimento PETRA (Positron Electron Tandem Ring Accelerator) en DESY (Deutsches Elektronen Synchrotron), Alemania [1]. Las propiedades del chorro asociado al gluón coincidían con las predichas por la teoría de los quarks y gluones, llamada cromodinámica cuántica (QCD). Una propiedad importante del gluón es su espín, que es la unidad, a diferencia del espín de un quark que es semientero; si se suponía que el tercer chorro en estos eventos era un chorro debido a un quark se obtenía un desacuerdo con los experimentos porque el espín total de las partículas del chorro no daba el valor correcto [2]. El colisionador LEP confirmó el descubrimiento de los gluones y la validez de la QCD fuera de toda duda. Arriba os he presentado un evento con tres chorros (tri-jet) observado en CMS del LHC, que muestra dos chorros debidos a los quarks (ambos hacia abajo) y un chorro asociado al gluón (hacia arriba).

Los físicos (y los buenos aficionados) interesados en la historia de la física, disfrutarán con el artículo [3] de Paul Söding (DESY) sobre el descubrimiento del gluón, que incluye figuras de los eventos originales y detalla las técnicas utilizadas para verificar que el gluón realmente había sido descubierto.

[1] D.P. Barber, et. al., “Discovery of Three-Jet Events and a Test of Quantum Chromodynamics at PETRA,” Phys. Rev. Lett. 43: 830-833, 1979.

[2] P. Duinker, “Review of e+e- physics at PETRA,” Rev. Mod. Phys. 54: 325-387, 1982 (copia gratis en DESY).

[3] P. Söding, “On the discovery of the gluon,” Eur. Phys. J. H. 35: 3-28, 2010 (gratis en la revista).

Fuente.

Francis Science News

21 de junio de 2010

Logran medir la masa de los quarks up, down y strange

Lunes, 21 de junio de 2010

Logran medir la masa de los quarks up, down y strange


Masa de los  quarks
Los quarks se mantienen juntos gracias a la, así llamada, Fuerza Fuerte, tan poderosa que hace imposible separarlos y estudiarlos. (Foto: Christine Davies/University of Glasgow)


(NC&T) El trabajo ha sido efectuado por el profesor de física G. Peter Lepage, de la Universidad Cornell, y sus colaboradores de varias instituciones.

Los resultados de la investigación reducen la incertidumbre sobre las masas de los quarks hasta un pequeño porcentaje. Los científicos conocen la masa del protón desde hace casi un siglo, pero determinar la masa de cada uno de esos tres quarks ha sido un reto permanente.

Los quarks se mantienen juntos gracias a la, así llamada, Fuerza Fuerte, tan poderosa que hace imposible separarlos y estudiarlos.

Para determinar las masas de los quarks fue necesario hacer un análisis detallado de la Fuerza Fuerte. Los científicos hicieron frente al problema recurriendo a grandes supercomputadoras que les permitieron simular el comportamiento de los quarks y los gluones dentro de partículas tales como protones.

Los quarks tienen una gama de masas sorprendentemente amplia. El más ligero pesa 470 veces menos que un protón. El menos ligero pesa 180 veces más que un protón, o es casi tan pesado como todo un átomo de plomo.

El motivo por el que existen estas enormes disparidades entre las masas de los quarks es uno de los grandes misterios actuales de la física teórica.

Los resultados del nuevo estudio indican que el quark Up pesa aproximadamente 2 megaelectronvoltios (MeV), el quark Down pesa alrededor de 4,8 MeV, y el quark Strange pesa cerca de 92 MeV.


Haz click aquí para ver vídeos sobre Masa de los quarks

Tomado de:

Solo Ciencia

10 de junio de 2010

¿Qué es el plasma de quarks-gluones?

Jueves, 10 de junio de 2010

¿Qué es el plasma de quarks-gluones?


Durante las primeras millonésimas de segundo tras el Big Bang, el universo consistía en una sopa caliente de partículas elementales llamados quarks y gluones. Unos pocos microsegundos más tarde, esas partículas comenzaron a enfriarse formando protones y neutrones, los bloques básicos de los que se compone la materia.



Los científicos llevan una década intentando recrear aquella sopa, conocida como plasma de quark-gluones (QGP), usando aceleradores de partículas para golpear entre si núcleos de átomos con niveles energéticos lo bastante altos como para producir temperaturas de billones de grados.

A pesar de que los quarks y los gluones crearon a los protones y neutrones, unos y otros se comportan de forma muy diferente. Sus intereaciones se ven gobernadas por una teoría conocida como cromodinámica cuántica. Sin embargo, el comportamiento real de quarks y gluones es difícil de estudiar puesto que se encuentran confinadas en el interior de partículas más pesadas. El único lugar del universo donde el QGP existe es en el interior de aceleradores de alta velocidad, y apenas dura un brevísimo instante.

En el año 2005 un equipo de científicos del RHIC informó haber creado QGP golpeando átomos de oro entre si a velocidades próximas a la de la luz. Estas colisiones pueden crear temperaturas de hasta 4 billones de grados, 250.000 veces más calientes que el interior del sol y lo bastante cálido como para fundir protones y neutrones en quarks y gluones.

La masa de materia super densa y ultra caliente resultante, medía solo una billonésima de centrímetro de ancho, pero sirvió para dar a los científicos una nueva visión sobre las propiedades del universo recién nacido. Por ejemplo descubrieron sorprendidos que el QGP es prácticamente un líquido carente de fricción, y no el gas que los físicos esperaban.

Realizando colisiones de alta energía, los científicos esperan descubrir nuevas propiedades del plasma de quarks-gluones, como por ejemplo si a mayores temperaturas se convierte en ese gas que imaginaban. También esperan conseguir más conocimiento sobre las sorprendentes similitudes que se han descubierto entre el QGP y los gases ultrafríos (con temperaturas cerca del cero absoluto). Ambas sustancias carecen prácticamente de fricción, y los físicos teóricos sospechan que la teoría de cuerdas podría explicar ambos fenómenos.

Puede que el LHC en Ginebra, donde los científicos creen que se puede doblar las temperaturas alcanzadas en el RHIC, ofrezca la oportunidad de vislumbrar etapas aún más tempranas en la formación del universo.

Lo vi en la web del MIT.

Tomado de:

Blog de Maikelnai

19 de mayo de 2010

El rompecabezas más fascinante del Universo

Miércoles, 19 de mayo de 2010

El rompecabezas más fascinante del Universo

Electrones y quarks son los ladrillos básicos del universo

Imagine que le encargan un puzle. Para ello le dan tan sólo tres tipos de piezas y cuatro formas de combinarlas entre sí. ¿Hasta dónde llegaría con tan pocos ingredientes y reducidas posibilidades de conjugarlos entre sí? Pues hasta un puzle tan rico, complejo y lleno de fascinación y sorpresa como el universo entero. Y es que, en última instancia, el cosmos no es más que una combinación de tres piezas básicas y cuatro maneras de conjugarlas entre sí. Unas reglas simples con las que construir una gran complejidad. Vayamos por partes.

Nuestro coche, nuestra casa, el planeta Tierra, el Sol y nosotros mismos no somos cuerpos indivisibles, sino que estamos formados por partículas más pequeñas. Ya en la Antigua Grecia apareció el concepto de átomo como la unidad básica, e indivisible, de la que estaba compuesta la materia. Hicieron falta más de dos mil años para que, en el siglo XIX, se demostrara su existencia. En efecto, el átomo es la unidad mínima en la que un elemento químico mantiene sus propiedades. Pero no es indivisible. A lo largo del siglo XX la física realizó un apasionante viaje por su interior, descubriendo que el mundo subatómico está plagado de partículas más pequeñas. Así, encontramos que los átomos tenían un núcleo, donde protones y neutrones se agrupaban unos con otros, y una corteza habitada por electrones. Pero lo más sorprendente es que, tras ese camino, el desenlace al que hemos llegado es que nuestro coche, nuestra case, el planeta Tierra, el Sol y nosotros mismos no somos más que una combinación de tres piezas básicas, unidades básicas indivisibles –salvo que se descubran nuevos límites subatómicos- a partir de las cuales el universo ha construido su gigantesco puzle: electrones, quarks y neutrinos. Ya conocemos a los primeros, integrantes de la parte más externa de los átomos. Los segundos son los ladrillos que levantan los muros de los protones y los neutrones. ¿Y los terceros? Aquí llega una nueva sorpresa: apenas interaccionan con el resto de componentes básicos de la materia, siendo piezas libres que recorren el cosmos a altas velocidades sin molestar a nadie. Así que, en esencia, los ladrillos básicos del universo son dos: electrones y quarks.

¿Cómo es posible que con una lista tan pobre de ingredientes el universo haya podido elaborar un plato tan rico y variado? Al igual que en la gastronomía existen diferentes formas de preparar los ingredientes, ya sea mediante cocción, fritura o asado, entre otras técnicas, el universo también tiene sus reglas de cocina. Las partículas interaccionan entre sí a través cuatro fuerzas fundamentales: electromagnetismo, nuclear fuerte, nuclear débil y gravedad. La primera, entre otras acciones, es la responsable del fenómeno de la luz, y a ella debemos que podamos ver el mundo que nos rodea. La segunda, la más potente de todas, se encarga de que los protones y los neutrones permanezcan unidos en el centro del núcleo atómico. La tercera está presente en los procesos de radiactividad. Y la cuarta, la más débil de todas y, a la vez, la que más nos afecta a nivel macrocósmico, aún esconde misterios por descubrir.

Sucede que, en estas interacciones, las partículas se intercambian otras, denominadas bosones, carentes de masa y responsables de transmitir cada una de estas fuerzas. El fotón es el bosón del electromagnetismo, el gluón de la fuerza nuclear fuerte, el bosón W y el de la nuclear débil… y aún falta saber si existe el gravitón, el hipotético bosón responsable de transmitir la fuerza gravitatoria. Éste es uno de los grandes misterios que rodean a la gravedad, y que el LHC, el gran colisionador de hadrones, podría ayudarnos a desentrañar.

Pero hay más, muchos más interrogantes que rodean a este gigantesco puzle llamado universo donde, tras más de dos mil años de búsqueda, sólo se han llegado a encontrar tres piezas básicas y cuatro modos de combinarlas entre sí. Con unos ingredientes tan simples hemos llegado a una rica complejidad culinaria.

Fuente:

Diario de Alcalá

19 de abril de 2010

El hombre que descubrió los quarks y dio sentido al Universo

Lunes, 19 de abril de 2010

El hombre que descubrió los quarks y dio sentido al Universo

Murray Gell-Mann tuvo un impactante éxito con las partículas, notorias fricciones con Feynman, y una oportunidad perdida con Einstein.



No es casualidad que el quark – el elemento constituyente de protones y neutrones, y por ende, de ti y de mí y de todo lo que nos rodea – tenga un nombre tan extraño y encantador. El físico que lo descubrió, Murray Gell-Mann, ama las palabras tanto como la física. Es conocido por corregir la pronunciación de un extraño de su último apellido (lo que no siempre funciona) y es más que feliz dando nombres a objetos o ideas que no lo tienen todavía. Así llegó la palabra quark para su más famoso descubrimiento. Suena como “kwork” y tomó su pronunciación de un caprichoso poema de la obra Finnegans Wake de James Joyce. Este término altamente científico es inteligente, chistoso y bronco al mismo tiempo, como el hombre que lo acuñó.

La obsesión de Gell-Mann con las palabras viene de su juventud, cuando su fascinación con la lingüística, la historia natural, y la arqueología le ayudó a entender la diversidad del mundo. El nativo neoyorquino se saltó tres cursos en la escuela elemental, y entró en la universidad antes. Después de estar entre la Universidad de Yale y el Instituto Tecnológico de Masachussets (MIT en inglés), Gell-Mann tenía tan sólo 21 años cuando comenzó su postdoctorado en el Instituto de Estudios Avanzados en Princeton, Nueva Jersey, cuando Albert Einstein todavía paseaba por el campus. Más tarde, trabajó con Enrico Fermi en la Universidad de Chicago, y debatió apasionadamente con el conocido físico Richard Feynman durante sus muchos años en el Instituto Tecnológico de California (Caltech). Fue cuando estaba en Caltech cuando Gell-Mann ayudó a sentar las bases de nuestro conocimiento de los componentes que constituyen la materia. Esbozó un esquema de las partículas subatómicas que él llamó la vía del octeto. En ese momento, los físicos entendieron que los átomos estaban hechos de protones y neutrones, pero también habían encontrado que éstos tenían muchas otras misteriosas partículas. “La vía del octeto” dio sentido a la desconcertante mezcla, encontrando en este esquema partículas que nunca habían sido siquiera imaginadas. El trabajo fue tan importante que le valió el Premio Nobel en 1969.

En 1985 Gell-Mann persiguió su sueño de trabajar en otros campos co-fundando el Instituto de Santa Fe, una organización donde se alentaba a los científicos a ser multidisciplinares. Situado en lo alto de una colina en el desierto de Nuevo México, rodeado por álamos y vetas de cuarzo rosa, el instituto es un lugar donde un ornitólogo puede intercambiar datos con un politólogo mientras escribe ecuaciones en una ventana debido a la falta de lápiz y papel. Con su diseño geométrico, sus muros coloreados brillantemente, abundantes senderos alrededor, y un generoso surtidor de caramelos en la cocina, el Instituto de Santa Fe parece como un área de juegos para científicos.

Susan Kruglinski, editora de la revista DISCOVER, se sentó recientemente con Gell-Mann en los sillones de cuero de la librería del instituto para hablar sobre lo qué es haber vivido la historia de la física moderna.

Usted es principalmente conocido por ser el descubridor del quark, una de las partículas fundamentales que constituyen el universo, pero durante años, muchos de sus colegas no estaban convencidos de que los quarks existieran. ¿Por qué no?

No puedes verlos directamente. Tienen algunas propiedades inusuales, y eso es por lo que fue difícil para la gente creer en ellos al principio. Y muchos no creyeron. Mucha gente pensó que estaba loco. Los quarks están permanentemente atrapados dentro de otras partículas como protones y neutrones. No puedes aislarlos para estudiarlos individualmente. Así que son un poco peculiares en ese aspecto.

¿Cómo debería visualizar los quarks alguien que no es físico? ¿Como pequeñas esferas atrapadas dentro de los átomos?

Bueno, en la física clásica podrías imaginar un quark como un punto. En mecánica cuántica un quark no es exactamente un punto; es un objeto bastante flexible. Algunas veces se comporta como un punto, pero puede extenderse un poco. A veces se comporta como una onda.

Cuando la gente pinta las partículas chocando en un colisionador de partículas, ¿qué deberían imaginar? ¿No es como un choque de bolas de billar, verdad?

Depende de las circunstancias. A muy altas energías, dos partículas que colisionan no rebotan, sino que crean un gran número de partículas. Podrías tener todo tipo de restos en todas las direcciones – las colisiones serían un poco más como esto último.

Entonces, ¿sería como colisionar una manzana y una naranja y obtener plátanos?

No, no, no. Pequeñas partes de todo tipo de cosas. Obtener un puñado de pequeños trozos de manzana y naranja, pero también trozos de plátanos y anti-plátanos, uvas, etc.

¿Cuántos tipos de partículas elementales hay?

...

http://www.forjadores.net/forjablog/uploads/SMHiggs05_0440_01D_mr.jpg

Lea la entrevista completa en:

Ciencia Kanija

google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0