Latest Posts:

Mostrando las entradas con la etiqueta nanotecnologia. Mostrar todas las entradas
Mostrando las entradas con la etiqueta nanotecnologia. Mostrar todas las entradas

6 de octubre de 2016

¿Qué son las "máquinas más pequeñas del mundo" y porqué ganaron el Premio Nobel de Química 2016?

¿Qué tan diminutas pueden ser las máquinas?

Tres científicos fueron los primeros en demostrar que son capaces de ser hasta 1.000 veces más pequeñas que el cabello humano.

Se trata de Jean Pierre Sauvage, Fraser Stoddart y Bernard Feringa, los galardonados del Premio Nobel de Química 2016.

Cada uno, en su tiempo, abrió las puertas a un nuevo campo de la química. El comité que otorga los Nobel comparó sus esfuerzos con los primeros intentos por desarrollar motores eléctricos en 1830, que dieron pie a una verdadera revolución.

Estos científicos de las universidades de Estrasburgo (Francia), Northwestern (EE.UU.) y Groningen (Holanda), respectivamente, fueron premiados por diseñar y sintetizar las llamadas "máquinas moleculares".

Son moléculas con movimientos controlables que pueden realizar una tarea cuando se les añade energía y que pueden tener múltiples aplicaciones en la industria, la medicina y los servicios eléctricos.

Nanomáquinas en nuestro cuerpo

Pueden ser usadas para desarrollar nuevos materiales, sensores y sistemas para almacenar energía.

"Piensa en microrobots, en nanomáquinas que en el futuro un médico podrá inyectar en el cuerpo humano para que busque células de cáncer", explicó por vía telfónica el holandés Bernard Feringa, quien no ocultó su emoción y su sorpresa por haber sido premiado.

"Me siento como los hermanos Wright que desarrollaron las primeras máquinas voladoras y ahora tenemos el Airbus", agregó.

Para que algo sea considerado una máquina, debe consistir en varias partes que semuevan de manera coordinada y desarrollen una tarea.

Jean Pierre Sauvage, quién irrumpió en este campo por accidente (al principio su campo era la fotoquímica), desarrolló en 1994 una cadena molecular -conocida como catenano- en la que un anillo rotaba de forma controlada alrededor de otro anillo cada vez que se le aplicaba energía.

Ese mismo año, Fraser Stoddart, quien creció en una granja de Escocia sin electricidad, pudo controlar los movimientos de anillos moleculares unidos por un eje.

Mientras que Ben Feringa, quien también creció en una granja, produjo en 1999 el primer motor molecular que giraba en una dirección particular.

Más tarde, en 2011, su equipo construyó un nanoauto con una carrocería molecular que constaba de cuatro ruedas y se podía mover sobre una superficie.

El nano automóvil

El artículo completo en:

BBC 

Las nano máquinas en 500 palabras (en inglés)

3 de septiembre de 2016

Nanotecnología, la ciencia que construirá al 'superhombre'

La escala nano permite añadir propiedades nuevas a la materia, ofreciendo soluciones para todos los campos.

Tejidos repelenes al agua, parachoques, incluso la raqueta de Nadal ya contienen material fabricado con nanotecnología.





Es el 'ladrillo' de la materia, lo más básico, lo más pequeño. En un milímetro cabe un millón de nanómetros, y sobre esa medida ya está jugando la ciencia. Para entender el tamaño nano, hay que pensar que un post-it en el planeta tierra tiene la misma proporción que tres nanómetros en nuestra realidad. Y lo bueno de jugar a esa escala es que podemos modificar la propia esencia de la materia. Cambiar las propiedades de las cosas. Entre la realidad y la ciencia ficción, todo parece posible en nanociencia, que se presenta como el futuro motor en la lucha contra enfermedades como el cáncer.


"El oro tal como lo conocemos es amarillo, pero si lo troceas en nanómetros, puede ser del color que tú quieras: violeta, rojizo, azulado...", explica Pedro A. Serena, investigador del Instituto de Ciencias de Materiales del Consejo Superior de Investigaciones Científicas (CSIC). Esto se debe a que el color "no es más que luz emitida por los electrones, que saltan de un lugar a otro. Según el salto sea más grande o pequeño, cambia el tono", indica Serena, que ha dirigido el curso Nanotecnología: Luces y sombras del control de la materia a escala atómica, dentro de los ciclos organizados por la Universidad Internacional Menéndez Pelayo en Santander (UIMP) en Santander.

Esta reducción a esta escala nano provoca los llamados "efectos del tamaño": al dividir algo en partes más pequeñas, aumenta la superficie expuesta y la materia, al estar más en contacto con el exterior, se vuelve más reactiva. Es la consecuencia de un cambio radical entre el volumen -que se mantiene- y la superficie del objeto -que aumenta exponencialmente-. Un proceso que saca a la luz nuevas propiedades y que, incorporado a gran escala, llegan a nuestra vida cotidiana en forma de aplicaciones inéditas.

Nanopartículas bactericidas para preservar líquidos durante más tiempo, tejidos o manteles hidrofóbicos -que repelen el agua-, contrastes tumorales o los móviles y pen drives son soluciones nanotecnológicas "invisibles", que se han instalado de puntillas en nuestro día a día, y que son la punta del iceberg de lo que se avecina.

Uno de los campos de mayor aplicación es en el refuerzo de materiales. En la construcción, para obtener un hormigón más resistente, o en transportes, para los parachoques de coches o alas de aviones. Esta propiedad reforzante puede aplicarse en muchas áreas. "La suela de las zapatillas deportivas Adidas o la raqueta de tenis Nadal están reforzados con nanotubos de carbono", ejemplifica Serena. Un refuerzo que tiene una particularidad: con una pequeña cantidad de nanopartículas se puede cambiar las propiedades de un objeto grande.

El artículo completo en:

El Mundo Ciencia

Crean un polo (camiseta) con 'aire acondicionado' contra el calor

Está fabricada con una variante de polietileno con poros microscópicos que reflejan la luz visible y permiten que escape el calor corporal.

Con este polo estarás casi 3°C más fresco!!!!
 




Recreación de las micro fibras de los polos que mantendrán siempre freco.

Con más o menos acierto, el ser humano se ha vestido a lo largo de toda la historia con pieles de animales y diferentes tejidos para mantener el calor corporal, pero diseñar ropas que logren justo lo contrario aún hoy es un reto. La clave para crear prendas más frescas es utilizar materiales que permitan la transpiración. Una estrategia que no llegó a convencer al grupo de ingenieros de la Universidad de Stanford (en Estados Unidos) que ha desarrollado un tejido que refleja la luz solar y facilita la expulsión de calor. Su estudio acaba de ser publicado en la revista Science.


"Si puedes enfriar a la persona en lugar del edificio donde vive o trabaja, podremos ahorrar energía". Así resume la filosofía de este trabajo Yi Cui, uno de los autores y profesor asociado de Ciencias e Ingeniería de los Materiales y Ciencias Fotónicas en Stanford. El problema es que, a la temperatura normal de la superficie de la piel, 34ºC, el cuerpo humano emite radiación infrarroja en un rango de longitud de onda que se solapa en parte con el espectro de la luz visible. En otras palabras: si la prenda no es transparente, no deja salir el calor. Y nadie querría vestirse para seguir pareciendo desnudo. 

La solución vino de la mano de un tipo de plástico: el polietileno con nanoporos (denominado nanoPE). Este material es opaco y posee poros conectados con un diámetro de entre 50 y 1.000 nanómetros, un tamaño que permite dispersar y reflejar la luz visible a la vez que deja pasar la radiación infrarroja. Para que sea más parecido a una tela convencional, los científicos crearon un tejido formado por tres capas: dos láminas de esta variante de polietileno separadas por una malla de algodón, que aporta resistencia y espesor al conjunto. 

El artículo completo en:

El Mundo (España)

2 de mayo de 2016

El accidenteque creó una batería que dura toda una vida

Crear una batería que dure toda una vida parecía difícil de lograr, aunque un grupo de investigadores estadounidenses lo consiguió.

Lo que más llama la atención es que todo fue fruto de un accidente.





Científicos de la Universidad de California, en Irvine, Estados Unidos, estaba buscando una forma de sustituir el litio líquido de las baterías por una opción más sólida y segura (las baterías de litio son extremadamente combustibles y muy sensibles a la temperatura) cuando dieron con esta batería 400 veces más eficiente que las actuales.


Empezaron a experimentar con nanocables de oro recubiertos con un gel de electrolitos y descubrieron que eran increíblemente resistentes. La batería podía seguir trabajando de forma efectiva durante más de 200.000 ciclos de carga.

Durante mucho tiempo, los científicos han experimentado con nanocables para baterías.
Esto se debe a que son miles de veces más delgados que el cabello humano, altamente conductores y cuentan con una superficie amplia para el almacenamiento y transferencia de electrones.

El problema estaba en que estos filamentos son extremadamente frágiles y hasta ahora no aguantaban la presión de carga y descarga.
Pero un día la estudiante de doctorado Mya Le Thai decidió colocar en estos delicados hilos una capa de gel.

"Mya estaba jugueteando y lo cubrió todo con una un fina capa de gel antes de empezar el ciclo", explicó Reginald Penner, consejero de departamento de química la Universidad de California en Irvine.

"Descubrió que tan solo usando este gel (de electrolitos) podía someterlos a ciclos (de carga y descarga) cientos de miles de veces sin que perdiera su capacidades".
Y lo hizo durante tres meses.

"Esto es increíble porque estas cosas típicamente mueren dramáticamente tras 5.000 o 6.000 ciclos, 7.000 como mucho", agregó

Penner le contó a la revista Popular Science que cuando empezaron a probar los dispositivos, se dieron cuenta que no iban a morir.

Los expertos piensan que la efectividad de la batería de Irvine se debe a que la sustancia viscosa plastifica el óxido metálico en la batería y le da flexibilidad, lo que evita el agrietamiento.

"El electrodo revestido mantiene su forma mucho mejor, lo que lo hace una opción más fiable", explicó Thai.

El artículo completo en:

BBC Ciencia

21 de septiembre de 2015

IBM acaba de fabricar el primer procesador funcional de solo 7 nanómetros

IBM logra fabricar el primer procesador funcional de solo 7 nanómetros 

IBM ha anunciado hoy un avance que marcará un momento histórico en la industria de la computación: la fabricación del primer procesador con transistores de 7 nanómetros, unas 1,400 veces más pequeño que el grosor de un cabello humano. El chip tiene 4 veces la capacidad de los procesadores actuales. La Ley de Moore sigue de momento más vigente que nunca.
 
La compañía ha confirmado hoy jueves el avance, adelantado en medios como el NYT, y ha asegurado que es fruto de su inversión de 3.000 millones de dólares durante 5 años en investigación en procesadores y computación. En dicha inversión participan otras compañías como Global Foundries (a quien IBM vendió su negocio de fabricación de chips el año pasado), Samsung y otras firmas privadas y organismos públicos.


El anuncio se produce justo cuando se comenzaba a dudar que la fabricación de procesadores pudiera pasar la barrera actual de los 14 nanómetros y la futura, pero ya posible, de los 10 nanómetros. Ir más allá comenzaba a suponer importantes barreras de pura física. IBM ahora se ha adelantado incluso a Intel en la creación del primer chip con transistores de 7 nanómetros (por comparación, un glóbulo rojo mide unos 7.500 nanómetros de diámetro). Para conseguirlo, la compañía ha utilizado silicio-germanio en lugar de puro silicio en determinadas zonas del chip, lo que le ha permitido la reducción de tamaño manteniendo la estabilidad del procesador y multiplicando por 4 su capacidad.


IBM logra fabricar el primer procesador funcional de solo 7 nanómetros


El avance, según IBM, permitirá construir microprocesadores con más de 20.000 millones de transistores. La reducción del tamaño de estos chips no solo permitirá concentrar mayor poder de computación en el mismo espacio, también debería dar lugar a mejoras en el consumo de energía (y, por extensión, en la duración final de las baterías de los equipos).


IBM asegura que aún deberá pasar aún un tiempo hasta que estos procesadores estén disponibles comercialmente, aunque no especifica cuánto. Desde luego será difícil verlos en equipos y sistemas antes de los próximos dos o tres años. Aún así, ahora ya sabemos que llegar a la barrera de los 7 nanómetros es posible. Eso supondrá un nuevo y gran salto en la computación. Aunque la pregunta sigue ahí: ¿qué ocurrirá después? [vía NYT y VentureBeat]

Tomado de;

Gizmodo

Lea también:
50 años de la Ley de Moore: ¿qué ocurrirá cuando ya no se cumpla?

Acaban de cumplirse 50 años de la Ley de Moore, enunciada en 1965 por Gordon Moore, uno de los… Seguir leyendo 

23 de diciembre de 2014

Lo mejor del 2014 para el MIT: realidad aumentada, nanochips y 3D



El MIT Technology Review presentó su relación de las tecnologías “más rompedoras” del año.

Realidad aumentada, accesorios "vestibles", nanochips y microimpresión 3D destacan entre las tecnologías más innovadoras en el 2014, un año marcado por hitos en Internet como el reconocimiento del "derecho al olvido" en la UE, la acumulación de poder de las tecnológicas, el cibercrimen o el espionaje masivo.
Robots más ágiles para caminar, dispositivos móviles encriptados para mejorar la seguridad y privacidad, drones de uso civil como agricultura y sensores "neuromórficos" inspirados en el cerebro para descifrar pautas de aprendizaje son asimismo algunas de las tecnologías "más rompedoras" este año, según un listado de MIT Technology Review.
También el "Big Data" o análisis "inteligente" de datos combinado con "inteligencia artificial" en ámbitos como las energías renovables, y el impulso de programas informáticos que mejorarán la colaboración social móvil.
Un año más las tabletas han mantenido su crecimiento aunque con cierta contención y asimismo los teléfonos "inteligentes" aunque de forma moderada en Occidente, mientras que ganan tirón los de pantalla de dimensiones grandes con características de teléfono y tableta.
La tecnología "de vestir", la que se lleva encima, como relojes, pulseras o brazaletes, con funcionalidades como la medición de parámetros biológicos y control de la salud, se quiere poner de moda aunque sigue sin despuntar con la intensidad que espera la industria.
La nanotecnología y la nanociencia empiezan a imponer su soberanía, con hitos como las píldoras "inteligentes" para la lucha contra enfermedades como el cáncer.
Y de nuevo las grandes tecnológicas mantienen su carrera de adquisiciones millonarias para dar salida a sus enormes beneficios.
Sin embargo, persiste la tendencia generalizada a desviar el grueso de su facturación a países con tributaciones menores, lo que ha alentado a las autoridades europeas a endurecer la legislación en el sector.
Entre las adquisiciones más sonadas en el 2014 en el mundo tecnológico, las de Facebook, con la compra del popular servicio de mensajería instantánea WhatsApp, y la de Oculus VR, líder en tecnología de realidad virtual inmersiva. La red social ha puesto en marcha además este año la plataforma de publicidad Atlas para comprar anuncios en sitios ajenos a la red social.
En el lado negativo, Facebook se ha enfrentado a escándalos como la publicación de una investigación que delataba experimentos psicológicos a sus usuarios.
En cuanto a Google, entre sus muchas adquisiciones destacan la de Nest Labs, fabricante de termostatos y detectores de humo "inteligentes para acceder al mercado doméstico, o Lift Lab, quedesarrolla cucharas "inteligentes" para enfermos de Parkinson.
La tecnológica ha mantenido en el 2014 su apuesta para sacar adelante proyectos como "Loon" con el que llevar internet a zonas remotas del Planeta o sus gafas interactivas "Google Glass"; por primera vez, Google ha mostrado este año su prototipo de automóvil que conduce solo.
A nivel legislativo, tras el órdago recibido la pasada primavera por el triunfo de un español al que la Justicia Europea dio la razón frente a Google en su petición de "derecho al olvido" en internet, un nuevo pulso legal en España contra la tecnológica se ha saldado hace unos días con el popular cierre de Google News en este país.
El 2014 ha sido también el año de la economía "colaborativa" al extenderse a nuevos sectores la filosofía del caso "Uber", un servicio para compartir transporte gracias a aplicaciones móviles que ha cambiado las reglas del juego económico y que está levantado ampollas entre los taxistas de todo el mundo.
En el mundo de los videojuegos, corrientes alternativas independientes y títulos móviles -como "Monument Valley" o "Hearthstone" como paradigma-, impulsores de innovación y creatividad, conviven ya de tú a tú con las superproducciones.
La seguridad en internet ha sido de nuevo tema de preocupación para los internautas; laAgencia de Seguridad Nacional (NSA) de Estados Unidos recopila cada día millones de imágenes personales interceptadas en comunicaciones electrónicas que luego utiliza en sofisticados programas de reconocimiento facial, publicaba hace unos meses la prensa estadounidense.
Entre los mayores peligros informáticos detectados este año, los agujeros de seguridad Heartbleed y Shellshock; el ataque a la base de datos de Sony; Celebgate o el robo masivo de imágenes de celebridades desnudas, y Machete, una amenaza persistente sofisticada de habla hispanadirigida especialmente contra servicios de inteligencia.
Hace unas semanas se descubrió que un programa de ciberespionaje altamente sofisticado llamado Regin, previsiblemente controlado por un Estado, robaba datos de forma masiva a individuos y pequeños negocios preferentemente.
También este año Microsoft dejó de dar soporte técnico oficialmente a Windows XP y a Office 2003, aumentando los riesgos de seguridad.
Tomado de:

23 de noviembre de 2014

Crean el generador eléctrico más pequeño y delgado del mundo

Por primera vez, un equipo de científicos del Georgia Institute of Technology y de la Universidad de Columbia (EEUU) ha logrado demostrar las propiedades piezoeléctricas de un material tan flexible como el grafeno, generando corriente eléctrica mediante deformaciones mecánicas en disulfuro de molibdeno (MoS2), lo que ha dado como resultado el generador eléctrico más fino que se ha logrado hasta ahora.

El estudio, que ha sido publicado en la revista Nature, explica que este material (que se encuentra en la naturaleza en el mineral molibdenita) podría utilizarse para fabricar generadores eléctricos microscópicos que podrían introducirse en la ropa, transformando la energía de nuestros movimientos en electricidad, pudiendo cargar así dispositivos médicos, sensores portátiles y, por supuesto, el móvil.

“Lo realmente interesante es que hemos descubierto que un material como el MoS2, que no es piezoeléctrico en forma bruta [tridimensional], puede convertirse en piezoeléctrico cuando se reduce a una capa de grosor atómico [bidimensional]”, afirma Lei Wang, coautor del estudio.

Esta nueva generación de materiales del futuro podría tener multitud de aplicaciones interesantes y llamativas, como la citada posibilidad de producir electricidad sin necesidad de contar con una fuente externa (mediante la energía de nuestro movimiento corporal) o el diseño de células fotovoltaicas altamente eficientes que fuesen capaces de absorber un rango muy amplio de energía solar.

Fuente:

Muy Interesante

10 de noviembre de 2014

Bioquímicos desarrollan una alternativa eficaz a los antibióticos

La fuerte resistencia de las bacterias a los antibióticos representa un grave problema para la humanidad. Pero científicos de la Universidad de Berna (Suiza) ha desarrollado una sustancia que representa una alternativa eficaz a los antibióticos.

Se trata de una especie de cebo para bacterias diseñado a partir de unas nanopartículas artificiales -a base de lípidos- llamadas liposomas.

El estudio, publicado en la revista 'Nature Biotechnology', explica que este cebo actúa como señuelo para las toxinas bacterianas consiguiendo atraparlas, secuestrarlas y neutralizarlas por completo. Sin toxinas las bacterias se vuelven indefensas y pueden ser eliminadas por el mismo sistema inmunológico.

"Hemos hecho un cebo irresistible para las toxinas bacterianas. Las toxinas se ven fatalmente atraídas por los liposomas, y una vez que están unidos, pueden ser eliminados fácilmente sin peligro para las células huésped", explica Eduard Babiychuk que junto con Annette Draeger encabeza el estudio.

La sustancia ha sido probada con éxito en ratones: los pacientes con sepsis se curaron después de la administración de liposomas y no necesitaron ningún tratamiento antibiótico adicional. 

Fuente:

Actualidad RT

18 de octubre de 2013

¿Cuán pequeño puede ser un objeto creado por el Hombre?

Los científicos son cada vez más adeptos a crear objetos a escala atómica. En 1989, investigadores de la firma IBM acapararon titulares de prensa al escribir el logotipo de la compañía con átomos individuales de xenón que arrastraron con ayuda de un microscopio electrónico.

Para 2010 habían conseguido con éxito dibujar mapas del mundo tan pequeños que mil de ellos cabían en un grano de arena. Pero estos logros de la nanotecnología tienen sus límites.

A escala atómica se producen extraños fenómenos cuánticos que afectan el desempeño de los objetos. Uno de ellos se conoce como el "Efecto Casimir", una fuerza de atracción que surge entre dos objetos metálicos separados por una distancia pequeña en relación con su tamaño, que ocasiona que las nanomáquinas se atasquen.

A principios de año, investigadores en Alemania tropezaron con otra limitación: el meneo de los electrones debido al calor del ambiente que los rodea genera campos magnéticos que afectan las habilidades de los microscopios electrónicos.

Pero incluso si se superan estos problemas, los científicos saben que las complicaciones del ámbito cuántico evitarán que logren crear objetos complejos mucho más pequeños que un átomo.

Fuente:

BBC Ciencia

2 de mayo de 2013

Nanomateriales: Un polvo blanco para limpiar el agua


Entre los métodos tradicionales para limpiar sustancias químicas se encuentran los materiales de grafeno y las esponjas.
Un equipo científico usó un nanomaterial que puede absorber hasta 33 veces su peso para limpiar agua contaminada.

Se trata del nitruro de boro, que puede absorber en cantidades enormes y de manera preferencial sustancias orgánicas contaminantes presentes en el agua, como sustancias químicas industriales o aceite de motores.

Los autores creen que en el futuro este material podría tener una amplia gama de aplicaciones en el tratado y purificación del agua, como en la limpieza de derrames.

Del nitruro de boro, un material de nueva generación, los científicos habían destacado inicialmente su aplicabilidad para el futuro de la industria electrónica.
Ahora, el estudio publicado en la revista especializada Nature Communications demuestra no sólo que fue utilizado con éxito para limpiar agua contaminada, sino que además el nitruro de boro es más fácil de limpiar y más reutilizable que otros nanomateriales probados hasta ahora.

Entre los familiares de esos nanomateriales están los parientes con base de carbono, como el grafeno y los nanotubos, que han sido muy elogiados.

De ellos destacan su proporción de superficie-peso, que les permite absorber cantidades increibles para su tamaño, algo que los hace atractivos para la limpieza de sustancias contaminantes.

Pero la nueva investigación sugiere que el preparado de nitruro de boro supera ampliamente la eficacia de muchos nanomateriales y de otros métodos más tradicionales, como las esponjas.

Lea el artículo completo en:

El Mundo Ciencia

13 de abril de 2013

Increible: Un material "milagroso" hecho a base de sol y agua

Malcom Brown y David Nobles

Malcom Brown (izq.) es un pionero en el campo de la nanocelulosa.

Es ocho veces más resistente que el acero inoxidable, transparente, ligero, conduce la electricidad y algunos aseguran que este material "maravilla", como lo llaman algunos, transformará la agricultura tal y como hoy la conocemos.

Hablamos de la nanocelulosa cristalina, un material que se obtiene a partir de la compresión de fibras vegetales o se cultiva usando microorganismos como las bacterias.
La nanocelulosa cristalina es considerada por algunos como una opción más ecológica y asequible que el publicitado grafeno, y sus aplicaciones incluyen la industria farmacéutica, cosmética, biocombustibles, plásticos y la electrónica.

Según estimaciones del gobierno estadounidense, en 2020 su producción moverá una industria de unos US$600.000 millones anuales.

Transformará la agricultura

Hasta hace poco una de las mayores preocupaciones de los adeptos a la nanocelulosa era cómo producirla en grandes cantidades y a un bajo costo, pero científicos creen que por fin han dado con la técnica para cultivar este material de forma abundante usando algas genéticamente modificadas.

El investigador Malcom Brown, profesor de biología de la Universidad de Texas en Austin, Estados Unidos, y uno de los pioneros en el mundo en este campo de investigación, explicó recientemente durante el Primer Simposio internacional de Nanocelulosa, cómo funcionaría el nuevo proceso.
"Tendremos plantas para producir nanocelulosa abundantemente y de forma barata"

Malcom Brown, biólogo

Se trata de un alga de la familia de las mismas bacterias que se usan para producir vinagre, conocidas también como cianobacterias. Unos organismos, que para su desarrollo sólo necesitan luz solar y agua, y que tendrían la ventaja de absorber el exceso de dióxido de carbono en la atmósfera, causante del efecto invernadero.

"Si podemos completar los últimos pasos, habremos completado una de las mayores transformaciones potenciales de la agricultura jamás llevadas a cabo", dijo Brown.

"Tendremos plantas para producir nanocelulosa abundantemente y de forma barata. Puede convertirse en un material para la producción sostenible de biocombustibles y muchos otros productos".

Nanocelulosa cristalina

cianobacteria

Se cree que el nuevo método tendría muchas aplicaciones en distintos campos de la ciencia.

La celulosa en sí es uno de los productos más abundantes del planeta, presente en muchos tipos de fibras vegetales. Pero en escala nano las propiedades de este material cambian por completo.

Como pasa con el grafito, material con el que se producen los nanotubos de grafeno (más resistentes que el diamante), en este caso la fibras nano de la celulosa pueden encadenarse en largas fibras, lo que se conoce como celulosa "nanocristalina".

El material resultante es tan resistente como el aluminio y puede usarse tanto para confeccionar chalecos de protección ultraligeros, como para pantallas de dispositivos electrónicos e incluso para cultivar órganos humanos.

Fábrica natural

Aunque actualmente ya existen plantas dedicadas a la producción de nanocelulosa cristalina, los elevados costos de producción todavía frenan el crecimiento de esta industria.

La producción de este material generalmente entraña la compresión de fibra vegetal, o el cultivo de grandes tanques de bacterias, que tienen que ser alimentadas con costosos nutrientes.

Pero ahora las investigaciones de Brown y su equipo, apuntan al uso de este alga azul-verdosa capaz de generar nanocelulosa naturalmente aunque en pequeñas cantidades. Por ello, el equipo plantea modificarla artificialmente, introduciendo genes de la bacteria Acetobacter xylinum usada para producir vinagre.
De este modo, el alga podría producir el material en grandes cantidades y sin necesidad de aportar nutriente alguno, más allá de suministrarle agua y exponerla a la luz del sol.

Hasta el momento, observó Brown, el equipo de investigación ha logrado que este alga cree una larga cadena de nanocelulosa, pero ahora trabajan para que el organismo sea capaz de producirla directamente en su estado cristalino, cuando es más estable y fuerte.

Fuente:

BBC Ciencia

Contenido relacionado

6 de marzo de 2013

Crean una batería que podría cargar teléfonos móviles en cinco segundos


 Crean una batería revolucionaria que podría cargar teléfonos móviles en cinco segundos 

Un grupo de investigadores ha presentado un nuevo tipo de batería que podría cargar un teléfono móvil o incluso la de un coche en segundos. El dispositivo puede cargar y descargar entre cien y mil veces más rápido que las baterías convencionales. Esta nueva clase de baterías, llamadas supercondensadores a microescala a base de grafeno, están hechas de una capa de un átomo de carbono de espesor. Además, su fabricación es relativamente sencilla y se podrá integrar fácilmente a distintos aparatos, ayudando incluso a reducir el tamaño de teléfonos móviles y demás aparatos de alta tecnología.

El equipo asegura que su invento no solo servirá para cargar en menor tiempo los teléfonos y coches eléctricos, sino también para reducir el tamaño de los aparatos. "La integración de las unidades de almacenamiento de energía en los circuitos electrónicos es difícil y a menudo limita la miniaturización de todo el sistema", explicó Richard Kaner, profesor de Ciencias de los Materiales e Ingeniería en la Escuela Henry Samueli de Ingeniería y Ciencias Aplicadas de la Universidad de California, Los Ángeles (UCLA). Para desarrollar su nuevo microsupercondensador, los investigadores utilizaron una lámina bidimensional de carbono, conocido como grafeno, que en la tercera dimensión (altura) tiene el grosor de un solo átomo.

 El equipo también encontró una manera fácil de producir estas revolucionarias pilas utilizando un quemador (grabador) de DVD estándar. "Los métodos tradicionales para la fabricación de microsupercondensadores implican técnicas litográficas muy complejas que han demostrado ser ineficaces para construir dispositivos rentables, lo que limita su aplicación comercial", afirmaron los creadores.

Los investigadores dicen que la gente podría incluso crear estas baterías en condiciones caseras. "El proceso es sencillo, rentable y se puede hacer en casa". "Uno solo necesita una grabadora de DVD y óxido de grafito disperso en agua, que está comercialmente disponible a un costo moderado". El equipo dice que ahora esperan asociarse con fabricantes de 'gadgets'. "Ahora estamos buscando socios de la industria para ayudarnos a producir en masa nuestros microsupercondensadores", concluyó Kaner.

Fuente:

Actualidad RT

29 de noviembre de 2012

Consiguen primera imagen de ADN a través de un microscopio electrónico

Un equipo de investigadores ha logrado por primera vez capturar la imagen de ADN, el modelo de la doble hélice de ADN que James Watson y Francis Crick propusieron en 1953. Hilos de ADN bajo una técnica que permitirá en el futuro ver cómo las proteínas, el ARN y otras biomoléculas interactúan con el ADN.

Primera imagen de ADN a través de un microscopio

Y es que la estructura de ADN fue descubierta originalmente usando cristalografía de rayos X. Esto supone rayos X de dispersión de los átomos en matrices cristalizadas de ADN para formar un complejo patrón de puntos sobre una película fotográfica. La interpretación de las imágenes requiere de matemáticas complejas para averiguar lo que la estructura cristalina podría dar lugar en los patrones observados.

Ahora estas nuevas imágenes son mucho más evidentes, ya que se trata de imágenes directas de las cadenas de ADN, aunque vistas con electrones en lugar de fotones de rayos X. ¿Cómo? El truco utilizado por Enzo di Fabricio, investigador principal de la Universidad de Génova, fue enganchar hilos de ADN de una solución diluida y ponerlas sobre silicio nanoscópico.

El equipo desarrolló un modelo de pilares que es extremadamente repelente al gua, lo que provocó que la humedad se evaporara rápidamente dejando atrás las hebras de ADN, las cuales se estiraron y podían observar claramente. Luego, para conseguir imágenes de alta resolución, perforaron agujeros diminutos sobre la base de los pilares de silicio.

Unos resultados que revelaron la rosca espiral de doble hélice del ADN visible. Una técnica que según los científicos, debería ser capaz de ver las moléculas individuales de ADN con más detalle y su interacción con proteínas, ARN y otras biomoléculas.
Fuente:

ALT1040

24 de septiembre de 2012

Nanoplaneta: Una expedición a la célula


La revista The Scientist convoca anualmente los Labby, unos premios multimedia donde se seleccionan las mejores imágenes y los mejores videos sobre ciencia.

Uno de los finalistas encabeza este post. Se llama “Nanoplanet: An expedition to the cell” (Nanoplaneta: Una expedición a la célula), en el que tendremos la oportunudad de viajar al interior de la célula, donde proteínas y pequeñas moléculas trabajan duro para recibir y transmitir las señales del exterior.
Sitio Oficial | The Scientist

Tomado de:

24 de agosto de 2012

Las nanopartículas, un temor grande para las cosechas


La soja es una de los cultivos más extendidos en todo el mundo.

Científicos alegan que un par de sustancias químicas ampliamente usadas, con forma de "nanopartículas", pueden extenderse en las cosechas y afectar su crecimiento y la fertilidad del suelo.

A pesar de que el uso de las nanopartículas se ha incrementado en los últimos años todavía queda mucho por entender en cuanto a su impacto medioambiental. 

Ahora, un reciente estudio publicado en la revista de la Academia Nacional de las Ciencias de Estados Unidos demuestra que las partículas presentes en algunos gases y ciertos fertilizantes afectan de forma negativa el crecimiento de la soja y a su suelo.

Las nanopartículas, concretamente, afectan a cierto tipo de bacterias de las cuales la planta depende para su crecimiento.

Miles en un milímetro

Una nanopartícula se define como una partícula que tiene al menos un diámetro menor a 100 nanómetros (nm). Un nanómetro es una medida de longitud usada a nivel microscópico. En un milímetro entran un millón de nanómetros.

Las nanopartículas o los nanomateriales tienen una amplia variedad de aplicaciones, desde cosméticos y materiales de revestimiento hasta aditivos para el combustible. Cada vez más se evalúa su posible uso en aplicaciones médicas como la administración de cierto tipo de drogas.

A pesar de que muchos de sus efectos han sido ampliamente documentados, algunos de sus mecanismos no han sido todavía comprendidos del todo. Las inquietudes giran en torno a sus efectos en el medioambiente, lo que podría afectar a la salud de las plantas, los animales o incluso los humanos.


En un milímetro caben miles de nanopartículas.

En el estudio recientemente publicado, un equipo dirigido por la profesora Patricia Holden, de la Universidad de California, examinó el efecto en el cultivo de la soja de dos nanopartículas ampliamente usadas.

Más crecimiento

La soja es un cultivo de una importancia económica enorme. Globalmente es el quinto producto agrícola en el mundo.

Los investigadores se centraron en los efectos que tienen nanopartículas de óxido de cinc y de cerio sobre este cultivo. El primero es un componente común en cosméticos y suele acabar en desechos que se usan como fertilizantes. El segundo se utiliza en algunos combustibles diesel para mejorar el proceso de combustión y reducir las partículas emitidas.

Las plantas cultivadas en presencia de nanopartículas de óxido de cinc crecieron más que aquellas a las que no se suministró este compuesto. Pero se detectó mayor presencia de cinc en partes comestibles de la planta como las hojas y granos.

Las nanopartículas de óxido de cinc son tóxicas para células de mamíferos producidas en el laboratorio, pero su efecto en humanos todavía no ha sido estudiado de manera integral.

El crecimiento de la soja se vio retrasado cuando las plantas fueron cultivadas en presencia de altos niveles de nanopartículas de óxido de cerio.

Bacterias que fijan nitrógeno


Las raíces de la soja tienen bacterias que fijan el nitrógeno, elemento esencial en el crecimiento de la planta.

El cerio penetró en la raíz de las plantas.

La soja forma parte de la familia de las legumbres, cuyas raíces alojan bacterias que transforman el nitrógeno atmosférico en una forma que las plantas pueden usar para su crecimiento. Este proceso es conocido como la fijación del nitrógeno.

Las partículas de cerio parecieron inhibir por completo la habilidad de las bacterias para fijar el nitrógeno.
Refiriéndose a la toxicidad de las nanopartículas, la profesora Vicki Stone, de la Universidad escocesa de Heriot-Watt, afirmó que "los nanomateriales no son o 'peligrosos por igual' o 'seguros por igual'".

"Los efectos suelen depender de sus características físicas y químicas. Esto es en lo que se están centrando los científicos, para así poder predecir los niveles de toxicidad con base en estas características".

Las autores concluyen que la acumulación de nanomateriales manufacturados en tierras de cultivo podría afectar a la calidad y producción de dichos cultivos y desembocar en la necesidad de un mayor uso de fertilizantes sintéticos.

Fuente:

BBC Ciencia

Contenido relacionado

21 de mayo de 2012

Científicos se indignan ante el exceso de sustancias químicas en nuestros cuerpos y medioambiente

Científicos y representantes de instituciones internacionales relacionadas con la salud y el medioambiente se han reunido del 16 al 18 de mayo en la Universidad Politécnica de Madrid para dar voz de alarma sobre los perjuicios de nuevas tecnologías y sustancias, incluyendo transgénicos, pesticidas, nanotecnologías y ondas electromagnéticas entre otras.

 

Ecologistas en Acción, al igual que los científicos participantes, acusan a las autoridades de dar la espalda a la ciencia independiente, para privilegiar los estudios parciales de la industria sobre los riesgos de sus propios productos. Un verdadero escándalo sanitario contra el cual llaman a actuar, si no se quiere ver seguir aumentando el número de cánceres en el futuro.

Desde el fin de la 2ª Guerra Mundial, el volumen de substancias químicas producidas al año en Europa ha pasado de ser de 1 millón a 400 millones de toneladas. Hoy en día, estas están por todas partes, tanto en nuestro entorno, comida, como en nuestros productos de uso cotidiano como cosméticos, productos de limpieza, productos de aseo personal, plásticos de envase etc. Nicolás Olea, catedrático de la Facultad de Medicina de la Universidad de Granada, se alarma entre otros que el Bisphenol A, una sustancia estrogénica y un pertubador endocrino presente de forma habitual en los plásticos, sea presente en la totalidad de la población: “El 100% de las mujeres embarazadas del tercer trimestre en España y el 100% de los niños de 4 años mean todos los días Bisphenol A, además de otros 17 residuos”.

El medioambiente también sufre de las últimas innovaciones tecnológicas. Después de 15 años de soja transgénica, la zona del Río de la Plata en Argentina está tan afectada por los monocultivos que es conocida como la “República Unida de la Soja” por los industriales. Ana Herrero, de la Universidad Nacional de General Sarmiento, denuncia una grave contaminación por los pesticidas, que mata la biodiversidad, empobrece los suelos de sus macronutrientes para luego dispersarse y atravesar las fronteras. Así mismo, muestra su preocupación por el fenómeno que acompaña los monocultivos de transgénicos, que se traduce por prácticas de deforestación así que la exportación del modelo de soja a otras áreas.

Ante tales casos, el Congreso Internacional de Riesgos para la Salud Publica y el Medio Ambiente, organizado por Red Europea de Científicos por la Responsabilidad Social y Ambiental, la Agencia Europea del Medio Ambiente (EEA) y la Fundación Vivo Sano/HDO, no se contentó de difundir estudios sino que llamó a actuar al nivel legislativo: “Este congreso era necesario porque siempre falta debate, falta un lugar donde poner por escrito un plan de acción concreto de cómo mejorar a nivel legislativo todas las políticas públicas que hoy en día se supone que nos dan un nivel de seguridad, y esto desde luego es muy mejorable, porque no hay criterios que unifiquen la seguridad ciudadana. Aquí en España se hacen transgénicos y en otros países no. La seguridad no es igual en todas partes ni se exigen los mismos niveles”, afirmó Irina de la Flor, responsable de la Organización para la Defensa de la Salud (HDO) y miembro del comité de organización del Congreso.

Para Irina de la Flor, resulta inadmisible la falta de control legal sobre estas sustancias tóxicas y la falta de análisis científicos sobre sus efectos a largo plazo, puesto que muchas veces las consecuencias sólo aparecen con el paso de los años. Un situación ventajosa para la industria, que ahorra grandes sumas de dinero en evaluaciones científicas al entregar estudios superficiales: “Estamos siendo los conejillos de Indias de unas tecnologías que se introducen y para las cuales no hay una seguridad ni un control de riesgos, tal y como se hace en medicamentos o en otros productos”.

En efecto, de los 135.000 compuestos químicos que la UE tiene inventariados, sólo hay “estudios toxicológicos en menos de 20% y estudios completos en no más de 20 sustancias”, subrayó el científico Nicolás Olea. Quien además recordó que los factores ambientales son los responsables del 90% de los cánceres, de las alergias, de los problemas de la reproductividad humana, etc. “Lo peor es que la clase médica tampoco es consciente de estos riesgos. Para los profesionales de la salud éste es un asunto totalmente desconocido, tan lejano como está la agricultura ecológica de los médicos de cabecera”, añadió.

Frente a estos escándalos sanitarios, Ecologistas en Acción exige que las autoridades de regulaciones como la Autoridad Europea de Seguridad Alimentaría (EFSA) den prioridad a estudios independientes sobre los estudios parciales de la industria y que coloquen el principio de precaución al centro del protocolo de evaluación. La definición de innovación ya no debe restringirse al dominio ecotecnológico, sino que extenderse a creatividad social, promoviendo una reflexión ética y democrática sobre los objetivos de los avances tecnológicos y sobre sus verdaderos beneficiados.

Fuente:

15 de mayo de 2012

Científicos generan electricidad a partir de capas de virus

  • Su método convierte la energía mecánica en electricidad
  • El estudio se ha publicado en la revista Nature Nanotechnology
Científicos del Departamento de Energía del Laboratorio Nacional Lawrence Berkeley (Berkeley Lab), en EE.UU., han desarrollado un método para generar energía utilizando virus inofensivos, que convierten la energía mecánica en electricidad. 

Los investigadores han publicado su estudio en la revista Nature Nanotechnology.

Los científicos probaron su enfoque creando un generador que produce la corriente necesaria para operar una pequeña pantalla de cristal líquido, que funciona pulsando con un dedo un electrodo del tamaño de un sello de correos, revestido con virus especialmente diseñados -que convierten la fuerza aplicada con el dedo, en carga  eléctrica.

Este generador es el primero en producir electricidad mediante el aprovechamiento de las propiedades piezoeléctricas de un material biológico -la piezoelectricidad es la acumulación de carga en un sólido, en respuesta a la tensión mecánica.

Este método podría dar lugar a pequeños dispositivos que cosecharan energía eléctrica, a partir de las vibraciones de las tareas cotidianas -como cerrar una puerta, o subir escaleras. Además, también sugiere una forma más sencilla de crear dispositivos microelectrónicos.

"Se necesita más investigación"

"Se necesita más investigación, pero nuestro trabajo es un primer paso hacia el desarrollo de generadores de energía personales, para su uso en nano-dispositivos, y otros mecanismos basados en la  electrónica de virus", explica Seung-Wuk Lee, científico de la Universidad de Berkeley, y profesor de Bioingeniería. Lee condujo la investigación en un equipo que incluye, entre otros, a Ramamoorthy  Ramesh, profesor de Ciencias de los Materiales en la Universidad de  Berkeley, y Byung Yang Lee, del Berkeley Lab.

El efecto piezoeléctrico fue descubierto en 1880 y, desde  entonces, ha sido observado en cristales, cerámica, huesos, proteínas y ADN. También se ha puesto en uso: los encendedores de los  cigarrillos eléctricos y los microscopios de sonda, por ejemplo, no  podrían funcionar sin él. Sin embargo, los materiales utilizados para  fabricar dispositivos piezoeléctricos son tóxicos, lo que limita el  uso generalizado de esta tecnología.

Lee y sus colaboradores se preguntaron si un virus, estudiado en laboratorios de todo el mundo, ofrecía una mejor alternativa: el bacteriófago M13, que sólo ataca a las bacterias, y es benigno para  las personas y, al ser un virus, se reproduce por millones en cuestión de horas, proporcionando un suministro constante. Además, este virus es fácil de manipular genéticamente.

Sin embargo, los  investigadores de Berkeley primero tenían que determinar si el virus M13 es piezoeléctrico. Para ello, Ramesh y Lee aplicaron un campo  eléctrico a una película de virus M13, observando lo que ocurría mediante un microscopio especial. Los investigadores vieron entonces que las proteínas helicoidales que envuelven los virus se retorcían y  giraban en respuesta, una señal segura del efecto piezoeléctrico.

Los científicos mejoraron aún más el sistema apilando películas compuestas de capas individuales de virus, una encima de otra -una  pila de, aproximadamente, 20 capas de espesor, mostró el mayor efecto  piezoeléctrico.

Finalmente, los científicos fabricaron un generador de virus, basado en la energía piezoeléctrica; así, crearon las condiciones para que los virus modificados genéticamente se organizaran de forma espontánea en una película de capas múltiples, esta película se intercaló, entonces, entre dos electrodos revestidos de oro, conectados por cables a una pantalla de cristal líquido.

 Cuando se aplicó presión en el generador, éste produjo un máximo de 6 nanoamperios de corriente, y 400 milivoltios de potencial. 

"Ahora estamos intentando mejorar esta técnica", afirma Lee, quien concluye que, "debido a que las herramientas de la biotecnología permiten la producción a gran escala de virus modificados genéticamente, los materiales piezoeléctricos basados en virus podrían ofrecer una ruta sencilla hacia la microelectrónica del futuro".

Fuentes:


9 de mayo de 2012

Nanoantenas clásicas y cuánticas a la vez

Nueva explicación para dispositivos que hasta ahora se definían por las ecuaciones de Maxwell. 
 

Ilustración de una nanoantena alimentada por un punto cuántico. La luz es redirigida por la antena mediante una estructura nanoscópica, como si fuera un receptor de televisión ultra-diminuto. / ICFO
Un nuevo modelo para explicar el funcionamiento de las nanoantenas ópticas resuelve sus propiedades en las distancias inferiores a los nanómetros gracias a la mecánica cuántica, lo que completa las explicaciones basadas en ecuaciones de física clásica que hasta ahora se aplicaban. Un nanómetro es la milmillonésima parte de un metro y las nanoantenas se utilizan cada vez más en aplicaciones ópticas en nanotecnología, controlando la dirección en la que la luz interactúa con la materia, por ejemplo en microscopios en miniatura. El trabajo se publica en la revista Nature Communications.

Las nanopartículas metálicas actúan como antenas ópticas, ya que aumentan la recepción, el control y la emisión de radiación óptica. Este efecto se consigue a través de la excitación colectiva de los electrones del metal y, hasta ahora, sólo había sido descrito por las ecuaciones establecidas por James Maxwell (ecuaciones de Maxwell) hace más de un siglo.

El avance de la tecnología ha ido reduciendo los tamaños y las distancias de separación entre las nanoantenas metálicas, lo que ha dado lugar a nuevas propiedades que la física clásica es incapaz de describir, tales como el transporte de electrones por efecto túnel, basado en la probabilidad de dichos electrones de desaparecer de un electrodo y reaparecer en el otro.

El investigador Javier Aizpurua, del Centro de Física de Materiales (CSIC y Universidad del País Vasco), que ha dirigido el trabajo, explica que “hasta ahora estas propiedades sólo podían describirse de forma aproximada cuando las distancias de interacción alcanzan valores por debajo del nanómetro”. El modelo propuesto por el equipo de Aizpurua permite abordar de forma compacta la “enorme cantidad de electrones involucrada en la respuesta óptica de una ñaño estructura y los efectos cuánticos que aparecen a distancias subnanométricas”, añade.

El trabajo ha contado con la colaboración de investigadores del Instituto de Colisiones Atómicas y Moleculares de Orsay (Francia) y del Laboratorio de Nanofotónica de Houston (EEUU.

Fuente:

El País Ciencia
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0