Latest Posts:

Mostrando las entradas con la etiqueta oxigeno. Mostrar todas las entradas
Mostrando las entradas con la etiqueta oxigeno. Mostrar todas las entradas

9 de diciembre de 2020

¿De qué está formado el cuerpo humano?

Lo primero que nos viene a la mente son los átomos. 

Podemos empezar diciendo que nuestro cuerpo está formado por átomos.



Los átomos y el vacío

Nuestros cuerpo está formado básicamente por cuatro tipos de átomos: hidrógeno, oxígeno, carbono y nitrógeno.

Los átomos están formados por los electrones. Los electrones se encuentran alrededor del núcleo. 

Un núcleo está formado por protones y neutrones. Un protón está formado por cuatro quarks, un neutrón está formado por dos quarks. Los quarks están undos por un «pegamento»: los gluones.

Pero... nos olvidamos de un aspecto mucho más importante: la nada.

De lejos, el mayor constituyente de ti es la nada, el vacío.

Veamos: el átomo más simple de nuestro cuerpo: el átomo de hidrógeno. 

Este átomo tiene un núcleo, y a su alrededor hay un electrón. Entre el núcleo y el electrón hay grandes cantidades de nada. El átomo de hidrógeno es un 99,9999999999996% de espacio vacío.

Si el átomo de hidrógeno tuviera el tamaño de la Tierra el núcleo tendría unos 200 metros de diámetro y el resto sería todo espacio vacío: el núcleo sería como el tamaño de un colegio nacional... ¡nada más!, ¿y el resto? El resto sería espacio vacío.

Si tu peso fuera de 70 kilos el número de átomos en tu cuerpo sería de 7.000 cuatrillones (se escribe un 7 seguido de 27 ceros).

Y aún así el 99% de tu peso estaría compuesto por solo seis clases de átomos: tenemos 65% de oxígeno, 18% de carbono y 10,2% de hidrógeno.

Podemos añadir una pequeña cantidad de nitrógeno (3,1%), una pizca de calcio para esos huesos (1,6%), y algo de fósforo (1,2%).

Agregamos 0,25% de potasio y sulfuro y porcentajes más ínfimos de sodio, magnesio y cloro, y ya llegamos al 99,95%.

La historia de nuestros átomos

Cada átomo en ti vino de otra parte. 

Los átomos de tu cuerpo se reemplazan constantemente en diferentes ritmos. Algunos permanecen horas, otros años. Pero al cabo de 10 años la mayoría ya han sido sustituidos.

Y solo hay dos formas en que los átomos pueden entrar a tu cuerpo: a) a través del aire que respiras, y b) de la comida y bebidas que consumes.

En otras palabras: los átomos que llegaron a tu cuerpo vienen del aire, las plantas, los animales y los minerales.

Si pudiéramos seguir la trayectoria de un átomo a través de la historia, este habría estado incorporado muchas veces en otros animales y plantas. De hecho, tus átomos han estado en todo tipo de vida, desde árboles hasta el césped, perros e insectos, dinosaurios y bacterias, hasta personajes históricos.

Con la excepción de algunos átomos producidos por la desintegración radioactiva, cada átomo de tu cuerpo existía cuando la Tierra se formó hace 4.500 millones de año.

Pero, si tus átomos ya existían cuando se formó la Tierra, ¿de dónde vienes?

El Sistema Solar se formó a partir de gas y polvo espaciales que, a su vez, solo podrían haber tenido dos fuentes.

El primero de ellos es, efectivamente, el Big Bang de hace unos 13.800 millones de años, responsable de la producción de hidrógeno.

El resto de los átomos se produjeron en estrellas, que luego explotaron en vastas convulsiones cósmicas conocidas como supernovas.


Con información de BBC Mundo

26 de octubre de 2018

Marte puede tener oxígeno suficiente para sustentar microbios y esponjas

Un estudio de la NASA explora las implicaciones de la presencia del gas en el planeta rojo,


Posibles rastros de agua líquida en Marte fotografiadas por la sonda 'MRO'.

Los primeros héroes de la Tierra fueron microbios. Hace 2.700 millones de años la atmósfera comenzó a acumular oxígeno producido por cianobacterias que vivían en los océanos y eran capaces de realizar fotosíntesis. El oxígeno fue fundamental para la aparición de vida más compleja, incluidos los primeros animales, y hoy sustenta el tipo de metabolismo más habitual del planeta.

Ahora, un nuevo estudio apunta a que en zonas de Marte también puede haber suficiente oxígeno como para mantener a algunos seres vivos terrestres. Vlada Stamenkovic, investigador de la NASA, y colegas del Instituto Tecnológico de California han desarrollado un modelo que calcula la cantidad de oxígeno que podría encontrarse en disolución en las aguas saladas que pueden existir en algunas zonas del planeta. Las sales presentes en estas salmueras permiten que el agua permanezca líquida a temperaturas por debajo de los cero grados. Según el estudio, publicado hoy en Nature Geoscience, en torno a un 6,5% de todo el planeta puede albergar cantidades de oxígeno en la superficie o a unos centímetros por debajo de ella similares a las que en la Tierra bastan para sustentar a algunos microbios y esponjas.

Estudios recientes apuntan a que los primeros ancestros de los animales actuales eran esponjas y que estos seres vivos pueden proliferar en concentraciones de oxígeno muy bajas. Las zonas con posible oxígeno están por encima de los 50 grados de latitud en torno a los polos. Entre las misiones marcianas que analiza el estudio solo una ha explorado estas zonas: la misión Phoenix, que aterrizó sobre lo que podría ser hielo de agua en 2008.

Este mismo año se descubrió en Marte un gran lago de agua salada oculto bajo el hielo del polo sur. El nuevo estudio especula que la concentración de oxígeno en su interior podría ser “alta” si hay un contacto temporal con la superficie o si hay radiación suficiente para que se separen el oxígeno y el hidrógeno. Los responsables del trabajo consideran que estos resultados teóricos pueden explicar el estado de oxidación de algunas rocas marcianas e implican “que hay oportunidades para la vida basada en el oxígeno en el Marte actual u otros cuerpos planetarios gracias a fuentes de oxígeno alternativas a la fotosíntesis”.

Víctor Parro, investigador del Centro de Astrobiología (CAB-CSIC), destaca que hasta ahora la presencia de oxígeno en Marte se ha “despreciado”, debido a las bajas concentraciones. Aunque se trata de un estudio teórico que habría que confirmar con mediciones reales, el científico destaca que “estos modelos resaltan el papel que puede jugar el O₂ disuelto incluso actualmente tanto para la respiración de microorganismos como en la oxidación de metales”.

“Los microorganismos no necesitan O₂ para respirar”, explica, “pero el oxígeno molecular permite obtener mayor energía en los procesos de respiración y su presencia en Marte en concentraciones adecuadas aumenta las posibilidades de nuevos metabolismos y más eficientes. “Por ejemplo permitiría la existencia de bacterias como las que se encuentran en río Tinto [Huelva], que oxidan el hierro de la pirita para obtener energía. Y algo que abunda en Marte es el hierro”, destaca.

“Los autores eligen el grupo de organismos terrestres que son capaces de vivir a concentraciones de oxígeno disuelto en agua más bajas, que son básicamente ciertos tipos de bacterias y las esponjas, y concluyen que las concentraciones de oxígeno que calculan que pueden existir en las salmueras marcianas serían suficientes para que estos organismos pudieran medrar en Marte hoy”, explica Alberto González Fairén, investigador del CAB y la Universidad Cornell. “Por supuesto, es solo una comparación gráfica para resaltar lo elevado de los niveles de oxígeno disuelto en estas salmueras y los autores no insinúan que puedan existir esponjas en bolsas de líquido escondidas en los hielos de Marte. Los posibles habitantes de las salmueras no solo dependerían del oxígeno disponible para respirar: las bajísimas temperaturas, la altísima concentración de sales y la radiación no permiten la existencia de vida similar a la terrestre cerca de la superficie de Marte hoy”, añade.

Otra de las preguntas sin responder que deja el trabajo es si realmente hay salmueras de agua líquida en la superficie de Marte, ya que las pruebas acumuladas hasta ahora no son concluyentes.

11 de septiembre de 2018

¿Cómo es el fenómeno de los fuegos fatuos?


Se cree que son restos orgánicos en descomposición que producen gases (metano y fosfina, sobre todo) que, en contacto con el oxígeno, pueden provocar combustiones efímeras en forma de luces tenues y que son visibles al caer la tarde o por la noche. Se dan sobre todo en zonas pantanosas y en cementerios, por razones obvias. Pero no hay unanimidad en la explicación científica de este fenómeno, lo que ha dado lugar a mucha leyenda popular, como la del hada Morgana (Italia) y a su aparición en libros de Saramago y Goethe, por ejemplo.

30 de agosto de 2018

Agua oxigenda... ¡nos han estado mintiendo todo el tiempo!

¡Ah el agua oxigenada! Esa sustancia llamada químicamente peróxido de hidrógeno cuyo recipiente reposaba en las vitrinas/botiquines de nuestros padres, haciendo juego con el alcohol; el alcohol y el agua oxigenada eran omnipresentes.

Hoy el mundo se me ha hecho un poco más cuesta arriba, y todo por leer que la utilidad desinfectante del agua oxigenada ha quedado en entredicho. Parece ser que aparte de servir para hacer un volcán en tu clase de ciencia vertiéndola sobre levadura (el bicarbonato y el vinagre también cumplían) o para teñir de rubio a tu hermano pequeño cuando entrabas en fase experimentadora, los poderes curativos del agua oxigenada eran casi un bluf, un timo, un engaño en el que participaban inadvertidamente nuestros pobres padres.

De niños todos la teníamos por una sustancia mágica indolora. Preferíamos un bote entero de agua oxigenada sobre la herida recién abierta a unas gotitas de alcohol, que eso si que escocía que daba gusto. Suponíamos que cuando comenzaba a surgir sobre la herida esa espumilla (acompañada de su sonido reactivo peculiar), eso significaba que las huestes de gérmenes que intentaban adentrarse en nuestro cuerpo eran barridas por aquella mortífera sustancia que – sin embargo – era inocua para nosotros. ¡Grave error!

La espumilla se forma por una reacción química que se da entre el peróxido de hidrógeno y una enzima llamada catalasa que se encuentra en nuestras células y sangre. Sin embargo esta reacción no es particularmente “buena” combatiendo a las infecciones. Es probable que tanto el agua oxigenada como el alcohol maten algunas bacterias, sí, pero también matan e irritan a los tejidos sanos en la base de la herida.

¿Entonces qué? ¿Cómo curar los cortes y heridas abiertas? Bien, según puedo leer en el LA Times las reglas han cambiado y los médicos aconsejan: “no echar sobre una herida nada que no te echases en los ojos”.

Lo sentimos mucho. ¿Sigues guardando los botecitos de alcohol y agua oxigenada por si acaso? Pues me temo que – al igual que yo – estás más desactualizado que la casa de Winona Ryder en Stranger Things. Toma nota y apúntate el nuevo protocolo:
Para una herida abierta, por ejemplo un corte o una rozadura profunda, se debe limpiar la herida inmediatamente con agua corriente o con una solución salina durante unos minutos. También puede usarse jabón para limpiar el área circundante. Una vez que la herida esté lo suficientemente limpia, hay que aplicar presión directa y firme con una gasa o una toalla limpia durante unos minutos. A no ser que uno esté tratándose con un anticoagulante, esto debería ser suficiente para detener el sangrado. Tras eso la herida abierta debe cubrirse y mantenerse húmeda, para lo cual puede emplearse vaselina.
Así que ya lo saben, a deshacerse del agua oxigenada en todos nuestros botiquines.

Fuente:

Mailkelnais Blog

6 de agosto de 2018

¿Por qué los buceadores se tiran de espaldas de la lancha?

Hay varias razones. 

La primera es que, si se lanzaran de frente, la inercia de la botella de oxígeno podría golpearles en el cuello, la cabeza o la espalda. Si se arrojaran de cabeza, como un nadador cualquiera, el primer impacto lo recibiría la cara, y así, el regulador (la boquilla) de respiración y la máscara podrían salirse. Eso obligaría a salir de nuevo a superficie para recolocarse todo el equipo. Aun así, si la zona de inmersión es poco profunda o desconocida, se aconseja tirarse de pie o sentados, para estar más “orientados” si se topan con obstáculos.

La técnica para tirarse de pie es conocida como “paso de gigante”, y como bien describe su propio nombre, lo que se ha de hacer es dar un paso muy grande desde la plataforma hacia el mar para evitar que la botella de oxígeno de la espalda choque contra el barco, a la vez que con la mano nos agarramos las gafas y el regulador.

La técnica tradicional


La técnica del "paso de gigante"


Fuentes: YouTube, QUO y la Vida Cotidiana

26 de junio de 2018

La ciencia, clave para alargar la vida de las flores

Investigadores de la Facultad de Biología de la Universidad de Barcelona (UB) han comprobado que se puede alargar la vida de las flores cortadas si se retrasa el proceso de apertura floral, según recoge un estudio publicado en la revista especializada “Plant Science”.

Hasta el momento, las investigaciones sobre la longevidad de las plantas se habían centrado en el proceso de senescencia o muerte celular de las flores, sin embargo, este trabajo analiza por primera vez el proceso de apertura floral como factor determinante de la vida de la flor cortada.

De hecho, en el momento en el que la flor empieza a abrir se produce un aumento del estrés fotooxidativo en la planta; este es un proceso que provoca la síntesis de especies químicas reactivas de oxígeno, la inhibición de la fotosíntesis y, en algunos casos, la senescencia o muerte celular, según una nota de prensa de la UB.

Además, el estrés fotooxidativo, que condiciona todo el proceso de crecimiento de la planta, puede estar causado por condiciones ambientales extremas.

Lea el artículo completo en:

EFE Futuro

22 de febrero de 2018

El rastro más antiguo de la vida en la Tierra

Confirman que unos restos fosilizados de 3.500 millones de años hallados en Australia son de origen biológico.

Unos restos microscópicos descubiertos en unas rocas de 3.500 millones de años constituyen los fósiles más antiguos conocidos así como la prueba directa de vida en la Tierra más temprana hallada hasta fecha. Así lo ha confirmado un equipo de investigadores de las universidades de Wisconsin–Madison y California, en Los Ángeles (UCLA). En un estudio publicado en la revista Proceedings of the National Academy of Sciences, estos científicos, coordinados por el paleobiólogo James William Schopf, de esta última institución estadounidense, y el profesor de Geociencias John W. Valley, de la primera, describen once especímenes microbianos pertenecientes a cinco taxones diferentes –en estos se agrupan organismos que presentan un cierto parentesco entre sí–.

Según estos expertos, es posible relacionar sus características morfológicas con las huellas químicas características de la vida. Aunque algunos ejemplares son, en esencia, similares a algunos microbios que aún pueden encontrase en la actualidad, otros son bacterias y arqueas –un tipo de microorganismos unicelulares– pertenecientes a especies ya extinguidas. En todo caso, vivieron en una época en la que el oxígeno aún no se encontraba de forma significativa en la atmósfera.

A partir de su análisis, los investigadores pudieron constatar que entre los microorganismos, cada uno de unos 10 micrómetros de ancho –un cabello humano tiene el mismo grosor que ocho de ellos–, se encontraban bacterias fototróficas, que aprovechan la radiación solar para generar energía, arqueas productoras de metano y gammaproteobacterias, que oxidan este gas, un compuesto que según algunos modelos teóricos tuvo una importante presencia en la atmósfera primitiva.

Este tipo de estudios sugiere que la vida podría ser un fenómeno muy común en el universo”, afirma Schopf. “Pero, sobre todo, la presencia de estos microbios en la Tierra hace 3.500 millones de años indica que se habría desarrollado en nuestro planeta mucho antes de esa fecha; si bien nadie sabe cuánto antes. Además, confirma que incluso la vida más primitiva puede evolucionar y dar origen, en este caso, a microorganismos más avanzados”. El propio profesor Valley que ha participado en este ensayo llevó a cabo un estudio en 2001 en el que probó que hace 4.300 millones de años ya existían océanos en nuestro planeta. “No tenemos pruebas de que en esa época hubiera vida en la Tierra, pero eso no quiere decir que no se diera”, concluye Valley.

Lea el artículo completo en:

Muy Interesante

9 de enero de 2018

Robert Cornish consiguió resucitar perros, pero ¿funcionaría su método con humanos?

¿Recuerdas la curiosa película Frankenweenie? Tim Burton profundiza con ella en su cortometraje de 1984 con el mismo título y nos cuenta la historia de un niño que intenta resucitar a su querida mascota muerta. La película, sin duda, es una bonita fantasía, pero ¿imaginas que se puediese llevarse a cabo? ¿Imaginas recuperar a tu amigo fiel una vez que te haya dejado?

¿Y si te dijésemos que la historia tiene su propio Frankenweenie? Probablemente nos tomarías por locos, pero Robert E. Cornish intentó hacerlo realidad unas décadas antes de que Burton rodase su cortometraje. Sus experimentos, un tanto demenciales, fueron muy controvertidos en su época, y es que Cornish aseguraba ser capaz de resucitar a los muertos, e incluso se ofreció a hacer una demostración con seres humanos.

¿Quién fue Robert E. Cornish?

Un genio y un prodigio, así se puede describir a Cornish: un joven científico que cautivó y repulsó a la sociedad (y al gobierno) norteamericana en los años 30. Sin duda, es uno de los casos más extraños de la medicina occidental moderna. Nacido en 1894, se licenció con honores de la Universidad de California a los 18 años y obtuvo su doctorado a los 22. Para ganar prestigio, trabajó en diferentes proyectos científicos y experimentos bastante inútiles en busca de patentes. Poco a poco se convirtió en un científico respetado por la comunidad hasta que en 1931 empezó a interesarse por algo que perturbó a muchos: resucitar a los muertos.

Para probar que se podía devolver a la vida a los que ya no están entre nosotros, Cornish decidió experimentar con animales. Así, el 22 de mayo de 1934 llevó a cabo una demostración pública en la que asfixió a cinco perros (todos ellos llamados Lazarus en un guiño al personaje bíblico resucitado) con gas nitrógeno y los mantuvo muertos durante diez minutos. Después, les aplicó su técnica de resucitación. Según los periódicos de la época, los tres primeros intentos fueron un fracaso, pero los dos últimos canes revivieron y sobrevivieron durante meses. Eso sí, resucitaron con importantes daños cerebrales, alteraciones nerviosas severas, motricidad desequilibrada y ceguera.


  

Para habilitar los subtítulos en español: haz click en el botón CC. Después, en la ruedecilla que hay a su lado. Selecciona “subtitles” y “auto-translate”. Elige “español/Spanish” y ¡listo!

Una vez hecho público su experimento, la universidad canceló el proyecto ya que no toleraban el trato al que sometía a los perros con los que experimentaba. Sin embargo, esto no frenó a Cornish, que continuó su investigación en casa, esta vez con cerdos en vez de con perros dada su similitud con el ser humano.

En 1947, Cornish decidió que estaba listo para dar el salto y realizar el experimento con personas. Thomas McMonigle, un recluso condenado a pena de muerte en Estados Unidos, se ofreció como conejillo de indias. Sin embargo, el estado de California (donde estaba condenado) rechazó la petición ya que, si el experimento funcionaba, tendrían que dejar en libertad a McMonigle puesto que la ley no permite mantener bajo arresto a personas discapacitadas, fuera de sus facultades o sin voluntad.

¿En qué consistía la “milagrosa” técnica de Robert Cornish?

El método de Cornish para resucitar a los muertos era bastante sencillo. Primero, hacía circular la sangre por el cadáver gracias a una especie de balancín sobre el que colocaba el cuerpo y que oscilaba para que la sangre se bombease. A este artefacto le llamó teeterboard. Tras esto, inyectaba una solución de suero salino, oxígeno, adrenalina, heparina (un anticoagulante sacado del hígado), fibrina (una proteína coagulante) y sangre al cadáver. A la vez, insuflaba oxígeno a través de un tubo de goma que previamente había introducido en la garganta del animal.

Poco se sabe de lo que fue de Cornish después de que su morboso experimento se hiciese público. Por lo que parece, siguió, como muchos dirían, jugando a ser dios, pero ya al margen de la comunidad científica que lo marginó por considerarlo sensacionalista. Eso sí, aunque parezca extraño, algunas técnicas de reanimación o animación suspendida actuales tienen sus orígenes en este científico extravagante.
Lo que nunca sabremos es si Cornish hubiese sido capaz de resucitar a un ser humano.
Fuente:


google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0